Interannual Variability in Seed Germination Response to Heat Shock in Cistus ladanifer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R. Mediterranean Climate Variability; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Segnalini, M.; Bernabucci, U.; Vitali, A.; Nardone, A.; Lacetera, N. Temperature humidity index scenarios in the Mediterranean basin. Int. J. Biometeorol. 2013, 57, 451–458. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Ozturk, T.; Ceber, Z.P.; Turkes, M.; Kurnaz, M.L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Climatol. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate change 2022: Impacts, adaptation and vulnerability. In Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; WMO & UNEP: Geneva, Switzerland, 2022; pp. 1–63. [Google Scholar]
- Moriondo, M.; Good, P.; Durao, R.; Bindi, M.; Giannakopoulos, C.; Corte-Real, J. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 2006, 31, 85–95. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M.; Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 2000, 15, 139–152. [Google Scholar] [CrossRef]
- Hudson, A.R.; Ayre, D.J.; Ooi, M.K.J. Physical dormancy in a changing climate. Seed Sci. Res. 2015, 25, 66–81. [Google Scholar] [CrossRef]
- Funes, G.; Venier, P. Dormancy and germination in three Acacia (Fabaceae) species from central Argentina. Seed Sci. Res. 2006, 16, 77–82. [Google Scholar] [CrossRef]
- Baskin, C.; Baskin, J. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Allen, H. Vegetation and ecosystem dynamics. In The Physical Geography of the Mediterranean; Woodward, J.C., Ed.; Oxford University Press: Oxford, UK, 2009; pp. 203–227. [Google Scholar]
- Thanos, C.A.; Georghiou, K.; Kadis, C.; Pantazi, C. Cistaceae: A plant family with hard seeds. Isr. J. Bot. 1992, 41, 251–263. [Google Scholar]
- Trabaud, L. Post-fire plant community dynamics in the Mediterranean Basin. In The Role of Fire in Mediterranean-Type Ecosystems; Moreno, J.J., Oechel, W.C., Eds.; Springer: New York, NY, USA, 1994; Ecological Studies 107; pp. 1–15. [Google Scholar]
- Valbuena, L.; Tárrega, R.; Luis, E. Influence of heat on seed germination of Cistus laurifolius and Cistus ladanifer. Int. J. Wildland Fire 1992, 2, 15–20. [Google Scholar] [CrossRef]
- Herranz, J.M.; Ferrandis, P.; Martínez-Sánchez, J.J. Influence of heat on seed germination of nine woody Cistaceae species. Int. J. Wildland Fire 1999, 9, 173–182. [Google Scholar] [CrossRef]
- Valbuena, L.; Luis-Calabuig, E.; Tárrega, R. Relationship between thermal shock and germination in five Mediterranean shrubs. In Fire and Biological Processes; Backhuys Publishers: Leiden, The Netherlands, 2002; pp. 93–98. [Google Scholar]
- Pérez-García, F.; González-Benito, M.E. Intrapopulation variation in seed germination of six rockrose (Cistus L. In ) species. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People, Lisbon, Portugal, 22–27 August 2010; Volume 937, pp. 379–384. [Google Scholar]
- Luna, B.; Chamorro, D.; Pérez, B. Effect of heat on seed germination and viability in species of Cistaceae. Plant Ecol. Divers. 2019, 12, 151–158. [Google Scholar] [CrossRef]
- Tavşanoğlu, C.; Çatav, S.S. Seed size explains within-population variability in post-fire germination of Cistus salviifolius. Ann. Bot. Fenn. 2012, 49, 331–340. [Google Scholar] [CrossRef]
- Pérez-García, F. Germination of Cistus ladanifer seeds in relation to parent material. Plant Ecol. 1997, 133, 57–62. [Google Scholar] [CrossRef]
- Siles, L.; Mueller, M.; Cela, J.; Hernández, I.; Alegre, L.; Munne-Bosch, S. Marked differences in seed dormancy in two populations of the Mediterranean shrub, Cistus albidus L. Plant Ecol. Divers. 2017, 10, 231–240. [Google Scholar] [CrossRef]
