Active Fire Clustering and Spatiotemporal Dynamic Models for Forest Fire Management
Abstract
:1. Introduction
2. Study Area and Data Requirements
2.1. Study Region
2.2. Datasets
2.2.1. Active Fire Data
2.2.2. Ground Data
2.2.3. Land Use Land Cover Data
3. Methods
3.1. Active Fire Perimeter Calculations
- Matching hotspots (HSs): This measures how well the fire occurrences detected by the generated fire polygons align with the actual fire occurrences recorded in the ground data. It is calculated by dividing the number of matching fire occurrences (fires that were correctly identified) by the total number of fire occurrences in the ground data:
- Point commission error (CE): This measures the extent of overestimation by calculating the number of generated fire polygons that did not match any ground data fire occurrences, divided by the total number of generated fire polygons:
- Point omission error (OE): This identifies the proportion of fire occurrences that were missed by the generated fire polygons. It is calculated as follows:Once the fire clusters were formed, active fire perimeter (AFP) polygons were generated using buffering and concave methods applied to datasets sourced from MODIS, VIIRS, and a combination of both [19]. This study evaluated the performance of these post-processed active fire perimeters by analyzing both the estimated number of active fires (represented as polygons) and their areas (measured as perimeters). Fire counts, derived through clustering, were compared with fire occurrence data from the Canadian National Fire Database (CNFDB) for the period 2015 to 2019. The evaluation focused on four fire size categories: ≥100 ha, ≥50 to <100 ha, ≥25 to <50 ha, and ≥10 to <25 ha.Additionally, the study evaluated the accuracy of the calculated fire perimeter areas using confusion matrix-based metrics such as area matching, commission error (CE), and omission error (OE). These metrics were applied to compare the calculated fire perimeters with ground data from 30 selected NBAC fire polygons.
- Area matching measures how closely the calculated perimeters match the actual ground data and is calculated by comparing the overlap between the calculated and ground fire areas:
- Area commission error (CE) indicates overestimation by calculating the proportion of the calculated fire perimeter area that did not match the ground data:
- Area omission error (OE) represents the proportion of the ground area missed by the calculated perimeters and can be expressed as follows:
3.2. Timely Active Fire Progression Model
4. Results
4.1. Performance of Active Fire Clustering and Perimeter Calculation
4.2. Analysis of Active Fire Progression
5. Discussion
5.1. Fire Point Clustering
5.2. Active Fire Premiter
5.3. Timely Active Fire Progression
5.4. Considerations and Future Research
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Active fire perimeter | AFP |
Advanced Very High-Resolution Radiometer | AVHRR |
Concave hull algorithm | CC |
Commission error | CE |
Canadian Interagency Forest Fire Centre | CIFFC |
Canadian National Fire Database | CNFDB |
Canadian Wildland Fire Information System | CWFIS |
Convex hull algorithm | CX |
Density-Based Spatial Clustering of Applications with Noise | DBSCAN |
Earth Observing System Data and Information System | EOSDIS |
Food and Agriculture Organization | FAO |
Fire Information for Resource Management System | FIRMS |
Hotspots | HSs |
Hectares | ha |
Moderate Resolution Imaging Spectroradiometer | MODIS |
National Aeronautics and Space Administration | NASA |
National Burn Area Composite | NBAC |
Natural Resources Canada | NRC |
