Assessment of Pinus halepensis Forests’ Vulnerability Using the Temporal Dynamics of Carbon Stocks and Fire Traits in Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Tree Biomass Data Collection
2.3. Litter, Soil Sampling and Analysis
2.4. Statistical Analysis and Allometric Model Fitting
2.5. Recovery Model Fitting
3. Results
3.1. Carbon Stock Dynamic
3.1.1. Litter and Soil Carbon Stocks
3.1.2. Aboveground Biomass
3.1.3. Combustibility
3.1.4. Resistance and Regeneration
3.2. Allometric Biomass Equations for Regional Applications
3.3. Adjusted Vulnerability Framework
4. Discussion
4.1. Allometric Equations and Regional Applications
4.2. Forest Biomass Stocks in Mediterranean Pine Forests
4.3. Implication of Carbon Pools Dynamic on Vulnerability Assessment to Fire and Cascading Effects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; De Bruin, S.; Farina, M. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Wheeler, J.; Louis, V.; Tansey, K.; Balzter, H. Quantifying forest biomass carbon stocks from space. Curr. Oncol. Rep. 2017, 3, 1–18. [Google Scholar] [CrossRef]
- Salvatore, R.; Moya, D.; Pulido, L.; Lovreglio, R.; López-Serrano, F.R.; De las Heras, J.; Leone, V. Morphological and anatomical differences in Aleppo pine seeds from serotinous and non-serotinous cones. New For. 2010, 39, 329–341. [Google Scholar] [CrossRef]
- Montero, G.; Cañellas, I.; Ruiz-Peinado, R. Growth and yield models for Pinus halepensis mill. For. Syst. 2001, 10, 179–201. [Google Scholar] [CrossRef]
- Quézel, P. Taxonomy and biogeography of Mediterranean pines (Pinus halepensis and P. brutia). In Ecology, Biogeography and Management of Pinus halepensis and Pinus brutia Forest Ecosystems in the Mediterranean Basin; Néeman, G., Trabaud, L., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2000; pp. 1–12. [Google Scholar]
- Ruffault, J.; Curt, T.; Moron, V.; Trigo, R.M.; Mouillot, F.; Koutsias, N.; Pimont, F.; Martin-StPaul, N.; Barbero, R.; Dupuy, J.L.; et al. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 2020, 10, 13790. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Chuvieco, E.; Yebra, M.; Martino, S.; Thonicke, K.; Gomez-Gimenez, M.; San-Miguel, J.; Oom, D.; Velea, R.; Mouillot, F.; Molina, J.R.; et al. Towards an integrated approach to wild re risk assessment: When, where, what and how may the landscapes burn. Fire 2023, 6, 215. [Google Scholar] [CrossRef]
- Popovic, Z.; Bojovic, S.; Markovic, M.; Cerda, A. Tree species flammability based on plant traits: A synthesis. Sci. Total Environ. 2021, 800, 149625. [Google Scholar] [CrossRef] [PubMed]
- Ne’eman, G.; Goubitz, S.; Nathan, R. Reproductive traits of Pinus halepensis in the light of fire—A critical Review. Plant Ecol. 2004, 171, 69–79. [Google Scholar] [CrossRef]
- Linkov, I.; Trump, B.D. Resilience as function of space and time. In The Science and Practice of Resilience. Risk, Systems and Decisions; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Noble, I.R.; Slatyer, R.O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 1980, 43, 5–21. [Google Scholar] [CrossRef]