- Zomer, M.; Moreira, B.; Pausas, J.G. Fire and summer temperatures interact to shape seed dormancy thresholds. Ann. Bot. 2022, 129, 809–816. [Google Scholar] [CrossRef]
- Cochrane, A.; Yates, C.J.; Hoyle, G.L.; Nicotra, A.B. Will among-population variation in seed traits improve the chance of species persistence under climate change? Glob. Ecol. Biogeogr. 2015, 24, 12–24. [Google Scholar] [CrossRef]
- Ooi, M.K.J.; Auld, T.D.; Denham, A.J. Projected soil temperature increase and seed dormancy response along an altitudinal gradient: Implications for seed bank persistence under climate change. Plant Soil 2012, 353, 289–303. [Google Scholar] [CrossRef]
- Fernández-Pascual, E.; Jiménez-Alfaro, B.; Caujape-Castells, J.; Jaen-Molina, R.; Díaz, E.T. A local dormancy cline is related to the seed maturation environment, population genetic composition and climate. Ann. Bot. 2013, 112, 937–945. [Google Scholar] [CrossRef]
- Cochrane, A. Multi-year sampling provides insight into the bet-hedging capacity of the soil-stored seed reserve of a threatened Acacia species from Western Australia. Plant Ecol. 2019, 220, 241–253. [Google Scholar] [CrossRef]
- Venable, D.L.; Brown, J.S. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 1988, 131, 360–384. [Google Scholar] [CrossRef]
- Leishman, M.R.; Wright, I.J.; Moles, A.T.; Westoby, M. The evolutionary ecology of seed size. In The Ecology of Regeneration in Plant Communities; Fenner, M., Ed.; Cabi Pusblishing: Oxford, UK, 2000; pp. 31–58. [Google Scholar]
- Roach, D.A.; Wulff, R.D. Maternal effects in plants. Annu. Rev. Ecol. Syst. 1987, 18, 209–235. [Google Scholar] [CrossRef]
- Donohue, K. Completing the cycle: Maternal effects as the missing link in plant life histories. Philos. Trans. R. Soc. B—Biol. Sci. 2009, 364, 1059–1074. [Google Scholar] [CrossRef]
- Jaganathan, G.K. Influence of maternal environment in developing different levels of physical dormancy and its ecological significance. Plant Ecol. 2016, 217, 71–79. [Google Scholar] [CrossRef]
- Jaganathan, G.K. Unravelling the paradox in physically dormant species: Elucidating the onset of dormancy after dispersal and dormancy-cycling. Ann. Bot. 2022, 130, 121–129. [Google Scholar] [CrossRef]
- Gladstones, J.S. The influence of temperature and humidity in storage on seed viability and hard-seededness in the west Australian Blue Lupin, Lupinus digitatus Forsk. Aust. J. Agric. Res. 1958, 9, 171–181. [Google Scholar] [CrossRef]
- Llorens, L.; Pons, M.; Gil, L.; Boira, H. Seasonality of seed production and germination trends of Fumana ericoides (Cistaceae) in the west semiarid Mediterranean region. J. Arid Environ. 2008, 72, 121–126. [Google Scholar] [CrossRef]
- Tozer, M.G.; Ooi, M.K.J. Humidity-regulated dormancy onset in the Fabaceae: A conceptual model and its ecological implications for the Australian wattle Acacia saligna. Ann. Bot. 2014, 114, 579–590. [Google Scholar] [CrossRef]
- Segura, F.; Vicente, M.J.; Franco, J.A.; Martínez-Sánchez, J.J. Effects of maternal environmental factors on physical dormancy of Astragalus nitidiflorus seeds (Fabaceae), a critically endangered species of SE Spain. Flora 2015, 216, 71–76. [Google Scholar] [CrossRef]
- Walck, J.L.; Hidayati, S.N.; Dixon, K.W.; Thompson, K.; Poschlod, P. Climate change and plant regeneration from seed. Glob. Chang. Biol. 2011, 17, 2145–2161. [Google Scholar] [CrossRef]
- Naveh, Z. Effects of fire in the Mediterranean region. In Fire and Ecosystems; Kozlowski, T.T., Ahlgren, C.E., Eds.; Academic Press: New York, NY, USA, 1974; pp. 401–434. [Google Scholar]
