Impact of Forest Fires on the Trees and Wood Quality—A Case Study for a Beech Stand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zumbrunnen, T.; Menéndez, P.; Bugmann, H.; Conedera, M.; Gimmi, U.; Bürgi, M. Human impacts on fire occurrence: A case study of hundred years of forest fires in a dry alpine valley in Switzerland. Reg. Environ. Chang. 2012, 12, 935–949. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, F.; Shu, L.; Wang, M. Distribution characteristics and the influence factors of forest fires in China. For. Ecol. Manag. 2013, 3101, 460–467. [Google Scholar] [CrossRef]
- Arthur, M.A.; Blankenship, B.A.; Schörgendorfer, A.; Loftis, D.L.; Alexander, H.D. Changes in stand structure and tree vigor with repeated prescribed fire in an Appalachian hardwood forest. For. Ecol. Manag. 2015, 340, 46–61. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.D.; Touza, J. Interacting effects of topography, vegetation, human activities and wildland-urban interfaces on wildfire ignition risk. For. Ecol. Manag. 2017, 397, 10–17. [Google Scholar] [CrossRef]
- Barbu, I. Riscul de incendii în pădurile din România: Cartare și metode de evaluare. Bucov. For. 2018, 18, 155–163. [Google Scholar] [CrossRef]
- Burlui, I.; Burlui, M.C. Incendiile forestiere: Elemente caracteristice, factori determinanți și măsuri de gestionare. Bucov. For. 2018, 18, 165–175. [Google Scholar] [CrossRef]
- Meddour-Sahar, O.; Meddour, R.; Leone, V.; Lovreglio, R.; Derridj, A. Analysis of forest fires causes and their motivations in northern Algeria: The Delphi method. iForest-Biogeosci. For. 2013, 6, 247–254. [Google Scholar] [CrossRef]
- Stocks, B.J.; Mason, J.A.; Todd, J.B.; Bosch, E.M.; Wotton, B.M.; Amiro, B.D.; Falnnigan, M.D.; Hirsch, K.G.; Logan, K.A.; Martell, D.L.; et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 2003, 108, 8149. [Google Scholar] [CrossRef]
- Gillett, N.P.; Weaver, A.J.; Zwiers, F.W.; Flannigan, M.D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 2004, 31, L18211. [Google Scholar] [CrossRef]
- Adam, I. Metodă de evaluare a riscului de incendiu în pădurile României. Analele ICAS 2007, 50, 261–271. [Google Scholar]
- Palaghianu, C. Aspecte privitoare la dinamica resurselor forestiere mondiale. Analele Univ. Ștefan Cel Mare Suceava Sect. Silvic. 2007, 9, 21–32. [Google Scholar]
- Burlui, I. The particularities of firefighting in the mountain forests. Adv. Agric. Bot.—Int. J. Bioflux Soc. 2012, 4, 131–142. [Google Scholar]
- Földi, L.; Kuti, R. Characteristics of forest fires and their impact on the environment. Acad. Appl. Res. Mil. Public Manag. Sci. 2016, 15, 5–17. [Google Scholar] [CrossRef]
- Page-Dumroese, D.S.; Jurgensen, M.F.; Miller, C.A.; Pickens, J.B.; Tirocke, J.M. Wildfire alters belowground and surface wood decomposition on two national forests in Montana, U.S.A. Int. J. Wildland Fire 2019, 28, 456–469. [Google Scholar] [CrossRef]
- Ganteaume, A.; Jappiot, M.; Lampin, C.; Guijarro, M.; Hemando, C. Flammability of some ornamental species in wildland-urban interfaces in South-Easter France: Laboratory assessment of particle level. Environ. Manag. 2013, 52, 467–480. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Panov, P.I. Pyric properties of some dominant Mediterranean vegetation species. Int. J. Wildland Fire 2001, 10, 23–27. [Google Scholar] [CrossRef]