- Chiminazzo, M.A.; Charles-Dominique, T.; Rossatto, D.R.; Bombo, A.B.; Fidelis, A. Why woody plant modularity through time and space must be integrated in fire research? AoB Plants 2023, 15, plad029. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, T.; Platt, W.J.; Bellingham, P.J.; Vieilledent, G.; Franklin, J.; Martin, P.H.; Menkes, C.; Perez-Salicrup, D.R.; Russell-Smith, J.; Keppel, G. Altered cyclone-fire interactions are changing ecosystems. Trends Plant Sci. 2022, 27, 1218–1230. [Google Scholar] [CrossRef] [PubMed]
- Vallet, L.; Schwartz, M.; Ciais, P.; van Wees, D.; Truchis, A.; Mouillot, F. High-resolution data reveal a surge of biomass loss from temperate and Atlantic pine forests, contextualizing the 2022 fire season distinctiveness in France. Biogeosciences 2023, 20, 3803–3825. [Google Scholar] [CrossRef]
- Cutini, A.; Bongi, P.; Chianucci, F.; Pagon, N.; Grignolio, S.; Amorini, E.; Apollonio, M. Roe deer (Capreolus capreolus L.) browsing effects and use of chestnut and Turkey oak coppiced areas. Ann. For. Sci. 2011, 68, 667–674. [Google Scholar] [CrossRef]
- Sonmez, T.; Kahriman, A.; Şahin, A.; Yavuz, M. Biomass equations for Calabrian pine in the Mediterranean region of Turkey. Šumarski List 2016, 11–12, 567–576. [Google Scholar] [CrossRef]
- Navarrete-Poyatos, M.A.; Navarro-Cerrillo, R.M.; Lara-Gómez, M.A.; Duque-Lazo, J.; de los Angeles Varo, M.; Palacios Rodriguez, G. Assessment of the Carbon Stock in Pine Plantations in Southern Spain through ALS Data and K-Nearest Neighbor Algorithm Based Models. Geosciences 2019, 9, 442. [Google Scholar] [CrossRef]
- Basuki, T.M.; Van Lake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the aboveground biomass in the tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Paul, K.I.; England, J.; Roxburgh, S.H.; Ritson, P.S.; Hobbs, T.; Brooksbank, K.; Raison, R.J.; Larmour, J.S.; Murphy, S.; Norris, J.; et al. Development and testing of generic allometric equations for estimating aboveground biomass of mixed-species environmental plantings. For. Ecol. Manag. 2013, 310, 483–494. [Google Scholar] [CrossRef]
- Jorge, C.; Tomé, M.; Ruiz-Peinado, R.; Zribi, L.; Paulo, J.A. Quercus suber Allometry in the West Mediterranean Basin. Forests 2023, 14, 649. [Google Scholar] [CrossRef]
- Avendano-Hernandez, D.M.; Acosta-Mireles, M.; Carrillo-Anzures, F.; Etchevers-Barra, J.D. Biomass and carbon estimation in a forest of Abies religiosa. Rev. Fitotec. Mex. 2009, 32, 233–238. [Google Scholar] [CrossRef]
- Rodrıguez-Ortiz, G.; Garcıa-Aguilar, J.A.; Leyva-Lopez, J.C.; Ruiz-Dıaz, C.; Enrıquez-del Valle, J.R.; Santiago-Garcıa, W. Structural biomass and by compartments of Pinus patula regeneration in clearcutting sites. Madera Bosques 2019, 25, e2511713. [Google Scholar] [CrossRef]
- Shaiek, O.; Loustau, D.; Garchi, S.; Bachtobji, B.; El Aouni, M.H. Estimation allométrique de la biomasse du pin maritime en dune littorale: Cas de la forêt de Rimel (Tunisie). Forêt Méditerranéenne 2010, 31, 231–242. [Google Scholar]
