Effects of Wildland Fuel Composition on Fire Intensity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Fuel Collection and Preparation
2.3. Combustion Experiments
2.4. Flammability Components and Metrics
2.5. Statistical Analysis
3. Results
3.1. Oak and Maple Flammability Metrics
3.1.1. Combustibility
3.1.2. Consumability
3.1.3. Sustainability
3.2. Relationship between Flammability Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lydersen, J.M.; Collins, B.M.; Knapp, E.E.; Roller, G.B.; Stephens, S. Relating Fuel Loads to Overstorey Structure and Composition in a Fire-Excluded Sierra Nevada Mixed Conifer Forest. Int. J. Wildland Fire 2015, 24, 484. [Google Scholar] [CrossRef]
- Curt, T.; Schaffhauser, A.; Borgniet, L.; Dumas, C.; Estève, R.; Ganteaume, A.; Jappiot, M.; Martin, W.; N’Diaye, A.; Poilvet, B. Litter Flammability in Oak Woodlands and Shrublands of Southeastern France. For. Ecol. Manag. 2011, 261, 2214–2222. [Google Scholar] [CrossRef]
- Graham, J.B.; McCarthy, B.C. Effects of Fine Fuel Moisture and Loading on Small Scale Fire Behavior in Mixed-Oak Forests of Southeastern Ohio. Fire Ecol. 2006, 2, 100–114. [Google Scholar] [CrossRef]
- Quigley, K.M.; Wildt, R.E.; Sturtevant, B.R.; Kolka, R.K.; Dickinson, M.B.; Kern, C.C.; Donner, D.M.; Miesel, J.R. Fuels, Vegetation, and Prescribed Fire Dynamics Influence Ash Production and Characteristics in a Diverse Landscape under Active Pine Barrens Restoration. Fire Ecol. 2019, 15, 5. [Google Scholar] [CrossRef]
- Curt, T.; Borgniet, L.; Bouillon, C. Wildfire Frequency Varies with the Size and Shape of Fuel Types in Southeastern France: Implications for Environmental Management. J. Environ. Manag. 2013, 117, 150–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Cornwell, W.K.; van Pomeren, M.; van Logtestijn, R.S.P.; Cornelissen, J.H.C. Species Mixture Effects on Flammability across Plant Phylogeny: The Importance of Litter Particle Size and the Special Role for Non-Pinus Pinaceae. Ecol. Evol. 2016, 6, 8223–8234. [Google Scholar] [CrossRef] [Green Version]
- Bataineh, M.; Portner, B.; Pelkki, M.; Ficklin, R. Prescribed Fire First-Order Effects on Oak and Maple Reproduction in Frequently Burned Upland Oak–Hickory Forests of the Arkansas Ozarks. Forests 2022, 13, 1865. [Google Scholar] [CrossRef]
- Nowacki, G.J.; Abrams, M.D. The Demise of Fire and “Mesophication” of Forests in the Eastern United States. BioScience 2008, 58, 123–138. [Google Scholar] [CrossRef]
- Capellesso, E.S.; Scrovonski, K.L.; Zanin, E.M.; Hepp, L.U.; Bayer, C.; Sausen, T.L. Effects of Forest Structure on Litter Production, Soil Chemical Composition and Litter-Soil Interactions. Acta Bot. Bras. 2016, 30, 329–335. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Hutchinson, T.F.; Dietenberger, M.; Matt, F.; Peters, M.P. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA. PLoS ONE 2016, 11, e0159997. [Google Scholar] [CrossRef]
- McDaniel, J.K.; Alexander, H.D.; Siegert, C.M.; Lashley, M.A. Shifting Tree Species Composition of Upland Oak Forests Alters Leaf Litter Structure, Moisture, and Flammability. For. Ecol. Manag. 2021, 482, 118860. [Google Scholar] [CrossRef]
- Boerner, R.E.J.; Brinkman, J.A. Fire Frequency and Soil Enzyme Activity in Southern Ohio Oak–Hickory Forests. Appl. Soil Ecol. 2003, 23, 137–146. [Google Scholar] [CrossRef]
- Hutchinson, T.F.; Long, R.P.; Ford, R.D.; Sutherland, E.K. Fire History and the Establishment of Oaks and Maples in Second-Growth Forests. Can. J. For. Res. 2008, 38, 1184–1198. [Google Scholar] [CrossRef] [Green Version]
- National Wildfire Coordinating Group. 2023. NWCG Glossary of Wildland Fire, PMS 205.