- Omi, P.N. Forest Fires: A Reference Handbook; Contemporany World Issue; ABC-CLIO Publishing House: Santa Barbara, CA, USA, 2005. [Google Scholar]
- Brandstock, R.A. Effect of large fires on biodiversity in south-eastern Australia: Disaster or template for diversity? Int. J. Wildland Fire 2008, 17, 809–822. [Google Scholar] [CrossRef]
- Mușat, E.C.; Derczeni, R.A.; Barti, M.E.; Dumitru-Dobre, C. Analysis of sound velocity through the wood of spruce trees located into a burned area. For. Bull. 2020, 24, 98–109. [Google Scholar]
- Rodríguez y Silva, F.; Molina, J.R.; González-Cabán, A.; Herrera Machuca, M.A. Economic vulnerability of timber resources to forest fires. J. Environ. Manag. 2012, 100, 16–21. [Google Scholar] [CrossRef]
- Verma, S.; Singh, D.; Mani, S.; Jayakumar, S. Effect of forest fire on tree diversity and regeneration potential in a tropical dry deciduous forest of Mudumalai Tiger Reserve, Western Ghats, India. Ecol. Process. 2017, 62, 32. [Google Scholar] [CrossRef]
- Lawes, M.J.; Richards, A.; Dathe, J.; Midgley, J.J. Bark thickness determines fires resistance of selected tree species fire-prone tropical savanna in north Australia. Plant Ecol. 2011, 212, 2057–2069. [Google Scholar] [CrossRef]
- Odhiambo, B.; Meincken, M.; Seifert, T. The protective role of bark against fire damage: A comparative study on selected introduced and indigenous tree species in the Western Cape, South Africa. Trees 2014, 28, 555–565. [Google Scholar] [CrossRef]
- Rinn, F. How sensor positioning influences sonic tomography results. West. Arborist 2020, 46, 49–54. [Google Scholar]
- Wuerther, G. The Wildfire Reader; Island Press by the Foundation for Deep Ecology: Washington, DC, USA, 2006; 440p. [Google Scholar]
- Beaulieu, J.; Dutilleul, P. Applications of computer tomography (CT) scanning technology in forest research: A tmelu update and review. Can. J. For. Res. 2019, 49, 1173–1183. [Google Scholar] [CrossRef]
- Punches, J. Tree Growth, Forest Management, and Their Implications for Wood Quality; Report no. PNW 576; A Pacific Northwest Ectension publications; Oregon State University: Corvallis, OR, USA; University of Odaho: Moscow, ID, USA; Washington State University: Pullman, WA, USA, 2004. [Google Scholar]
- Ciubotaru, A.; David, E.C. Cercetări privind unele caracteristici ale nodurilor plopului negru (Populus nigra L.) din aliniamente. Rev. Pădurilor 2011, 126, 8–12. [Google Scholar]
- David, E.C.; Ciubotaru, A. Research concerning the number and the surface of the knots detected at black poplar (Populus nigra L.). Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2011, 4, 13–18. [Google Scholar]
- David, E.C.; Enache, L.N. Research concerning the characteristics of the knots from some forest species from green area of Brasov. In Proceedings of the Biennial International Symposium Forest and Sustainable Development, Brașov, Romania, 15–16 October 2010; pp. 609–614. [Google Scholar]