- Ennajah, A.; Kachout-Sai, S.; Khaldi, A.; Elaoui, M.; Laamouri, A.; Fezzani, T.; Cherni, T.; Eleuch, S.; Nasr, Z. Interactive Effects of Ecosystem Managements on Gas Exchange, Water Use Efficiency and Carbon Stock in Pinus pinea Forests. J. Chem. Biol. Phys. Sci. 2016, 63, 1044–1059. [Google Scholar] [CrossRef]
- Pausas, J.G. Bark thickness and fire regime. Funct. Ecol. 2015, 29, 315–327. [Google Scholar] [CrossRef]
- Belhadj-Khedher, C.; Koutsias, N.; Karamitsou, A.; EI-Melki, T.; Ouelhazi, B.; Hamdi, A.; Nouri, H.; Mouillot, F. A Revised Historical Fire Regime Analysis in Tunisia (1985–2010) from a Critical Analysis of the National Fire Database and Remote Sensing. Forests 2018, 9, 59. [Google Scholar] [CrossRef]
- Sghaier, T.; Ammari, Y. Croissance et production du Pin d’Alep (Pinus halepensis mill.) en Tunisie. Ecol. Mediterr. 2012, 38, 39–57. [Google Scholar] [CrossRef]
- Belhadj-Khedher, C.; El-Melki, T.; Mouillot, F. Saharan hot and dry sirocco winds drive extreme fire events in Mediterranean Tunisia (North Africa). Atmosphere 2020, 11, 590. [Google Scholar] [CrossRef]
- Mtimet, A. Atlas Des Sols Tunisiens; Ministère de l’Agriculture, Direction des Sols: Tunis, Tunisia, 1999; p. 165. [Google Scholar]
- Addo-Danso, D.; Prescott, C.E.; Smith, A.R. Methods for estimating root biomass and production in forest and woodland ecosystems carbon studies: A review. For. Ecol. Manag. 2016, 359, 332–351. [Google Scholar] [CrossRef]
- Burt, R. Soil Survey Laboratory Methods Manual; Report No. 42 Version 4.0; United States Department of Agriculture, Natural Re-Sources Conservation Service, Soil Survey Investigations: Lincoln, NE, USA, 2004. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeny, D.R., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, ASA, 1996; pp. 1119–1123. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis; Part 2. Chemical and Microbiological, Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, ASA, 1982; pp. 595–624. [Google Scholar]
- Martin, M.P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D. Spatial distribution of soil organic carbon stocks in France. Biogeosciences 2011, 8, 1053–1065. [Google Scholar] [CrossRef]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar] [CrossRef]
- Bi, H.; Turner, J.; Lambert, M.J. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 2004, 18, 467–479. [Google Scholar] [CrossRef]
- Zribi, L.; Chaar, H.; Khaldi, A.; Hanchi, B.; Mouillot, F.; Gharbi, F. Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia. For. Syst. 2016, 25, e060. [Google Scholar] [CrossRef]
- Amani, B.H.; N’Guessan, A.E.; Van der Meersch, V.; Derroire, G.; Piponiot, C.; Elogne, A.G.; Traoré, K.; N’Dja, J.K.; Hérault, B. Lessons from a regional analysis of forest recovery trajectories in West Africa. Environ. Res. Lett. 2022, 17, 115005. [Google Scholar] [CrossRef]
- Medeiros, T.C.C.; Sampaio, E. Allometry of aboveground biomasses in mangrove species in Itamaracá, Pernambuco, Brazil. Wetl. Ecol. Manag. 2008, 16, 323–330. [Google Scholar] [CrossRef]