Near real-time | NRT |
Northwest Territories | NT |
Omission error | OE |
Real-time | RT |
Suomi National Polar-orbiting Partnership | SNPP |
Timely Active Fire Progression | TAFP |
References
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The Human Dimension of Fire Regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef]
- van Lierop, P.; Lindquist, E.; Sathyapala, S.; Franceschini, G. Global Forest Area Disturbance from Fire, Insect Pests, Diseases and Severe Weather Events. For. Ecol. Manag. 2015, 352, 78–88. [Google Scholar] [CrossRef]
- Zumbrunnen, T.; Pezzatti, G.B.; Menéndez, P.; Bugmann, H.; Bürgi, M.; Conedera, M. Weather and Human Impacts on Forest Fires: 100 Years of Fire History in Two Climatic Regions of Switzerland. For. Ecol. Manag. 2011, 261, 2188–2199. [Google Scholar] [CrossRef]
- Saleh, A.; Zulkifley, M.A.; Harun, H.H.; Gaudreault, F.; Davison, I.; Spraggon, M. Forest Fire Surveillance Systems: A Review of Deep Learning Methods. Heliyon 2024, 10, e23127. [Google Scholar] [CrossRef]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global Trends of Forest Loss Due to Fire from 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- FAO and UNEP. The State of the World’s Forests 2020: Forests, Biodiversity and People; FAO and UNEP: Rome, Italy, 2020; ISBN 978-92-5-132419-6. [Google Scholar]
- Kala, C.P. Environmental and Socioeconomic Impacts of Forest Fires: A Call for Multilateral Cooperation and Management Interventions. Nat. Hazards Res. 2023, 3, 286–294. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Hassan, Q.K. Occurrence, Area Burned, and Seasonality Trends of Forest Fires in the Natural Subregions of Alberta over 1959–2021. Fire 2023, 6, 96. [Google Scholar] [CrossRef]
- Dastour, H.; Ahmed, M.R.; Hassan, Q.K. Analysis of Forest Fire Patterns and Their Relationship with Climate Variables in Alberta’s Natural Subregions. Ecol. Inform. 2024, 80, 102531. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A Review of the Effects of Forest Fire on Soil Properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Battisti, D.S.; Williams, A.P.; Hansen, W.D.; Harvey, B.J.; Kolden, C.A. Projected Increases in Western US Forest Fire despite Growing Fuel Constraints. Commun. Earth Environ. 2021, 2, 227. [Google Scholar] [CrossRef]
- Boudinot, F.G.; Sepúlveda, J. Marine Organic Carbon Burial Increased Forest Fire Frequency during Oceanic Anoxic Event 2. Nat. Geosci. 2020, 13, 693–698. [Google Scholar] [CrossRef]
- Chatenoux, B.; Peduzzi, P. Biomass Fires: Preliminary Estimation of Ecosystems Global Economic Losses; UNEP/GRID-Geneva: Geneva, Switzerland, 2012. [Google Scholar]
- Akdis, C.A.; Nadeau, K.C. Human and Planetary Health on Fire. Nat. Rev. Immunol. 2022, 22, 651–652. [Google Scholar] [CrossRef] [PubMed]
- CIFFC. Canada Report: 2023 Fire Season; Canadian Interagency Forest Fire Centre: Winnipeg, MB, Canada, 2024. [Google Scholar]
- CIFFC. Situation Report 22 July 2024. Available online: https://ciffc.net/situation/ (accessed on 23 July 2024).
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Kurbanov, E.; Vorobev, O.; Lezhnin, S.; Sha, J.; Wang, J.; Li, X.; Cole, J.; Dergunov, D.; Wang, Y. Remote Sensing of Forest Burnt Area, Burn Severity, and Post-Fire Recovery: A Review. Remote Sens. 2022, 14, 4714. [Google Scholar] [CrossRef]
- Bhuian, H.; Dastour, H.; Ahmed, M.R.; Hassan, Q.K. Comparison of Perimeter Delineation Methods for Remote Sensing Fire Spot Data in Near/Ultra-Real-Time Applications. Fire 2024, 7, 226. [Google Scholar] [CrossRef]