- Yip, A.; Haelssig, J.B.; Pegg, M.J. Multicomponent Pool Fires: Trends in Burning Rate, Flame Height, and Flame Temperature. Fuel 2021, 284, 118913. [Google Scholar] [CrossRef]
- Anderson, H.E. Forest Fuel Ignitibility. Fire Technol. 1970, 6, 312–319. [Google Scholar] [CrossRef]
- Schroeder, R.A.; Sapsis, D.B.; Stephens, S.L.; Chambers, M. Assessing the Flammability of Domestic and Wildland Vegetation. J. Environ. Manag. 1994, 12, 130–137. [Google Scholar] [CrossRef]
- White, R.H.; Zipperer, W.C. Testing and Classification of Individual Plants for Fire Behaviour: Plant Selection for the Wildland -Urban Interface. Int. J. Wildland Fire 2010, 19, 213. [Google Scholar] [CrossRef]
- Ganteaume, A.; Marielle, J.; Corinne, L.-M.; Thomas, C.; Laurent, B. Effects of Vegetation Type and Fire Regime on Flammability of Undisturbed Litter in Southeastern France. For. Ecol. Manag. 2011, 261, 2223–2231. [Google Scholar] [CrossRef]
- Rivera, J.D.D.; Davies, G.M.; Jahn, W. Flammability and the Heat of Combustion of Natural Fuels: A Review. Combust. Sci. Technol. 2012, 184, 224–242. [Google Scholar] [CrossRef]
- Engber, E.A.; Varner, J.M. Patterns of Flammability of the California Oaks: The Role of Leaf Traits. Can. J. For. Res. 2012, 42, 1965–1975. [Google Scholar] [CrossRef]
- Kane, J.M.; Kreye, J.K.; Barajas-Ramirez, R.; Varner, J.M. Litter Trait Driven Dampening of Flammability Following Deciduous Forest Community Shifts in Eastern North America. For. Ecol. Manag. 2021, 489, 119100. [Google Scholar] [CrossRef]
- Chakravarty, S.; Rai, P.; Vineeta; Pala, N.A.; Shukla, G. Litter Production and Decomposition in Tropical Forest. In Practice, Progress, and Proficiency in Sustainability; Bhadouria, R., Tripathi, S., Srivastava, P., Singh, P., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 193–212. [Google Scholar] [CrossRef]
- Blair, J.M.; Parmelee, R.W.; Beare, M.H. Decay Rates, Nitrogen Fluxes, and Decomposer Communiies of Single-and Mixed-Species Foliar Litter. Ecology 1990, 71, 1976–1985. [Google Scholar] [CrossRef]
- Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. Effect of Heating Rate on Steam Gasification of Biomass. 2. Thermogravimetric-Mass Spectrometric (TG-MS) Analysis of Gas Evolution. Ind. Eng. Chem. Res. 2003, 42, 3929–3936. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, N.; Xie, X.; Viegas, D.X. Physical Model of Wildland Fire Spread: Parametric Uncertainty Analysis. Combust. Flame 2020, 217, 285–293. [Google Scholar] [CrossRef]
- Kane, J.M.; Varner, J.M.; Hiers, J.K. The Burning Characteristics of Southeastern Oaks: Discriminating Fire Facilitators from Fire Impeders. For. Ecol. Manag. 2008, 256, 2039–2045. [Google Scholar] [CrossRef]
- Ganteaume, A.; Jappiot, M.; Curt, T.; Lampin, C.; Borgniet, L. Flammability of Litter Sampled According to Two Different Methods: Comparison of Results in Laboratory Experiments. Int. J. Wildland Fire 2014, 23, 1061. [Google Scholar] [CrossRef]
- Dudaite, J.; Baltrenaite, E.; Ubeda, X.; Tamkeviciute, M. Effects of temperature on the properties of pine and maple leaf litter ash. a laboratory study. Environ. Eng. Manag. J. 2013, 12, 2107–2116. [Google Scholar] [CrossRef]
- Úbeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A. Effects of Fire Temperature on the Physical and Chemical Characteristics of the Ash from Two Plots of Cork Oak (Quercus Suber): Effects of fire temperature on ash from cork oak. Land Degrad. Dev. 2009, 20, 589–608. [Google Scholar] [CrossRef] [Green Version]
- Boerner, R.E.J.; Morris, S.J.; Sutherland, E.K.; Hutchinson, T.F. Spatial Variability in Soil Nitrogen Dynamics after Prescribed Burning in Ohio Mixed-Oak Forests. Landsc. Ecol. 2000, 15, 425–439. [Google Scholar] [CrossRef]
- Gray, D.M.; Dighton, J. Mineralization of Forest Litter Nutrients by Heat and Combustion. Soil Biol. Biochem. 2006, 38, 1469–1477. [Google Scholar] [CrossRef]
- Abrams, M.D. Fire and the Development of Oak Forests. BioScience 1992, 42, 346–353. [Google Scholar] [CrossRef]
- Kreye, J.K.; Varner, J.M.; Hamby, G.W.; Kane, J.M. Mesophytic Litter Dampens Flammability in Fire-excluded Pyrophytic Oak–Hickory Woodlands. Ecosphere 2018, 9, e02078. [Google Scholar] [CrossRef]
- Alexander, H.D.; Siegert, C.; Brewer, J.S.; Kreye, J.; Lashley, M.A.; McDaniel, J.K.; Paulson, A.K.; Renninger, H.J.; Varner, J.M. Mesophication of Oak Landscapes: Evidence, Knowledge Gaps, and Future Research. BioScience 2021, 71, 531–542. [Google Scholar] [CrossRef]
- Arthur, M.A.; Blankenship, B.A.; Schörgendorfer, A.; Loftis, D.L.; Alexander, H.D. Changes in Stand Structure and Tree Vigor with Repeated Prescribed Fire in an Appalachian Hardwood Forest. For. Ecol. Manag. 2015, 340, 46–61. [Google Scholar] [CrossRef]
Variable | Average | Min | Max | SD | CV% |
---|---|---|---|---|---|
------------------------------ Oak ------------------------------ | |||||
Percent fuel mass loss | 91.30 | 90.20 | 93.55 | 1.07 | 1.18 |
Max surface temperature (°C) 1 | 167.10 | 134.66 | 214.33 | 25.85 | 15.47 |
Max temperature, 10 cm (°C) 2 | 79.48 | 50.67 | 121.18 | 18.18 | 22.87 |
Combustion duration (secs) | 46.67 | 34.00 | 59.00 | 7.62 | 16.33 |
Flame height (cm) | 34.87 | 29.00 | 42.00 | 3.55 | 10.19 |
Rate of temperature increase | 3.27 | 2.16 | 5.12 | 0.93 | 28.37 |
---------------------------- Maple ---------------------------- | |||||
Percent fuel mass loss | 87.11 | 77.95 | 91.00 | 3.20 | 3.67 |
Max surface temperature (°C) 1 | 142.39 | 116.73 | 162.64 | 13.34 | 9.37 |
Max temperature, 10 cm (°C) 2 | 75.03 | 53.04 | 133.01 | 22.92 | 30.55 |
Combustion duration (secs) | 40.13 | 31.00 | 53.00 | 6.13 | 15.27 |
Flame height (cm) | 36.57 | 30.00 | 44.00 | 3.84 | 10.49 |
Rate of temperature increase | 2.70 | 1.80 | 3.72 | 0.57 | 21.26 |
MLP 3 | MaxT0 1 | MaxT10 2 | Duration (s) | |
---|---|---|---|---|
maxT0 1 | 0.40 * | |||
maxT10 2 | 0.11 | 0.40 * | ||
Duration (s) | 0.45 * | 0.52 ** | 0.21 | |
Flame height (cm) | 0.10 | −0.11 | 0.04 | −0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Williams, R.A. Effects of Wildland Fuel Composition on Fire Intensity. Fire 2023, 6, 312. https://doi.org/10.3390/fire6080312
Dong Z, Williams RA. Effects of Wildland Fuel Composition on Fire Intensity. Fire. 2023; 6(8):312. https://doi.org/10.3390/fire6080312
Chicago/Turabian StyleDong, Ziyu, and Roger A. Williams. 2023. "Effects of Wildland Fuel Composition on Fire Intensity" Fire 6, no. 8: 312. https://doi.org/10.3390/fire6080312
APA StyleDong, Z., & Williams, R. A. (2023). Effects of Wildland Fuel Composition on Fire Intensity. Fire, 6(8), 312. https://doi.org/10.3390/fire6080312