- Ribeiro, C.S.; Fehrmann, L.; Boechat Soares, C.P.; Gonçalves Jacovine, L.A.; Kleinn, C.; de Oliveira Gaspar, R. Above- and belowground biomass in a Brazilian Cerrado. For. Ecol. Manag. 2011, 262, 491–499. [Google Scholar] [CrossRef]
- Navar, J. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For. Ecol. Manag. 2009, 257, 427–434. [Google Scholar] [CrossRef]
- Schwartz, M.; Ciais, P.; De Truchis, A.; Chave, J.; Ottlé, C.; Vega, C.; Wigneron, J.P.; Nicolas, M.; Jouaber, S.; Liu, S.; et al. FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach. Earth Syst. Sci. Data 2023, 15, 4927–4945. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.A.; Zare, A.; Singh, A.; Graves, S.J.; White, E.P. A remote sensing derived data set of 100 million individual tree crowns for the National Ecological Observatory Network. eLife 2021, 10, e62922. [Google Scholar] [CrossRef] [PubMed]
- Williams, V.L.; Witkowski, E.T.F.; Balkwill, K. Relationship between bark thickness and diameter at breast height for six tree species used medicinally in South Africa. S. Afr. J. Bot. 2007, 73, 449–465. [Google Scholar] [CrossRef]
- Gallalou, C. Etude des caractéristiques dendrométriques du pin d’Alep (Pinus halepensis Mill.) dans la forêt de Bouhertma (Région de Fernana) (Tunisie). Master’s Thesis, Université 7 Novembre à Carthage, Tunis, Tunisie, 2006. [Google Scholar]
- Correia, A.C.; Tomé, M.; Carlos, P.; Sónia, F.; Dias, A.; Freire, J.; Carvalho, P.O.; Pereira, J.S. Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal. For. Syst. 2010, 19, 418–433. [Google Scholar] [CrossRef]
- Dinc, M.; Vatandaslar, C. Analyzing carbon stocks in a mediterranean forest enterprise: A case study from kizildag, Turkey. Cerne 2019, 25, 402–414. [Google Scholar] [CrossRef]
- Del Río, M.; Barbeito, I.; Bravo-Oviedo, A.; Calama, C.; Cañellas, I.; Herrero, C.; Montero, G.; Moreno-Fernández, D.; Ruiz-Peinado, R.; Bravo, F. Forest Carbon Sequestration: The Impact of Forest Management. In Managing Forest Ecosystems: The Challenge of Climate Change; Bravo, F., Le May, V., Jandl, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 34, pp. 301–327. [Google Scholar] [CrossRef]
- Evrendilek, F.; Berberoglu, S.; Taskinsu-Meydan, S.; Yilmaz, E. Quantifying carbon budgets of conifer Mediterranean forest ecosystems, Turkey. Environ. Monit. Assess. 2006, 119, 527–543. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Del Rio, M.; Montero, G. New models for estimating the carbon sink capacity of Spanish soft-wood species. For. Syst. 2011, 20, 176–188. [Google Scholar] [CrossRef]
- Frattegiani, M.; Mercurio, M.; Mencuccini, M.; Profili, W. Quantitative analysis of stone pine (Pinus pinea L.) root systems morphology and its relationship with water table and soil characters. Investig. Agrar. Sist. Recur. For. 1993, 3, 405–416. [Google Scholar]
- Demessie, A.; Singh, B.R.; Lal, R.; Strand, T. Leaf litterfall and litter decomposition under Eucalyptus and coniferous plantations in Gambo District, southern Ethiopia. Acta Agric. Scand. B Soil Plant Sci. 2012, 62, 467–476. [Google Scholar] [CrossRef]