- Dixon, D.J.; Callow, J.N.; Duncan, J.M.A.; Setterfield, S.A.; Pauli, N. Regional-Scale Fire Severity Mapping of Eucalyptus Forests with the Landsat Archive. Remote Sens. Environ. 2022, 270, 112863. [Google Scholar] [CrossRef]
- Skakun, R.; Castilla, G.; Metsaranta, J.; Whitman, E.; Rodrigue, S.; Little, J.; Groenewegen, K.; Coyle, M. Extending the National Burned Area Composite Time Series of Wildfires in Canada. Remote Sens. 2022, 14, 3050. [Google Scholar] [CrossRef]
- Briones-Herrera, C.I.; Vega-Nieva, D.J.; Monjarás-Vega, N.A.; Briseño-Reyes, J.; López-Serrano, P.M.; Corral-Rivas, J.J.; Alvarado-Celestino, E.; Arellano-Pérez, S.; Álvarez-González, J.G.; Ruiz-González, A.D.; et al. Near Real-Time Automated Early Mapping of the Perimeter of Large Forest Fires from the Aggregation of VIIRS and MODIS Active Fires in Mexico. Remote Sens. 2020, 12, 2061. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Briones-Herrera, C.I.; Vega-Nieva, D.J.; Briseño-Reyes, J.; Monjarás-Vega, N.A.; López-Serrano, P.M.; Corral-Rivas, J.J.; Alvarado, E.; Arellano-Pérez, S.; Jardel Peláez, E.J.; Pérez Salicrup, D.R.; et al. Fuel-Specific Aggregation of Active Fire Detections for Rapid Mapping of Forest Fire Perimeters in Mexico. Forests 2022, 13, 124. [Google Scholar] [CrossRef]
- Scaduto, E.; Chen, B.; Jin, Y. Satellite-Based Fire Progression Mapping: A Comprehensive Assessment for Large Fires in Northern California. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5102–5114. [Google Scholar] [CrossRef]
- Dastour, H.; Hassan, Q.K. Utilizing MODIS Remote Sensing and Integrated Data for Forest Fire Spread Modeling in the Southwest Region of Canada. Environ. Res. Commun. 2024, 6, 025007. [Google Scholar] [CrossRef]
- Ray, T.; Malasiya, D.; Verma, A.; Purswani, E.; Qureshi, A.; Khan, M.L.; Verma, S. Characterization of Spatial–Temporal Distribution of Forest Fire in Chhattisgarh, India, Using MODIS-Based Active Fire Data. Sustainability 2023, 15, 7046. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, Z.; Li, M.; Wang, B.; Zhang, X. Forest Fire Spread Monitoring and Vegetation Dynamics Detection Based on Multi-Source Remote Sensing Images. Remote Sens. 2022, 14, 4431. [Google Scholar] [CrossRef]
- Hassan, Q.K.; Bourque, C.P.A.; Meng, F.-R. Application of Landsat-7 ETM+ and MODIS Products in Mapping Seasonal Accumulation of Growing Degree Days at an Enhanced Resolution. J. Appl. Remote Sens. 2007, 1, 013539. [Google Scholar] [CrossRef]
- Chen, R.; He, B.; Li, Y.; Zhang, Y.; Liao, Z.; Fan, C.; Yin, J.; Zhang, H. Incorporating Fire Spread Simulation and Machine Learning Algorithms to Estimate Crown Fire Potential for Pine Forests in Sichuan, China. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104080. [Google Scholar] [CrossRef]
- Liangrocapart, S.; Khetkeeree, S.; Petchthaweetham, B. Thermal Anomaly Level Algorithm for Active Fire Mapping by Means of Sentinel-2 Data. In Proceedings of the 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 24–27 June 2020; pp. 687–690. [Google Scholar]
- Seydi, S.T.; Saeidi, V.; Kalantar, B.; Ueda, N.; Halin, A.A. Fire-Net: A Deep Learning Framework for Active Forest Fire Detection. J. Sens. 2022, 2022, 8044390. [Google Scholar] [CrossRef]
- Çolak, E.; Sunar, F. The Importance of Ground-Truth and Crowdsourcing Data for the Statistical and Spatial Analyses of the NASA FIRMS Active Fires in the Mediterranean Turkish Forests. Remote Sens. Appl. Soc. Environ. 2020, 19, 100327. [Google Scholar] [CrossRef]
- Smith, J.M. FIRMS Adds Ultra Real-Time Data from MODIS and VIIRS | Earthdata. Available online: https://www.earthdata.nasa.gov/learn/articles/firms-urt-data (accessed on 18 May 2024).