- Masah, M.; Diaz, J.H.; Alawode, A.O.; Gallagher, T.; Peresin, M.S.; Mitchell, D.; Smidt, M.; Via, B. Field assesment of downed timber strenght deterioraton rate and wood quality using acoustic technologies. Forests 2022, 13, 752. [Google Scholar] [CrossRef]
- Acuna, M. Timber and biomass transport optimization: A review of planning issues, solution techniques and decision support tools. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2017, 38, 279–290. [Google Scholar]
- Pereira Domingues Martinho, V.J. Socioeconomic impacts of forest fires upon Portugal: An analysis for the agricultural and forestry sectors. Sustainability 2019, 11, 374. [Google Scholar] [CrossRef]
- Balasso, M.; Hunt, M.; Jacobs, A.; O’Reilly-Wapstra, J. Characterisation of wood quality of Eucalyptus nitens plantations and predictive models of density and stiffness with site and tree characteristics. For. Ecol. Manag. 2021, 491, 118992. [Google Scholar] [CrossRef]
- Guêné-Nanchen, M.; LeBlanc, M.C.; Rochefort, L. Post-fire peatland vegetation recovery: A case study in open rich fens of the Canadian boreal forest. Botany 2021, 100, 435–447. [Google Scholar] [CrossRef]
- Downes, G.M.; Harrington, J.J.; Drew, D.M.; Lausberg, M.; Muyambo, P.; Watt, D.; Lee, D.J. A comparison of radial wood property variation on Pinus radiata between an IML PD-400 ‘Resi’ instrument and increment cores analysed by SilviScan. Forests 2022, 13, 751. [Google Scholar] [CrossRef]
- Tomczak, K.; Tomczak, A.; Jelonek, T. Measuring radial variation in basic density on pedunculate oak: Comparing increment core samples with the IML Power Drill. Forests 2022, 13, 589. [Google Scholar] [CrossRef]
- Gendvilas, V.; Lee, D.J.; Kain, D.P.; Kumar, C.; Downes, G.M.; Lausberg, M.; Harrington, J.J. Predicting wood density using resistance drilling: The effect of instrument and operator. Forests 2024, 15, 157. [Google Scholar] [CrossRef]
- Drew, D.M.; Downes, G.M.; Seifert, T.; Eckes-Shepard, A.; Achim, A. A review of progress and applications in wood quality modelling. Cur. For. Rep. 2022, 8, 317–332. [Google Scholar] [CrossRef]
- Du, X.; Li, S.; Li, G.; Feng, H.; Chen, S. Stress wave tomography of wood internal defects using ellipse-based spatial interpolation and velocity compensation. BioResources 2015, 10, 3948–3962. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Zhou, C.; Li, L.; Yang, X. Effect of sensor quantity on measurement accuracy of log inner defects by using stress wave. J. For. Res. 2007, 18, 221–225. [Google Scholar] [CrossRef]
- European Union. Available online: https://european-union.europa.eu/easy-read_ro (accessed on 6 February 2024).
- Maps on County. Available online: https://www.fetch.ro/harta-judetul-gorj/ (accessed on 6 February 2024).
- Divos, F.; Divos, P. Resolution of stress wave based acoustic tomography. In Proceedings of the 14th International Symposium on Nondestructive Testing of Wood, Eberswalde, Germany, 2–4 May 2005; pp. 309–314. [Google Scholar]
- Rinn, F. Central basics of sonic tree tomography. SCA-Today 2014, 19, 8–10. Available online: http://download.rinntech.com/RINN_SonicTreeTomography_SCAToday12_2014.pdf (accessed on 4 October 2022).