- Jhariya, M.K. Influences of Forest Fire on Forest Floor and Litterfall in Bhoramdeo Wildlife Sanctuary (C.G.), India. J. Environ. Sci. 2017, 33, 330–341. [Google Scholar] [CrossRef]
- Misir, M.N.; Bayburtlu, S.; Bilgili, F. The yield of natural trembling aspen (Populus tremula L.) stands (Northern and Eastern Anatolia). Pak. J. Agric. Sci. 2013, 50, 537–547. [Google Scholar]
- Yue, J.; Guan, J.; Deng, L.; Zhang, J.; Li, G.; Du, S. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in Northwest China. PeerJ 2018, 6, e4859. [Google Scholar] [CrossRef] [PubMed]
- Varner, J.M.; Kane, J.M.; Kreye, J.K.; Engber, E. The flammability of forest and woodland litter: A synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Xifré-Salvadó, M.À.; Prat-Guitart, N.; Francos, M.; Úbeda, X.; Castellnou, M. Smouldering Combustion Dynamics of a Soil from a Pinus halepensis Mill. Forest. A Case Study of the Rocallaura Fires in Northeastern Spain. Appl. Sci. 2020, 10, 3449. [Google Scholar] [CrossRef]
- Rodrıguez-Murillo, J. Organic carbon content under different types of land use and soil in peninsular Spain. Biol. Fertil. Soils 2001, 33, 53–61. [Google Scholar] [CrossRef]
- Peng, S.S.; Piao, S.l.; Zeng, Z.Z.; Ciais, P.; Zhou, L.M.; Liu, L.Z.X. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef] [PubMed]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land use change: Processes and potential. Glob. Change Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef]
- Ruíz-Peinado, R.; Bravo-Oviedo, A.; Montero, G.; Río, M. Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitig Adapt. Strateg. Glob. Change 2014, 21, 1059–1072. [Google Scholar] [CrossRef]
- Rodman, K.C.; Veblen, T.T.; Andrus, R.A. A trait-based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. J. Ecol. 2021, 109, 313–326. [Google Scholar] [CrossRef]
- Konôpka, B.; Pajtík, J.; Šebeň, V.; Merganičová, K. Modeling Bark Thickness and Bark Biomass on Stems of Four Broadleaved Tree Species. Plants 2022, 11, 1148. [Google Scholar] [CrossRef]
- Jones, M.W.; Santín, C.; van der Werf, G.R.; Doerr, S.H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 2019, 12, 742–747. [Google Scholar] [CrossRef]
- Vallet, L.; Abdallah, C.; Lauvaux, T.; Joly, L.; Ramonet, M.; Ciais, P.; Lopez, M.; Xueref-Remy, I.; and Mouillot, F. Soil smoldering in temperate forests: A neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios. Biogeosciences Discuss. 2023, 2421, Preprint. [Google Scholar] [CrossRef]
- Uri, V.; Kukumagi, M.; Aosaar, J.; Varik, M.; Becker, H.; Aun, K.; Lohmus, K.; Soosaar, K.; Astover, A.; Uri, M.; et al. The dynamics of the carbon storage and fluxes in scots pine (Pinus sylvestris) chronosequence. Sci. Total Environ. 2022, 817, 152973. [Google Scholar] [CrossRef]
- Campbell, J.L.; Fontaine, J.B.; Donato, C. Carbon emissions from decomposition of fire-killed trees following a large wildfire in Oregon, United States. J. Geophys. Res. Biogeosci. 2016, 121, 718–730. [Google Scholar] [CrossRef]
- Molinas-González, C.R.; Castro, J.; Leverkus, A.B. Deadwood Decay in a Burnt Mediterranean Pine Reforestation. Forests 2017, 8, 158. [Google Scholar] [CrossRef]