- Trabaud, L. Germination of Mediterranean Cistus spp. and Pinus spp. and their reoccupation of disturbed sites. Rev. D Ecol. -La Terre La Vie 1995, 50, 3–14. [Google Scholar]
- Gama-Arachchige, N.S.; Baskin, J.M.; Geneve, R.L.; Baskin, C.C. Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Ann. Bot. 2013, 112, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Geneve, R.L.; Baskin, C.C.; Baskin, J.M.; Jayasuriya, K.M.G.G.; Gama-Arachchige, N.S. Functional morpho-anatomy of water-gap complexes in physically dormant seed. Seed Sci. Res. 2018, 28, 186–191. [Google Scholar] [CrossRef]
- Aronne, G.; Mazzoleni, S. The effects of heat exposure on seeds of Cistus incanus L. and Cistus monspeliensis L. G. Bot. Ital. 1989, 123, 283–289. [Google Scholar]
- Ma, F.S.; Cholewa, E.; Mohamed, T.; Peterson, C.A.; Gijzen, M. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann. Bot. 2004, 94, 213–228. [Google Scholar] [CrossRef]
- Black, M.J.; Halmer, P.; Bewley, J.D. The Encyclopedia of Seeds: Science, Technology and Uses; CAB International: Wallingford, UK, 2006. [Google Scholar]
- Arianoutsou, M.; Margaris, N.S. Early stages of regeneration after fire in a phryganic ecosystem (East Mediterranean). I. Regeneration by seed germination. Biol. Ecol. Méditerr. 1981, 8, 119–128. [Google Scholar]
- Clemente, A.S.; Rego, F.C.; Correia, O.A. Demographic patterns and productivity of post-fire regeneration in Portuguese Mediterranean maquis. Int. J. Wildland Fire 1996, 6, 5–12. [Google Scholar] [CrossRef]
- Ferrandis, P.; Herranz, J.M.; Martínez-Sánchez, J.J. Effect of fire on hard-coated Cistaceae seed banks and its influence on techniques for quantifying seed banks. Plant Ecol. 1999, 144, 113–114. [Google Scholar] [CrossRef]
- Gutterman, Y. Environmental factors and survival strategies of annual plant species in the Negev Desert, Israel. Plant Species Biol. 2000, 15, 113–125. [Google Scholar] [CrossRef]
- Moreno, J.M.; Zuazua, E.; Pérez, B.; Luna, B.; Velasco, A.; Resco de Dios, V. Rainfall patterns after fire differentially affect the recruitment of three Mediterranean shrubs. Biogeosciences 2011, 8, 3721–3732. [Google Scholar] [CrossRef]
- Parker, V.T.; Kelly, V.R. Seed banks in California chaparral and other Mediterranean climate shrublands. In Ecology of Soil Seed Banks, Leck, M.A., Parker, V.T., Simpson, R.L., Eds.; Academic Press: San Diego, CA, USA, 1989; pp. 231–256. [Google Scholar]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Wallisellen, Switzerland, 2023. [Google Scholar]
- Gianinetti, A. Basic features of the analysis of germination data with Generalized Linear Mixed Models. Data 2020, 5, 6. [Google Scholar] [CrossRef]
- Aguayo-Villalba, A.A.; Álvarez-Gómez, C.M.; Aisa-Ahmed, M.; Barroso-Rodríguez, L.M.; Camacho-López, S.; Cocero-Ramírez, A.; Sánchez-Romero, C. Effect of fire on viability and germination behaviour of Cistus ladanifer and Cistus salvifolius seeds. Folia Geobot. 2021, 56, 215–225. [Google Scholar] [CrossRef]
- Bell, D.T.; Williams, D.S. Tolerance of thermal shock in seeds. Aust. J. Bot. 1998, 46, 221–233. [Google Scholar] [CrossRef]
- Rolston, M.P. Water impermeable seed dormancy. Bot. Rev. 1978, 44, 365–396. [Google Scholar] [CrossRef]
- Dell, B. Structure and function of the strophiolar plug in seeds of Albizia lophantha. Am. J. Bot. 1980, 67, 556–563. [Google Scholar] [CrossRef]
- Tangney, R.; Merritt, D.J.; Fontaine, J.B.; Miller, B.P. Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds. J. Ecol. 2019, 107, 1093–1105. [Google Scholar] [CrossRef]
- Jaganathan, G.K.; Harrison, R.J. Physical dormancy alleviation at room temperature storage is influenced by the initial moisture content of the seeds. Plant Ecol. 2024, 225, 491–497. [Google Scholar] [CrossRef]