- Tarasiuk, S.T.; Jednoralski, G.; Krajewski, K. Quality assessment of old-growth Scots pine stands in Poland. In Proceedings of the COST E53 Conference–Quality Control for Improving Competitiveness of Wood Industries, Warsaw, Poland, 15–17 October 2007; pp. 153–160. [Google Scholar]
- Mușat, E.C. Analyzing the sound speed through the wood of horse chestnut trees (Aesculus hippocastanum L.). Bull. Transilv. Univ. Brasov. Ser. II—For. Wood Ind. Agric. Food Eng. 2017, 10, 55–66. [Google Scholar]
- Cristini, V.; Tippner, J.; Tomšovský, M.; Zlámal, J.; Maŕík, R. Acoustic tomography outputs in comparison to the properties of degraded wood in beech trees. Eur. J. Wood Wood Prod. 2022, 80, 1377–1387. [Google Scholar] [CrossRef]
- Proto, A.R.; Cataldo, M.F.; Costa, C.; Papandrea, S.F.; Zimbalatti, G. A tomographic approach to assessing the possibility of ring shake presence on standing chestnut trees. Eur. J. Wood Wood Prod. 2020, 78, 1137–1148. [Google Scholar] [CrossRef]
- Rinn, F. Resistograph visualization of tree-ring density variations. In Proceedings of the International Conference on Tree Rings, Environment and Humanity. Relationships and Processes, Tucson, AZ, USA, 17–21 May 1994. [Google Scholar]
- Mușat, E.C. The agreement in accuracy between tomograms, resistograms and the actual condition of the wood from lime trees harvested from cities. BioResources 2023, 18, 1757–1779. [Google Scholar] [CrossRef]
- Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I. Biotic and abiotic effects of human settlements in the wildland-urban interface. Bioscience 2014, 64, 429–437. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.; Touza, J. Wildfire risk associated with different land covers within and outside wildland-urban interfaces. For. Ecol. Manag. 2016, 372, 1–9. [Google Scholar] [CrossRef]
- Mușat, E.C. How well can sound tomograms characterize inner-trunck defects in beeach trees from a burned plot? BioResources 2024, 19, 7530–7565. [Google Scholar] [CrossRef]
- Harvey, C.; Visser, R. Characterization of harvest residues on New Zealand’s steepland plantation cutovers. N. Z. J. For. Sci. 2022, 52, 7. [Google Scholar] [CrossRef]
- Beldeanu, E. Produse Forestiere; Publishing House of Transilvania University of Brasov: Brasov, Romania, 2008; 331p. [Google Scholar]
- Sandoz, J.L.; Lorin, P. Tares internes de bois sur pied: Détection par ultrasouns. Rev. For. Fr. 1996, 48, 231–240. [Google Scholar] [CrossRef]
- Leboucher, B. Fabriquer en bois massif: Anticiper les variations. Le. Bouvet 2014, 167, 21–33. [Google Scholar]
- Câmpu, V.R.; Dumitrache, R. Frost crack impact on European Beech (Fagus sylvatica L.) wood quality. Not. Bot. Horti Agrobot. 2015, 431, 272–277. [Google Scholar] [CrossRef]
- Lunguleasa, A. Anatomia şi mecanica lemnului; Publishing House of Transilvania University of Brasov: Brasov, Romania, 2004; 106p. [Google Scholar]
- IML-Instrumenta Mechanik Labor System GmbH, 2018, Germany. Available online: https://www.iml-service.com/iml/imprint/ (accessed on 26 August 2024).
- Câmpu, V.R. Research concerning the development of red heartwood and its influence on beech wood sorting. Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2010, 3, 11–16. [Google Scholar]
- Ciubotaru, A. Exploatarea Pădurilor, Lux Libris Publishing House Brasov: Brasov, Romania, 1998; 351p.
- Lin, W.; Wu, J. Study on application of stress wave for nondestructive test of wood defect. Appl. Mech. Mater. 2013, 401, 1119–1123. [Google Scholar] [CrossRef]
- Deflorio, G.; Fink, S.; Schwarze, F.W.M.R. Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation. Wood Sci. Technol. 2008, 42, 117–132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mușat, E.C. Impact of Forest Fires on the Trees and Wood Quality—A Case Study for a Beech Stand. Fire 2024, 7, 325. https://doi.org/10.3390/fire7090325
Mușat EC. Impact of Forest Fires on the Trees and Wood Quality—A Case Study for a Beech Stand. Fire. 2024; 7(9):325. https://doi.org/10.3390/fire7090325
Chicago/Turabian StyleMușat, Elena Camelia. 2024. "Impact of Forest Fires on the Trees and Wood Quality—A Case Study for a Beech Stand" Fire 7, no. 9: 325. https://doi.org/10.3390/fire7090325
APA StyleMușat, E. C. (2024). Impact of Forest Fires on the Trees and Wood Quality—A Case Study for a Beech Stand. Fire, 7(9), 325. https://doi.org/10.3390/fire7090325