- Deng, X.; Liang, X.; Shen, L.; Liu, H.; Yang, M.; Zeng, M.; Liang, M.; Cheng, F. Decomposition and nutrient dynamics of stumps and coarse roots of Eucalyptus plantations in southern China. Ann. For. Sci. 2023, 80, 30. [Google Scholar] [CrossRef]
- Anderson, P.H.; Johnsen, K.H.; Butnor, J.R.; Gonzalez-Benecke, C.A.; Samuelson, L.J. Predicting longleaf pine coarse root decomposition in the southwestern US. For. Ecol. Manag. 2018, 425, 1–8. [Google Scholar] [CrossRef]
- Guiote, C.; Pausas, J.G. Fire favors sexual precocity in a Mediterranean pine. Oikos 2023, e09373. [Google Scholar] [CrossRef]
- Saracino, A.; Bellino, A.; Allevato, E.; Mingo, A.; Conti, S.; Rossi, S.; Bonanomi, G.; Carputo, D.; Mazzoleni, S. Repeated stand-replacing crown fires affect seed morphology and germination in Aleppo pine. Front. Plant Sci. 2017, 8, 1160. [Google Scholar] [CrossRef]
- Romero, B.; Ganteaume, A. Does recent fire activity impact fire-related traits of Pinus halepensis Mill. and Pinus sylvestris L. in the French Mediterranean area? Ann. For. Sci. 2020, 77, 106. [Google Scholar] [CrossRef]
- Ayari, A.; Zubizarreta-Gerendiain, A.; Tome, M.; Tome, J.; Garchi, S.; Henchi, B. Stand, tree and crown variables affecting cone crop and seed yield of Aleppo pine forests in different bioclimatic regions of Tunisia. For. Syst. 2012, 21, 128–140. [Google Scholar] [CrossRef]
- García-Jiménez, R.; Palmero-Iniesta, M.; Espelta, J.M. Contrasting effects of fire severity on the regeneration of Pinus halepensis Mill. and resprouter species in recently thinned thickets. Forests 2017, 8, 55. [Google Scholar] [CrossRef]
- Moya, D.; Espelta, J.; Verkaik, I.; López-Serrano, F.; Heras, J. Tree density and site quality influence on Pinus halepensis Mill. reproductive characteristics after large fires. Ann. For. Sci. 2007, 64, 649–656. [Google Scholar] [CrossRef]
- Mitsopoulos, I.D.; Dimitrakopoulos, A.P. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests. Ann. For. Sci. 2007, 64, 287–299. [Google Scholar] [CrossRef]
- Valentine, H.T.; Amateis, R.L.; Gove, J.H.; Mäkelä, A. Crown-rise and crown-length dynamics: Application to loblolly pine. J. For. Res. 2013, 86, 371–375. [Google Scholar] [CrossRef]
- Allensworth, E.; Temesgen, H.; Frank, B.; Gray, A. Imputation to predict height to crown base for trees with predicted heights. For. Ecol. Manag. 2021, 498, 119574. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, Z.; Jia, W.; Li, D. Modelling the Tree Height, Crown base height, and effective crown height of Pinus koraiensis plantations based on knot analysis. Forests 2021, 12, 1778. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Zeng, W.; Wang, J.; Meng, J. Development of crown ratio and height to crown base models for masson pine in Southern China. Forests 2020, 11, 1216. [Google Scholar] [CrossRef]
- Álvarez, E.; Duque, Á.; Saldarriaga, J.G.; Cabrera, K.R.; Salas, G.D.; Valle, I.D.; Lema, Á.; Moreno, F.; Orrego, S.A.; Rodriguez, L.C. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manag. 2012, 267, 297–308. [Google Scholar] [CrossRef]