- Navarro-Cano, J.A.; Rivera, D.; Barberá, G.G. Induction of seed germination in Cistus heterophyllus (Cistaceae): A rock rose critically endangered in Spain. Res. J. Bot. 2009, 4, 10–16. [Google Scholar] [CrossRef]
- Chamorro, D.; Parra, A.; Moreno, J.M. Reproductive output, seed anatomy and germination under water stress in the seeder Cistus ladanifer subjected to experimental drought. Environ. Exp. Bot. 2016, 123, 59–67. [Google Scholar] [CrossRef]
- Hanley, M.E.; Fenner, M. Pre-germination temperature and the survivorship and onward growth of Mediterranean fire-following plant species. Acta Oecol. 1998, 19, 181–187. [Google Scholar] [CrossRef]
- Chamorro, D.; Luna, B.; Moreno, J.M. Germination response to various temperature regimes of four Mediterranean seeder shrubs across a range of altitudes. Plant Ecol. 2013, 214, 1431–1441. [Google Scholar] [CrossRef]
- Nichols, P.G.H.; Cocks, P.S.; Francis, C.M. Evolution over 16 years in a bulk-hybrid population of subterranean clover (Trifolium subterraneum L.) at two contrasting sites in south-western Australia. Euphytica 2009, 169, 31–48. [Google Scholar] [CrossRef]
- Venable, D.L. Bet hedging in a guild of desert annuals. Ecology 2007, 88, 1086–1090. [Google Scholar] [CrossRef]
- Ooi, M.K.J.; Denham, A.J.; Santana, V.M.; Auld, T.D. Temperature thresholds of physically dormant seeds and plant functional response to fire: Variation among species and relative impact of climate change. Ecol. Evol. 2014, 4, 656–671. [Google Scholar] [CrossRef]
- Monteith, J.; Webb, C. Soil, Water and Nitrogen in Mediterranean-Type Environments; Martinus Nijhoff and Dr. W Junk: The Hague, The Netherlands, 1981. [Google Scholar]
- Moles, A.T.; Westoby, M. Seedling survival and seed size: A synthesis of the literature. J. Ecol. 2004, 92, 372–383. [Google Scholar] [CrossRef]
- del Cacho, M.; Peñuelas, J.; Lloret, F. Reproductive output in Mediterranean shrubs under climate change experimentally induced by drought and warming. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 319–327. [Google Scholar] [CrossRef]
- de Luis, M.; Brunetti, M.; González-Hidalgo, J.C.; Longares, A.L.; Martín-Vide, J. Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Glob. Planet. Chang. 2010, 74, 27–33. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Begueria, S.; Lorenzo-Lacruz, J.; Sánchez-Lorenzo, A.; García-Ruiz, J.M.; Azorín-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef]
Year | Heat Shock | Year x Heat Shock | ||||
---|---|---|---|---|---|---|
ꭓ2 | p | ꭓ2 | p | ꭓ2 | p | |
Germination | 23.759 | <0.001 | 290.772 | <0.001 | 30.047 | 0.361 |
Seed viability | 93.957 | <0.001 | 40.284 | <0.001 | 51.902 | 0.004 |
Anual | Summer | |||
---|---|---|---|---|
Tmean | p | Tmax | p | |
Seed mass | −0.459 | 0.614 | −0.297 | 0.166 |
SMC | −0.543 | 0.601 | −0.797 | 0.552 |
Viability | −0.674 | 0.768 | −0.250 | 0.237 |
Germ C | 0.401 | −0.441 | −0.180 | 0.092 |
Germ 100 | −0.952 | 0.473 | −0.747 | 0.558 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna, B. Interannual Variability in Seed Germination Response to Heat Shock in Cistus ladanifer. Fire 2024, 7, 334. https://doi.org/10.3390/fire7100334
Luna B. Interannual Variability in Seed Germination Response to Heat Shock in Cistus ladanifer. Fire. 2024; 7(10):334. https://doi.org/10.3390/fire7100334
Chicago/Turabian StyleLuna, Belén. 2024. "Interannual Variability in Seed Germination Response to Heat Shock in Cistus ladanifer" Fire 7, no. 10: 334. https://doi.org/10.3390/fire7100334
APA StyleLuna, B. (2024). Interannual Variability in Seed Germination Response to Heat Shock in Cistus ladanifer. Fire, 7(10), 334. https://doi.org/10.3390/fire7100334