- Giglio, L. VIIRS/SNPP Active Fires 6-Min L2 Swath 375m V002; Distributed by NASA EOSDIS Land Processes; Distributed Active Archive Center: Sioux Falls, SD, USA, 2024. [Google Scholar]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global Distribution and Seasonality of Active Fires as Observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Sensors. J. Geophys. Res. Biogeosciences 2006, 111, G02016. [Google Scholar] [CrossRef]
- Choi, T.; Cao, C.; Blonski, S.; Shao, X.; Wang, W.; Ahmad, K. Preliminary Assessment of On-Orbit Radiometric Calibration Challenges in NOAA-21 VIIRS Reflective Solar Bands (RSBs). Remote Sens. 2024, 16, 2737. [Google Scholar] [CrossRef]
- Gupta, P.; Remer, L.A.; Patadia, F.; Levy, R.C.; Christopher, S.A. High-Resolution Gridded Level 3 Aerosol Optical Depth Data from MODIS. Remote Sens. 2020, 12, 2847. [Google Scholar] [CrossRef]
- Román, M.O.; Justice, C.; Paynter, I.; Boucher, P.B.; Devadiga, S.; Endsley, A.; Erb, A.; Friedl, M.; Gao, H.; Giglio, L.; et al. Continuity between NASA MODIS Collection 6.1 and VIIRS Collection 2 Land Products. Remote Sens. Environ. 2024, 302, 113963. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, A.; Chang, T.; Wilson, T.M.; Li, Y.; Chen, N.; Shrestha, A.; Díaz, C.L.P. On-Orbit Calibration and Performance Assessments of Terra and Aqua MODIS Thermal Emissive Bands. J. Appl. Remote Sens. 2021, 15, 014520. [Google Scholar] [CrossRef]
- Davies, D. Wildfire Detection in the US and Canada within a Minute of Satellite Observation. Available online: https://wiki.earthdata.nasa.gov/display/FIRMS/2022/07/14/Wildfire+detection+in+the+US+and+Canada+within+a+minute+of+satellite+observation (accessed on 21 May 2024).
- Artés, T.; Boca, R.; Liberta, G.; San-Miguel, J. Non-Supervised Method for Early Forest Fire Detection and Rapid Mapping. In Proceedings of the Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017), Paphos, Cyprus, 20–23 March 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10444, pp. 224–233. [Google Scholar]
- Canadian Forest Service; Canadian Wildland Fire Information System (CWFIS); Natural Resources Canada; Canadian Forest Service; Northern Forestry Centre. Fire M3 Season-to-Date Buffered Hotspots—Fire Perimeter Estimates. Available online: https://cwfis.cfs.nrcan.gc.ca/datamart/metadata/fm3buffered (accessed on 21 May 2024).
- Cardil, A.; Monedero, S.; Ramírez, J.; Silva, C.A. Assessing and Reinitializing Wildland Fire Simulations through Satellite Active Fire Data. J. Environ. Manage. 2019, 231, 996–1003. [Google Scholar] [CrossRef]
- Henderson, S.B.; Ichoku, C.; Burkholder, B.J.; Brauer, M.; Jackson, P.L. The Validity and Utility of MODIS Data for Simple Estimation of Area Burned and Aerosols Emitted by Wildfire Events. Int. J. Wildland Fire 2010, 19, 844–852. [Google Scholar] [CrossRef]
- Oliva, P.; Schroeder, W. Assessment of VIIRS 375m Active Fire Detection Product for Direct Burned Area Mapping. Remote Sens. Environ. 2015, 160, 144–155. [Google Scholar] [CrossRef]
- Chen, Y.; Hantson, S.; Andela, N.; Coffield, S.R.; Graff, C.A.; Morton, D.C.; Ott, L.E.; Foufoula-Georgiou, E.; Smyth, P.; Goulden, M.L.; et al. California Wildfire Spread Derived Using VIIRS Satellite Observations and an Object-Based Tracking System. Sci. Data 2022, 9, 249. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Kamber, M.; Pei, J. (Eds.) 10—Cluster Analysis: Basic Concepts and Methods. In Data Mining, 3rd ed.; The Morgan Kaufmann Series in Data Management Systems; Morgan Kaufmann: Boston, UK, 2012; pp. 443–495. ISBN 978-0-12-381479-1. [Google Scholar]
- Li, W.; Dodwell, E.; Cook, D. A Clustering Algorithm to Organize Satellite Hotspot Data for the Purpose of Tracking Bushfires Remotely. R J. 2023, 15, 17–33. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Reynolds, D. Gaussian Mixture Models. In Encyclopedia of Biometrics; Li, S.Z., Jain, A., Eds.; Springer US: Boston, MA, USA, 2009; pp. 659–663. ISBN 978-0-387-73003-5. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; AAAI Press: Portland, OR, USA, 1996; pp. 226–231. [Google Scholar]
