Interannual Variability in Seed Germination Response to Heat Shock in Cistus ladanifer
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R. Mediterranean Climate Variability; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Segnalini, M.; Bernabucci, U.; Vitali, A.; Nardone, A.; Lacetera, N. Temperature humidity index scenarios in the Mediterranean basin. Int. J. Biometeorol. 2013, 57, 451–458. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Ozturk, T.; Ceber, Z.P.; Turkes, M.; Kurnaz, M.L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Climatol. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate change 2022: Impacts, adaptation and vulnerability. In Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; WMO & UNEP: Geneva, Switzerland, 2022; pp. 1–63. [Google Scholar]
- Moriondo, M.; Good, P.; Durao, R.; Bindi, M.; Giannakopoulos, C.; Corte-Real, J. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 2006, 31, 85–95. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M.; Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 2000, 15, 139–152. [Google Scholar] [CrossRef]
- Hudson, A.R.; Ayre, D.J.; Ooi, M.K.J. Physical dormancy in a changing climate. Seed Sci. Res. 2015, 25, 66–81. [Google Scholar] [CrossRef]
- Funes, G.; Venier, P. Dormancy and germination in three Acacia (Fabaceae) species from central Argentina. Seed Sci. Res. 2006, 16, 77–82. [Google Scholar] [CrossRef]
- Baskin, C.; Baskin, J. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Allen, H. Vegetation and ecosystem dynamics. In The Physical Geography of the Mediterranean; Woodward, J.C., Ed.; Oxford University Press: Oxford, UK, 2009; pp. 203–227. [Google Scholar]
- Thanos, C.A.; Georghiou, K.; Kadis, C.; Pantazi, C. Cistaceae: A plant family with hard seeds. Isr. J. Bot. 1992, 41, 251–263. [Google Scholar]
- Trabaud, L. Post-fire plant community dynamics in the Mediterranean Basin. In The Role of Fire in Mediterranean-Type Ecosystems; Moreno, J.J., Oechel, W.C., Eds.; Springer: New York, NY, USA, 1994; Ecological Studies 107; pp. 1–15. [Google Scholar]
- Valbuena, L.; Tárrega, R.; Luis, E. Influence of heat on seed germination of Cistus laurifolius and Cistus ladanifer. Int. J. Wildland Fire 1992, 2, 15–20. [Google Scholar] [CrossRef]
- Herranz, J.M.; Ferrandis, P.; Martínez-Sánchez, J.J. Influence of heat on seed germination of nine woody Cistaceae species. Int. J. Wildland Fire 1999, 9, 173–182. [Google Scholar] [CrossRef]
- Valbuena, L.; Luis-Calabuig, E.; Tárrega, R. Relationship between thermal shock and germination in five Mediterranean shrubs. In Fire and Biological Processes; Backhuys Publishers: Leiden, The Netherlands, 2002; pp. 93–98. [Google Scholar]
- Pérez-García, F.; González-Benito, M.E. Intrapopulation variation in seed germination of six rockrose (Cistus L. In ) species. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People, Lisbon, Portugal, 22–27 August 2010; Volume 937, pp. 379–384. [Google Scholar]
- Luna, B.; Chamorro, D.; Pérez, B. Effect of heat on seed germination and viability in species of Cistaceae. Plant Ecol. Divers. 2019, 12, 151–158. [Google Scholar] [CrossRef]
- Tavşanoğlu, C.; Çatav, S.S. Seed size explains within-population variability in post-fire germination of Cistus salviifolius. Ann. Bot. Fenn. 2012, 49, 331–340. [Google Scholar] [CrossRef]
- Pérez-García, F. Germination of Cistus ladanifer seeds in relation to parent material. Plant Ecol. 1997, 133, 57–62. [Google Scholar] [CrossRef]
- Siles, L.; Mueller, M.; Cela, J.; Hernández, I.; Alegre, L.; Munne-Bosch, S. Marked differences in seed dormancy in two populations of the Mediterranean shrub, Cistus albidus L. Plant Ecol. Divers. 2017, 10, 231–240. [Google Scholar] [CrossRef]