- Hoy, E.E.; Turestsky, M.; Kasischke, E.S. More frequent burning increases vulnerability of Alaskan boreal black spruce forests. Environ. Res. Lett. 2016, 11, 095001. [Google Scholar] [CrossRef]
- Moghli, A.; Santana, V.M.; Baeza, M.J.; Pastor, E.; Soliveres, S. Fire recurrence and time since last fire interact to determine the supply of multiple ecosystem services by Mediterranean forests. Ecosystems 2022, 25, 1358–1370. [Google Scholar] [CrossRef]
- Turner, M.G.; Braziunas, K.H.; Hansen, W.D.; Harvey, B.J. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc. Natl. Acad. Sci. USA 2019, 116, 11319–11328. [Google Scholar] [CrossRef] [PubMed]
- Steel, Z.L.; Foster, D.; Coppoletta, M.; Lydersen, J.M.; Stephens, S.L.; Paudel, A.; Markwith, S.H.; Merriam, K.; Collins, B.M. Ecological resilience and vegetation transition in the face of two successive large wildfires. J. Ecol. 2021, 109, 3340–3355. [Google Scholar] [CrossRef]
- Chriha, S.; Sghari, A. Forest fires in Tunisia, irreversible sequelae of the revolution of 2011. J. Mediterr. Geogr. 2013, 121, 87–93. [Google Scholar] [CrossRef]
- Huang, Y.; Ciais, P.; Santoro, M.; Makowski, D.; Chave, J.; Schepaschenko, D.; Abramoff, R.Z.; Goll, D.S.; Yang, H.; Chen, Y.; et al. A global map of root biomass across the world’s forests. Earth Syst. Sci. Data 2021, 13, 4263–4274. [Google Scholar] [CrossRef]
Stand Parameters | Young Stand (S1) | Old Stand (S2) |
---|---|---|
Tree density (tree ha−1) | 2234 | 645 |
Tree height (m) | 5.03 ± 0.14 | 10.81 ± 0.18 |
Diameters at breast height (cm) | 8.61 ± 0.22 | 17.32 ± 0.8 |
Soil depth (cm) | 40 | 70 |
Soil texture | Silt loam | Clay loam |
Soil water holding capacity (WHC) (mm) | 41.03 | 77.55 |
Young Stand (S1) | Old Stand (S2) | |||
---|---|---|---|---|
Depth (cm) | 0–10 | 10–30 | 0–10 | 10–70 |
BD (g cm−3) | 1.40 ± 0.05 a | 1.64 ± 0.06 a | 1.08 ± 0.08 b | 1.22 ± 0.20 b |
Gravel (%) | 64.94 ± 2.4 a | 81.2 ± 2.39 a | 35.19 ± 2.09 a | 72.22 ± 1.96 b |
Clay (%) | 10.84 ± 0.24 a | 9.44 ± 0.17 a | 16.68 ± 0.17 b | 14.62 ± 0.17 b |
Silt (%) | 37.01 ± 0.37 a | 32.50 ± 0.27 a | 37.37 ± 0.19 b | 43.25 ± 0.16 b |
Sand (%) | 52.15 ± 0.18 a | 58.06 ± 0.18 a | 45.95 ± 0.2 b | 41.13 ± 0.1 b |
N (%) | 0.40 ± 0.01 a | 0.22 ± 0.0 a | 0.71 ± 0.0 b | 0.61 ± 0.0 b |
C (%) | 2.09 ± 0.06 a | 1.51 ± 0.07 a | 6.48 ± 0.04 b | 3.44 ± 0.04 b |
SOCs (MgCha−1) | 10.36 ± 1.08 a | 14.11 ± 2.46 a | 45.28 ± 3.9 b | 70.38 ± 7.3 b |
WHC (mm) | 9.99 ± 0.47 a | 31.04 ± 2.17 a | 11.40 ± 0.96 a | 66.15 ± 1.52 b |
Young Stand (S1) | Old Stand (S2) | |||||
---|---|---|---|---|---|---|
Components | Biomass (Mg ha−1) | C (Mg C ha−1) | C (%) | Biomass(Mg ha−1) | C (Mg C ha−1) | C (%) |
Total tree | 57.62 ± 20.35 a | 27.03 ± 9.80 a | 42.77 | 178.46 ± 19.43 b | 84.65 ± 9.09 b | 40.85 |
Aboveground | 42.04 ± 15.83 a | 19.98 ± 7.65 a | 31.61 | 131.11 ± 14.9 b | 63.22 ± 7.20 b | 30.51 |
Stem wood | 18.34 ± 6.45 a | 8.18 ± 2.88 a | 12.94 | 59.89 ± 6.24 b | 26.72 ± 2.78 b | 12.89 |