- Huang, Q.; Tung, A.K.H. Lightweight-Yet-Efficient: Revitalizing Ball-Tree for Point-to-Hyperplane Nearest Neighbor Search. In Proceedings of the 2023 IEEE 39th International Conference on Data Engineering (ICDE), Anaheim, CA, USA, 3–7 April 2023; pp. 436–449. [Google Scholar]
- Artés, T.; Oom, D.; de Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A Global Wildfire Dataset for the Analysis of Fire Regimes and Fire Behaviour. Sci. Data 2019, 6, 296. [Google Scholar] [CrossRef] [PubMed]
- Kristianto, A.; Sediyono, E.; Hartomo, K.D. Implementation DBSCAN Algorithm to Clustering Satellite Surface Temperature Data in Indonesia. Regist. J. Ilm. Teknol. Sist. Inf. 2020, 6, 109–118. [Google Scholar] [CrossRef]
- Sheng, D.; Deng, J.; Xiang, J. Automatic Smoke Detection Based on SLIC-DBSCAN Enhanced Convolutional Neural Network. IEEE Access 2021, 9, 63933–63942. [Google Scholar] [CrossRef]
- Vatresia, A.; Rais, R.R.; Miliana, R.S. Spatio-Temporal Clustering for Fire Hot Spots Occurrence Over Sulawesi Island. In Proceedings of the 2020 FORTEI-International Conference on Electrical Engineering (FORTEI-ICEE), Bandung, Indonesia, 23–24 September 2020; pp. 156–161. [Google Scholar]
- Usman, M.; Sitanggang, I.S.; Syaufina, L. Hotspot Distribution Analyses Based on Peat Characteristics Using Density-Based Spatial Clustering. Procedia Environ. Sci. 2015, 24, 132–140. [Google Scholar] [CrossRef]
- Creţulescu, R.G.; Morariu, D.I.; Breazu, M.; Volovici, D. DBSCAN Algorithm for Document Clustering. Int. J. Adv. Stat. ITC Econ. Life Sci. 2019, 9, 58–66. [Google Scholar] [CrossRef]
- Fitrianah, D.; Fahmi, H.; Kemala, A.P.; Syahputra, M.E. Indonesian Forest Fire Data Clustering Using Spatiotemporal Data Using Grid Density-Based Clustering Algorithm. In Proceedings of the Knowledge Management and Acquisition for Intelligent Systems, Jakarta, Indonesia, 15–16 November 2023; Wu, S., Yang, W., Amin, M.B., Kang, B.-H., Xu, G., Eds.; Springer Nature: Singapore, 2023; pp. 124–133. [Google Scholar]
- Hanafi, N.; Saadatfar, H. A Fast DBSCAN Algorithm for Big Data Based on Efficient Density Calculation. Expert Syst. Appl. 2022, 203, 117501. [Google Scholar] [CrossRef]
- Downing, D.J.; Pettapiece, W.W. Natural Regions and Subregions of Alberta; Natural Regions Committee: Alberta, GA, USA, 2006. [Google Scholar]
- McNew, L.B.; Dahlgren, D.K.; Beck, J.L. (Eds.) Rangeland Wildlife Ecology and Conservation; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-34036-9. [Google Scholar]
- Peh, K.S.-H.; Corlett, R.T.; Bergeron, Y. (Eds.) Routledge Handbook of Forest Ecology; Routledge: New York, NY, USA, 2015; ISBN 978-1-317-81644-7. [Google Scholar]
- Lyseng, M.P.; Bork, E.W.; Hewins, D.B.; Alexander, M.J.; Carlyle, C.N.; Chang, S.X.; Willms, W.D. Long-Term Grazing Impacts on Vegetation Diversity, Composition, and Exotic Species Presence across an Aridity Gradient in Northern Temperate Grasslands. Plant Ecol. 2018, 219, 649–663. [Google Scholar] [CrossRef]
- Dastour, H.; Hassan, Q.K. Quantifying the Influence of Climate Variables on Vegetation Through Remote Sensing and Multi-Dimensional Data Analysis. Earth Syst. Environ. 2024, 8, 165–180. [Google Scholar] [CrossRef]
- Brandt, J.P.; Flannigan, M.D.; Maynard, D.G.; Thompson, I.D.; Volney, W.J.A. An Introduction to Canada’s Boreal Zone: Ecosystem Processes, Health, Sustainability, and Environmental Issues. Environ. Rev. 2013, 21, 207–226. [Google Scholar] [CrossRef]
- Venier, L.A.; Thompson, I.D.; Fleming, R.; Malcolm, J.; Aubin, I.; Trofymow, J.A.; Langor, D.; Sturrock, R.; Patry, C.; Outerbridge, R.O.; et al. Effects of Natural Resource Development on the Terrestrial Biodiversity of Canadian Boreal Forests. Environ. Rev. 2014, 22, 457–490. [Google Scholar] [CrossRef]
- Alberta Government Wildfire Data: 2006–2023. Available online: https://www.alberta.ca/wildfire-maps-and-data (accessed on 11 September 2024).