- Zomer, M.; Moreira, B.; Pausas, J.G. Fire and summer temperatures interact to shape seed dormancy thresholds. Ann. Bot. 2022, 129, 809–816. [Google Scholar] [CrossRef]
- Cochrane, A.; Yates, C.J.; Hoyle, G.L.; Nicotra, A.B. Will among-population variation in seed traits improve the chance of species persistence under climate change? Glob. Ecol. Biogeogr. 2015, 24, 12–24. [Google Scholar] [CrossRef]
- Ooi, M.K.J.; Auld, T.D.; Denham, A.J. Projected soil temperature increase and seed dormancy response along an altitudinal gradient: Implications for seed bank persistence under climate change. Plant Soil 2012, 353, 289–303. [Google Scholar] [CrossRef]
- Fernández-Pascual, E.; Jiménez-Alfaro, B.; Caujape-Castells, J.; Jaen-Molina, R.; Díaz, E.T. A local dormancy cline is related to the seed maturation environment, population genetic composition and climate. Ann. Bot. 2013, 112, 937–945. [Google Scholar] [CrossRef]
- Cochrane, A. Multi-year sampling provides insight into the bet-hedging capacity of the soil-stored seed reserve of a threatened Acacia species from Western Australia. Plant Ecol. 2019, 220, 241–253. [Google Scholar] [CrossRef]
- Venable, D.L.; Brown, J.S. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 1988, 131, 360–384. [Google Scholar] [CrossRef]
- Leishman, M.R.; Wright, I.J.; Moles, A.T.; Westoby, M. The evolutionary ecology of seed size. In The Ecology of Regeneration in Plant Communities; Fenner, M., Ed.; Cabi Pusblishing: Oxford, UK, 2000; pp. 31–58. [Google Scholar]
- Roach, D.A.; Wulff, R.D. Maternal effects in plants. Annu. Rev. Ecol. Syst. 1987, 18, 209–235. [Google Scholar] [CrossRef]
- Donohue, K. Completing the cycle: Maternal effects as the missing link in plant life histories. Philos. Trans. R. Soc. B—Biol. Sci. 2009, 364, 1059–1074. [Google Scholar] [CrossRef]
- Jaganathan, G.K. Influence of maternal environment in developing different levels of physical dormancy and its ecological significance. Plant Ecol. 2016, 217, 71–79. [Google Scholar] [CrossRef]
- Jaganathan, G.K. Unravelling the paradox in physically dormant species: Elucidating the onset of dormancy after dispersal and dormancy-cycling. Ann. Bot. 2022, 130, 121–129. [Google Scholar] [CrossRef]
- Gladstones, J.S. The influence of temperature and humidity in storage on seed viability and hard-seededness in the west Australian Blue Lupin, Lupinus digitatus Forsk. Aust. J. Agric. Res. 1958, 9, 171–181. [Google Scholar] [CrossRef]
- Llorens, L.; Pons, M.; Gil, L.; Boira, H. Seasonality of seed production and germination trends of Fumana ericoides (Cistaceae) in the west semiarid Mediterranean region. J. Arid Environ. 2008, 72, 121–126. [Google Scholar] [CrossRef]
- Tozer, M.G.; Ooi, M.K.J. Humidity-regulated dormancy onset in the Fabaceae: A conceptual model and its ecological implications for the Australian wattle Acacia saligna. Ann. Bot. 2014, 114, 579–590. [Google Scholar] [CrossRef]
- Segura, F.; Vicente, M.J.; Franco, J.A.; Martínez-Sánchez, J.J. Effects of maternal environmental factors on physical dormancy of Astragalus nitidiflorus seeds (Fabaceae), a critically endangered species of SE Spain. Flora 2015, 216, 71–76. [Google Scholar] [CrossRef]
- Walck, J.L.; Hidayati, S.N.; Dixon, K.W.; Thompson, K.; Poschlod, P. Climate change and plant regeneration from seed. Glob. Chang. Biol. 2011, 17, 2145–2161. [Google Scholar] [CrossRef]
- Naveh, Z. Effects of fire in the Mediterranean region. In Fire and Ecosystems; Kozlowski, T.T., Ahlgren, C.E., Eds.; Academic Press: New York, NY, USA, 1974; pp. 401–434. [Google Scholar]