Stem bark | 4.15 ± 1.33 a | 1.85 ± 0.59 a | 2.92 | 12.79 ± 1.17 b | 5.70 ± 0.52 b | 2.75 |
Branch wood | 11.04 ± 3.31 a | 5.78 ± 1.73 a | 9.14 | 35.28 ± 1.76 b | 18.49 ± 0.92 b | 8.92 |
Branch bark | 2.35 ± 0.70 a | 1.05 ± 0.70 a | 1.66 | 7.47 ± 0.37 b | 3.33 ± 0.16 b | 1.61 |
Needle | 4.00 ± 1.13 a | 2.07 ± 0.59 a | 3.27 | 12.43 ± 0.59 b | 6.45 ± 0.31 b | 3.11 |
Pine cone | 2.17 ± 0.25 a | 1.05 ± 0.12 a | 1.66 | 5.25 ± 0.19 b | 2.53 ± 0.14 b | 1.22 |
Belowground | 15.58 ± 4.82 a | 7.05 ± 2.18 a | 11.15 | 47.35 ± 4.24 b | 21.43 ± 1.92 b | 10.34 |
Roots | 15.58 ± 4.82 a | 7.05 ± 2.18 a | 11.15 | 47.35 ± 4.24 b | 21.43 ± 1.92 b | 10.34 |
Soil | 36.17 | 57.23 | 122.57 | 59.15 | ||
Litter | 8.06 ± 0.26 a | 4.25 ± 0.14 a | 6.72 | 13.09 ± 0.29 b | 6.90 ± 0.15 b | 3.33 |
SOCs | 31.67 | 50.11. | 115.67 | 55.82 | ||
Ecosystem | 63.20 | 100 | 207.22 | 100 |
Components | Allometric Equations | Pr B-P Test | W Test | Pr (Sh-W) | RMSE | MAE | R2 | Adj. R2 |
---|---|---|---|---|---|---|---|---|
Total tree | Yt = e−2.5550(DBH2H)0.9446 | 0.8392 | 0.9678 | 0.8236 | 0.2320 | 0.1715 | 0.9781 | 0.9765 |
Aboveground | Ya = e−2.9469(DBH2H)0.9579 | 0.5137 | 0.9758 | 0.6194 | 0.2428 | 0.1673 | 0.9768 | 0.9750 |
Stem wood | Ysw = e−3.9761(DBH2H)0.9736 | 0.8978 | 0.9558 | 0.6193 | 0.1225 | 0.0987 | 0.9942 | 0.9937 |
Stem bark | Ysb= e−5.0221(DBH2H)0.9091 | 0.1110 | 0.9727 | 0.8957 | 0.3389 | 0.2695 | 0.9511 | 0.9474 |
Branch wood | Ybw = e−3.5850(DBH2CR)1.2486 | 0.2830 | 0.9185 | 0.1825 | 0.7358 | 0.6055 | 0.8117 | 0.7973 |
Branch bark | Ybb = e−5.1000(DBH2CR)1.2419 | 0.6638 | 0.9494 | 0.5155 | 0.7586 | 0.6114 | 0.8010 | 0.7857 |
Needle | Yn = e−4.4060(DBH2CR)1.2084 | 0.6638 | 0.9331 | 0.3031 | 0.7970 | 0.6416 | 0.7754 | 0.7582 |
Pine cone | Yc = e−3.0134(DBH2CR)0.7710 | 0.4777 | 0.9822 | 0.9857 | 0.8124 | 0.6150 | 0.5125 | 0.4719 |
Root | Yr = e−3.5452(DBH2H)0.8875 | 0.7831 | 0.9285 | 0.2591 | 0.3404 | 0.2852 | 0.9485 | 0.9445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezgui, F.; Mouillot, F.; Semmar, N.; Zribi, L.; Khaldi, A.; Nasr, Z.; Gharbi, F. Assessment of Pinus halepensis Forests’ Vulnerability Using the Temporal Dynamics of Carbon Stocks and Fire Traits in Tunisia. Fire 2024, 7, 204. https://doi.org/10.3390/fire7060204
Rezgui F, Mouillot F, Semmar N, Zribi L, Khaldi A, Nasr Z, Gharbi F. Assessment of Pinus halepensis Forests’ Vulnerability Using the Temporal Dynamics of Carbon Stocks and Fire Traits in Tunisia. Fire. 2024; 7(6):204. https://doi.org/10.3390/fire7060204
Chicago/Turabian StyleRezgui, Fatma, Florent Mouillot, Nabil Semmar, Lobna Zribi, Abdelhamid Khaldi, Zouheir Nasr, and Fatma Gharbi. 2024. "Assessment of Pinus halepensis Forests’ Vulnerability Using the Temporal Dynamics of Carbon Stocks and Fire Traits in Tunisia" Fire 7, no. 6: 204. https://doi.org/10.3390/fire7060204
APA StyleRezgui, F., Mouillot, F., Semmar, N., Zribi, L., Khaldi, A., Nasr, Z., & Gharbi, F. (2024). Assessment of Pinus halepensis Forests’ Vulnerability Using the Temporal Dynamics of Carbon Stocks and Fire Traits in Tunisia. Fire, 7(6), 204. https://doi.org/10.3390/fire7060204