- CWFIS Canadian Wildland Fire Information System (CWFIS) Datamart. Available online: https://cwfis.cfs.nrcan.gc.ca/datamart (accessed on 19 August 2024).
- Giglio, L.; Justice, C. MODIS/Terra Thermal Anomalies/Fire 5-Min L2 Swath 1km V061; Distributed by NASA EOSDIS Land Processes; DAAC: Sioux Falls, SD, USA, 2021. [Google Scholar]
- Jiao, L.; Bo, Y. Near Real-Time Mapping of Burned Area by Synergizing Multiple Satellites Remote-Sensing Data. GIScience Remote Sens. 2022, 59, 1956–1977. [Google Scholar] [CrossRef]
- NASA-FIRMS Archive Download. Available online: https://firms.modaps.eosdis.nasa.gov/download/ (accessed on 22 August 2024).
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical Mapping of Annual Global Land Cover 2001 to Present: The MODIS Collection 6 Land Cover Product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Vadrevu, K.; Lasko, K. Intercomparison of MODIS AQUA and VIIRS I-Band Fires and Emissions in an Agricultural Landscape—Implications for Air Pollution Research. Remote Sens. 2018, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Earthdata Forum What Caveats Should Be Considered When Using Active Fire Data from FIRMS? Available online: https://forum.earthdata.nasa.gov/viewtopic.php?t=5188 (accessed on 29 September 2024).
- EFFIS Active Fire Detection. Available online: https://forest-fire.emergency.copernicus.eu/about-effis/technical-background/active-fire-detection (accessed on 29 September 2024).
- Small, C. Spatiotemporal Characterization of VIIRS Night Light. Front. Remote Sens. 2021, 2, 775399. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time Series (2000–2018) of Global NPP-VIIRS-like Nighttime Light Data from a Cross-Sensor Calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
# | Fire Number | Area (ha) | Start Date | End Date | Affected Regions | Alias |
---|---|---|---|---|---|---|
1 | MWF-059-2021 | 3605.36 | 10-Jul-2021 | 03-Aug-2021 | AB | Muskeg Complex |
2 | MWF-079-2021 | 3263.49 | 10-Jul-2021 | 09-Dec-2021 | AB | - |
3 | HWF-042-2019 | 335,032.56 | 12-May-2019 | 13-Oct-2020 | AB | Chuckegg Creek |
4 | HWF-066-2019 | 64,711.04 | 27-May-2019 | 08-May-2020 | AB | Jackpot Creek |
5 | MWF-051-2019 | 24,040.20 | 17-Jul-2019 | 30-Aug-2019 | AB | Old Fort Complex |
6 | MWF-054-2019 | 8213.26 | 17-Jul-2019 | 30-Aug-2019 | AB | Bocquene Complex |
7 | PWF-052-2019 | 36,520.76 | 11-May-2019 | 16-Oct-2020 | AB | Battle–Battle Complex |
8 | SWF-049-2019 | 222,869.05 | 18-May-2019 | 19-Oct-2020 | AB | McMillan Complex |
9 | SS-010-2019 | 3715.39 | 16-Jun-2019 | 20-Aug-2019 | NT | - |
10 | SS-021-2019 | 3045.57 | 17-Jul-2019 | 03-Aug-2019 | AB–NT | - |
11 | HWF-083-2018 | 4117.34 | 24-May-2018 | 15-Jul-2018 | AB | Little Rapids |
12 | HWF-137-2018 | 3600.40 | 22-Jun-2018 | 07-Sep-2018 | AB | - |