- Trabaud, L. Germination of Mediterranean Cistus spp. and Pinus spp. and their reoccupation of disturbed sites. Rev. D Ecol. -La Terre La Vie 1995, 50, 3–14. [Google Scholar]
- Gama-Arachchige, N.S.; Baskin, J.M.; Geneve, R.L.; Baskin, C.C. Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Ann. Bot. 2013, 112, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Geneve, R.L.; Baskin, C.C.; Baskin, J.M.; Jayasuriya, K.M.G.G.; Gama-Arachchige, N.S. Functional morpho-anatomy of water-gap complexes in physically dormant seed. Seed Sci. Res. 2018, 28, 186–191. [Google Scholar] [CrossRef]
- Aronne, G.; Mazzoleni, S. The effects of heat exposure on seeds of Cistus incanus L. and Cistus monspeliensis L. G. Bot. Ital. 1989, 123, 283–289. [Google Scholar]
- Ma, F.S.; Cholewa, E.; Mohamed, T.; Peterson, C.A.; Gijzen, M. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann. Bot. 2004, 94, 213–228. [Google Scholar] [CrossRef]
- Black, M.J.; Halmer, P.; Bewley, J.D. The Encyclopedia of Seeds: Science, Technology and Uses; CAB International: Wallingford, UK, 2006. [Google Scholar]
- Arianoutsou, M.; Margaris, N.S. Early stages of regeneration after fire in a phryganic ecosystem (East Mediterranean). I. Regeneration by seed germination. Biol. Ecol. Méditerr. 1981, 8, 119–128. [Google Scholar]
- Clemente, A.S.; Rego, F.C.; Correia, O.A. Demographic patterns and productivity of post-fire regeneration in Portuguese Mediterranean maquis. Int. J. Wildland Fire 1996, 6, 5–12. [Google Scholar] [CrossRef]
- Ferrandis, P.; Herranz, J.M.; Martínez-Sánchez, J.J. Effect of fire on hard-coated Cistaceae seed banks and its influence on techniques for quantifying seed banks. Plant Ecol. 1999, 144, 113–114. [Google Scholar] [CrossRef]
- Gutterman, Y. Environmental factors and survival strategies of annual plant species in the Negev Desert, Israel. Plant Species Biol. 2000, 15, 113–125. [Google Scholar] [CrossRef]
- Moreno, J.M.; Zuazua, E.; Pérez, B.; Luna, B.; Velasco, A.; Resco de Dios, V. Rainfall patterns after fire differentially affect the recruitment of three Mediterranean shrubs. Biogeosciences 2011, 8, 3721–3732. [Google Scholar] [CrossRef]
- Parker, V.T.; Kelly, V.R. Seed banks in California chaparral and other Mediterranean climate shrublands. In Ecology of Soil Seed Banks, Leck, M.A., Parker, V.T., Simpson, R.L., Eds.; Academic Press: San Diego, CA, USA, 1989; pp. 231–256. [Google Scholar]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Wallisellen, Switzerland, 2023. [Google Scholar]
- Gianinetti, A. Basic features of the analysis of germination data with Generalized Linear Mixed Models. Data 2020, 5, 6. [Google Scholar] [CrossRef]
- Aguayo-Villalba, A.A.; Álvarez-Gómez, C.M.; Aisa-Ahmed, M.; Barroso-Rodríguez, L.M.; Camacho-López, S.; Cocero-Ramírez, A.; Sánchez-Romero, C. Effect of fire on viability and germination behaviour of Cistus ladanifer and Cistus salvifolius seeds. Folia Geobot. 2021, 56, 215–225. [Google Scholar] [CrossRef]
- Bell, D.T.; Williams, D.S. Tolerance of thermal shock in seeds. Aust. J. Bot. 1998, 46, 221–233. [Google Scholar] [CrossRef]
- Rolston, M.P. Water impermeable seed dormancy. Bot. Rev. 1978, 44, 365–396. [Google Scholar] [CrossRef]
- Dell, B. Structure and function of the strophiolar plug in seeds of Albizia lophantha. Am. J. Bot. 1980, 67, 556–563. [Google Scholar] [CrossRef]
- Tangney, R.; Merritt, D.J.; Fontaine, J.B.; Miller, B.P. Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds. J. Ecol. 2019, 107, 1093–1105. [Google Scholar] [CrossRef]
- Jaganathan, G.K.; Harrison, R.J. Physical dormancy alleviation at room temperature storage is influenced by the initial moisture content of the seeds. Plant Ecol. 2024, 225, 491–497. [Google Scholar] [CrossRef]