13 | HWF-177-2018 | 2633.75 | 26-Jul-2018 | 07-Dec-2018 | AB | - |
14 | LWF-099-2018 | 7278.63 | 21-May-2018 | 19-Jul-2018 | AB | Rock Island Complex |
15 | SWF-094-2018 | 5028.97 | 23-Jun-2018 | 28-Nov-2018 | AB | Rabbit Lake |
16 | HWF-221-2017 | 4709.00 | 05-Aug-2017 | 17-Nov-2017 | AB | - |
17 | HWF-252-2017 | 1703.37 | 14-Aug-2017 | 17-Nov-2017 | AB | - |
18 | HWF-280-2017 | 13,638.27 | 01-Sep-2017 | 17-Nov-2017 | AB | - |
19 | SWF-107-2017 | 12,729.14 | 09-Aug-2017 | 20-May-2018 | AB | Muskrat Lake |
20 | SS-019-2017 | 269,583.55 | 13-Jul-2017 | 25-Sep-2017 | NT | - |
21 | ABC-001-2016 | 72,527.47 | 18-Apr-2016 | 29-Jul-2016 | AB–BC | Sweeney Creek |
22 | HWF-100-2016 | 229.66 | 07-Jun-2016 | 20-Jun-2016 | AB | |
23 | HWF-193-2016 | 553.53 | 13-Jul-2016 | 03-May-2017 | AB | - |
24 | MWF-009-2016 | 490,964.79 | 01-May-2016 | 02-Aug-2017 | AB | Horse River |
25 | SWF-030-2016 | 1671.48 | 30-Apr-2016 | 13-Jun-2016 | AB | - |
26 | MWF-052-2015 | 22,356.65 | 22-Jun-2015 | 12-Nov-2015 | AB | - |
27 | MWF-101-2015 | 57,674.08 | 23-Jun-2015 | 12-Nov-2015 | AB | - |
28 | WB-004-2015 | 223,766.96 | 28-May-2015 | 01-Oct-2015 | AB | - |
29 | WB-039-2015 | 18,572.76 | 27-Jun-2015 | 12-Aug-2015 | AB–NT | - |
30 | HBZ-001-2015 | 17,932.28 | 25-Jun-2015 | 07-Jul-2015 | AB–BC | - |
Data Source | VIIRS | MODIS | Combination | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Class (ha) | Calculation | Matching HSs | Point OE | Point CE | Matching HSs | Point OE | Point CE | Matching HSs | Point OE | Point CE |
≥100 | Fraction | 163/173 | 10/173 | 14/163 | 152/173 | 21/173 | 16/153 | 166/173 | 7/173 | 24/172 |
% | 94.22 | 5.78 | 8.59 | 87.86 | 12.14 | 10.46 | 95.95 | 4.05 | 13.95 | |
50 ≥ Area < 100 | Fraction | 37/55 | 18/55 | 22/59 | 33/55 | 22/55 | 9/42 | 40/55 | 15/55 | 25/65 |
% | 67.27 | 32.73 | 37.29 | 60.00 | 40.00 | 21.43 | 72.73 | 27.27 | 38.46 | |
Cum. Frac. | 200/228 | 28/228 | 36/222 | 185/228 | 43/228 | 25/195 | 206/228 | 22/228 | 29/237 | |
Cum. % | 87.72 | 12.28 | 16.22 | 81.15 | 18.85 | 12.82 | 90.35 | 9.65 | 12.23 | |
25 ≥ Area < 50 | Fraction | 30/62 | 32/62 | 47/77 | 24/62 | 38/62 | 21/51 | 34/62 | 28/62 | 53/87 |
% | 48.39 | 51.61 | 61.04 | 38.71 | 61.29 | 41.18 | 54.84 | 45.16 | 60.92 | |
Cum. Frac. | 230/290 | 60/290 | 83/299 | 209/290 | 81/290 | 46/246 | 240/290 | 50/290 | 82/324 | |
Cum. % | 79.31 | 20.69 | 27.76 | 72.06 | 27.94 | 18.70 | 82.76 | 17.24 | 25.30 | |
10 ≥ Area < 25 | Fraction | 38/98 | 60/98 | 66/104 | 35/98 | 63/98 | 14/49 | 42/98 | 56/98 | 57/99 |
% | 38.78 | 61.22 | 63.46 | 35.71 | 64.29 | 28.57 | 42.86 | 57.14 | 57.58 | |
Cum. Frac. | 268/388 | 120/388 | 149/403 | 244/388 | 144/388 | 60/295 | 282/388 | 106/388 | 139/423 | |
Cum. % | 69.07 | 30.93 | 36.97 | 62.88 | 37.12 | 20.33 | 72.68 | 27.32 | 32.86 |