- Navarro-Cano, J.A.; Rivera, D.; Barberá, G.G. Induction of seed germination in Cistus heterophyllus (Cistaceae): A rock rose critically endangered in Spain. Res. J. Bot. 2009, 4, 10–16. [Google Scholar] [CrossRef]
- Chamorro, D.; Parra, A.; Moreno, J.M. Reproductive output, seed anatomy and germination under water stress in the seeder Cistus ladanifer subjected to experimental drought. Environ. Exp. Bot. 2016, 123, 59–67. [Google Scholar] [CrossRef]
- Hanley, M.E.; Fenner, M. Pre-germination temperature and the survivorship and onward growth of Mediterranean fire-following plant species. Acta Oecol. 1998, 19, 181–187. [Google Scholar] [CrossRef]
- Chamorro, D.; Luna, B.; Moreno, J.M. Germination response to various temperature regimes of four Mediterranean seeder shrubs across a range of altitudes. Plant Ecol. 2013, 214, 1431–1441. [Google Scholar] [CrossRef]
- Nichols, P.G.H.; Cocks, P.S.; Francis, C.M. Evolution over 16 years in a bulk-hybrid population of subterranean clover (Trifolium subterraneum L.) at two contrasting sites in south-western Australia. Euphytica 2009, 169, 31–48. [Google Scholar] [CrossRef]
- Venable, D.L. Bet hedging in a guild of desert annuals. Ecology 2007, 88, 1086–1090. [Google Scholar] [CrossRef]
- Ooi, M.K.J.; Denham, A.J.; Santana, V.M.; Auld, T.D. Temperature thresholds of physically dormant seeds and plant functional response to fire: Variation among species and relative impact of climate change. Ecol. Evol. 2014, 4, 656–671. [Google Scholar] [CrossRef]
- Monteith, J.; Webb, C. Soil, Water and Nitrogen in Mediterranean-Type Environments; Martinus Nijhoff and Dr. W Junk: The Hague, The Netherlands, 1981. [Google Scholar]
- Moles, A.T.; Westoby, M. Seedling survival and seed size: A synthesis of the literature. J. Ecol. 2004, 92, 372–383. [Google Scholar] [CrossRef]
- del Cacho, M.; Peñuelas, J.; Lloret, F. Reproductive output in Mediterranean shrubs under climate change experimentally induced by drought and warming. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 319–327. [Google Scholar] [CrossRef]
- de Luis, M.; Brunetti, M.; González-Hidalgo, J.C.; Longares, A.L.; Martín-Vide, J. Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Glob. Planet. Chang. 2010, 74, 27–33. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Begueria, S.; Lorenzo-Lacruz, J.; Sánchez-Lorenzo, A.; García-Ruiz, J.M.; Azorín-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef]
Year | Heat Shock | Year x Heat Shock | ||||
---|---|---|---|---|---|---|
ꭓ2 | p | ꭓ2 | p | ꭓ2 | p | |
Germination | 23.759 | <0.001 | 290.772 | <0.001 | 30.047 | 0.361 |
Seed viability | 93.957 | <0.001 | 40.284 | <0.001 | 51.902 | 0.004 |
Anual | Summer | |||
---|---|---|---|---|
Tmean | p | Tmax | p | |
Seed mass | −0.459 | 0.614 | −0.297 | 0.166 |
SMC | −0.543 | 0.601 | −0.797 | 0.552 |
Viability | −0.674 | 0.768 | −0.250 | 0.237 |
Germ C | 0.401 | −0.441 | −0.180 | 0.092 |
Germ 100 | −0.952 | 0.473 | −0.747 | 0.558 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna, B. Interannual Variability in Seed Germination Response to Heat Shock in Cistus ladanifer. Fire 2024, 7, 334. https://doi.org/10.3390/fire7100334
Luna B. Interannual Variability in Seed Germination Response to Heat Shock in Cistus ladanifer. Fire. 2024; 7(10):334. https://doi.org/10.3390/fire7100334
Chicago/Turabian StyleLuna, Belén. 2024. "Interannual Variability in Seed Germination Response to Heat Shock in Cistus ladanifer" Fire 7, no. 10: 334. https://doi.org/10.3390/fire7100334
APA StyleLuna, B. (2024). Interannual Variability in Seed Germination Response to Heat Shock in Cistus ladanifer. Fire, 7(10), 334. https://doi.org/10.3390/fire7100334