Radius (m) | α Values | VIIRS (%) | MODIS (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | ||
750 | Area matching | 72.22 | 74.77 | 75.95 | 76.61 | 76.99 | * | * | * | * | * |
Area CE | 21.00 | 23.51 | 24.93 | 25.92 | 26.64 | * | * | * | * | * | |
1000 | Area matching | * | * | * | * | * | 59.86 | 62.17 | 63.00 | 63.61 | 63.89 |
Area CE | * | * | * | * | * | 35.39 | 36.15 | 36.33 | 36.49 | 36.58 | |
1125 | Area matching | 77.83 | 79.72 | 80.58 | 81.08 | 81.34 | * | * | * | * | * |
Area CE | 22.43 | 24.62 | 26.01 | 27.09 | 27.62 | * | * | * | * | * | |
1500 | Area matching | 79.43 | 82.89 | 83.83 | 84.34 | 84.66 | 62.20 | 66.47 | 67.89 | 68.68 | 69.14 |
Area CE | 22.22 | 25.38 | 26.82 | 28.05 | 28.80 | 28.22 | 30.39 | 31.40 | 31.88 | 32.53 | |
2000 | Area matching | * | * | * | * | * | 63.86 | 69.24 | 70.81 | 71.81 | 72.19 |
Area CE | * | * | * | * | * | 27.47 | 29.82 | 31.10 | 31.94 | 32.67 | |
2500 | Area matching | * | * | * | * | * | 64.48 | 71.34 | 73.05 | 73.88 | 74.23 |
Area CE | * | * | * | * | * | 26.82 | 29.78 | 31.52 | 32.41 | 33.30 | |
3000 | Area matching | * | * | * | * | * | 64.60 | 72.22 | 73.93 | 74.64 | 75.03 |
Area CE | * | * | * | * | * | 26.69 | 29.63 | 31.47 | 32.42 | 33.25 |
Radius (m) | α Values | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
---|---|---|---|---|---|---|
750 | Area matching | 81.02 | 82.69 | 83.40 | 83.93 | 84.20 |
Area CE | 30.98 | 32.55 | 33.57 | 34.50 | 34.76 | |
1000 | Area matching | 82.80 | 84.23 | 85.65 | 86.14 | 86.30 |
Area CE | 28.58 | 30.19 | 31.99 | 32.97 | 33.49 | |
1125 | Area matching | 83.42 | 85.82 | 86.67 | 87.03 | 87.19 |
Area CE | 28.27 | 30.59 | 31.95 | 33.06 | 33.64 | |
1500 | Area matching | 85.13 | 87.70 | 88.73 | 89.09 | 89.29 |
Area CE | 27.96 | 30.93 | 32.41 | 33.54 | 34.35 | |
1500 (sample size: ≥4) | Area matching | 85.12 | 87.71 | * | * | * |
Area CE | 28.05 | 31.01 | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dastour, H.; Bhuian, H.; Ahmed, M.R.; Hassan, Q.K. Active Fire Clustering and Spatiotemporal Dynamic Models for Forest Fire Management. Fire 2024, 7, 355. https://doi.org/10.3390/fire7100355
Dastour H, Bhuian H, Ahmed MR, Hassan QK. Active Fire Clustering and Spatiotemporal Dynamic Models for Forest Fire Management. Fire. 2024; 7(10):355. https://doi.org/10.3390/fire7100355
Chicago/Turabian StyleDastour, Hatef, Hanif Bhuian, M. Razu Ahmed, and Quazi K. Hassan. 2024. "Active Fire Clustering and Spatiotemporal Dynamic Models for Forest Fire Management" Fire 7, no. 10: 355. https://doi.org/10.3390/fire7100355
APA StyleDastour, H., Bhuian, H., Ahmed, M. R., & Hassan, Q. K. (2024). Active Fire Clustering and Spatiotemporal Dynamic Models for Forest Fire Management. Fire, 7(10), 355. https://doi.org/10.3390/fire7100355