Prescribed Fire in UK Heather-Dominated Blanket Bog Peatlands: A Critical Review of “Carbon Storage and Sequestration by Habitat: A Review of the Evidence (Second Edition)” by Gregg et al., 2021
Abstract
:1. Introduction
2. Comments on Gregg et al.’s Review Methodology
3. Misrepresentation of the Evidence
3.1. The Impact of Prescribed Fire on Blanket Bog
3.2. Prescribed Fire and Blanket Bog Climate Change Mitigation
3.3. Rewetting, Prescribed Fire and Blanket Bog Wildfire Mitigation
3.4. Rewetting Is a ‘No-Regrets’ Option
3.5. ‘Peat-Forming’ Species
3.6. The History of Burning in the Uplands
3.7. Failure to Consider Methodological Flaws in the Evidence Base
- i.
- ii.
- iii.
- Data structure was not correctly accounted for during analysis, meaning each study used artificially inflated sample sizes (i.e., pseudoreplication). As such, the significance values reported are unreliable, likely too low and should not be used to generalise [117];
- iv.
3.8. Misreporting of Heinemeyer et al. (2019)
- i.
- At the plot scale, the pre-management intervention values showed that all sites and treatments were carbon sinks, even when considering methane emissions. However, only after accounting for (very uncertain) fluvial carbon losses did two of the three study sites become net carbon sources (the wettest site remained a carbon sink) [37].
- ii.
- Hardly any other study includes the level of detail measured by Heinemeyer et al. [37] (i.e., including all major NECB components), so a critical assessment and comparison of blanket bog carbon storage must consider the comparability and validity of the evidence presented by less detailed studies that omit key NECB elements.
- iii.
- Since burning and mowing remove vegetation, it is obvious that burnt and mown plots will very likely be a net carbon source immediately after management (as vegetation needs to regrow to start sequestering carbon). Thus, any short-term findings are meaningless, which is why the project was anticipated and set up to be long-term. Indeed, the project specification written by Defra, Natural England and the peer-review process recommended that any such study must consider the slow responses and recovery to management and incorporate the regrowth of managed vegetation to maturity [37]. As the peer-review comments indicated, at least 25 years are needed to obtain meaningful and policy-relevant data (i.e., data that covers the entire management cycle).
4. Recommendations
- ➢
- Clearly describe the review methodology so the robustness and utility of the review can be assessed.
- ➢
- ➢
- Remove unevidenced statements or clearly state that such statements are conjecture. This is important because Gregg et al. is a review, and readers may confuse conjecture with fact.
- ➢
- We would also suggest including a balanced set of peer-reviewers; to only include a representative of the RSPB (Royal Society of the Protection of Birds)—an organisation with strong views opposing grouse moor management and rotational burning of heather—seems biased.
- i.
- “In the absence of sound evidence and consensus, it is vital that managers and scientists adopt an ‘adaptive’ approach to decision making.”
- ii.
- “Our objective should be to use fire as one tool in management that aims to produce structurally diverse upland landscapes that protect a range of ecosystem functions.”
- iii.
- “Such assessments need to focus on the landscape scale and on elucidating trends over the entire fire rotation rather than just looking at the short-term outcomes of single burns that are a pulse disturbance with obvious negative outcomes for particular metrics.”
Author Contributions
Funding
Conflicts of Interest
References
- Gregg, R.; Elias, J.L.; Alonso, I.; Crosher, I.E.; Muto, P.; Morecroft, M.D. Carbon Storage and Sequestration by Habitat: A Review of the Evidence, 2nd ed.; Natural England Report NERR094; Natural England: York, UK, 2021. [Google Scholar]
- Avery, M. Inglorious: Conflict in the Uplands; Bloomsbury Publishing: London, UK, 2015. [Google Scholar]
- Davies, G.M.; Kettridge, N.; Stoof, C.R.; Gray, A.; Ascoli, D.; Fernandes, P.M.; Marrs, R.; Allen, K.A.; Doerr, S.H.; Clay, G.D.; et al. The Role of Fire in UK Peatland and Moorland Management: The Need for Informed, Unbiased Debate. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150342. [Google Scholar] [CrossRef]
- Davies, G.M.; Kettridge, N.; Stoof, C.R.; Gray, A.; Marrs, R.; Ascoli, D.; Fernandes, P.M.; Allen, K.A.; Doerr, S.H.; Clay, G.D.; et al. Informed Debate on the Use of Fire for Peatland Management Means Acknowledging the Complexity of Socio-Ecological Systems. Nat. Conserv. 2016, 16, 59–77. [Google Scholar] [CrossRef]
- Harper, A.R.; Doerr, S.H.; Santin, C.; Froyd, C.A.; Sinnadurai, P. Prescribed Fire and Its Impacts on Ecosystem Services in the UK. Sci. Total Environ. 2018, 624, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Ashby, M.A.; Heinemeyer, A. A Critical Review of the IUCN UK Peatland Programme’s “Burning and Peatlands” Position Statement. Wetlands 2021, 41, 56. [Google Scholar] [CrossRef]
- Ashby, M.A.; Heinemeyer, A. Prescribed Burning Impacts on Ecosystem Services in the British Uplands: A Methodological Critique of the EMBER Project. J. Appl. Ecol. 2019, 57, 2112–2120. [Google Scholar] [CrossRef]
- Ashby, M.A.; Heinemeyer, A. Whither Scientific Debate? A Rebuttal of “Contextualising UK Moorland Burning Studies: Geographical versus Potential Sponsorship-Bias Effects on Research Conclusions” by Brown and Holden. bioRxiv 2019, 731117. [Google Scholar] [CrossRef]
- Brown, L.; Holden, J. Contextualising UK Moorland Burning Studies: Geographical versus Potential Sponsorship-Bias Effects on Research Conclusions. bioRxiv 2019, 731117. [Google Scholar] [CrossRef]
- Brown, L.E.; Holden, J. Contextualizing UK Moorland Burning Studies with Geographical Variables and Sponsor Identity. J. Appl. Ecol. 2020, 57, 2121–2131. [Google Scholar] [CrossRef]
- Francos, M.; Úbeda, X. Prescribed Fire Management. Curr. Opin. Environ. Sci. Health 2021, 21, 100250. [Google Scholar] [CrossRef]
- Hunter, M.E.; Robles, M.D. Tamm Review: The Effects of Prescribed Fire on Wildfire Regimes and Impacts: A Framework for Comparison. For. Ecol. Manag. 2020, 475, 118435. [Google Scholar] [CrossRef]
- Volkova, L.; Roxburgh, S.H.; Weston, C.J. Effects of Prescribed Fire Frequency on Wildfire Emissions and Carbon Sequestration in a Fire Adapted Ecosystem Using a Comprehensive Carbon Model. J. Environ. Manag. 2021, 290, 112673. [Google Scholar] [CrossRef]
- JNCC. UK Biodiversity Action Plan—Priority Habitat Descriptions; Joint Nature Conservation Committee: Peterborough, UK, 2011.
- Lindsay, R. Peatbogs and Carbon: A Critical Synthesis to Inform Policy Development in Oceanic Peat Bog Conservation and Restoration in the Context of Climate Change; Environmental Research Group, University of East London: London, UK, 2010. [Google Scholar]
- Palmer, S.C.F.; Bacon, P.J. The Utilization of Heather Moorland by Territorial Red Grouse Lagopus Lagopus Scoticus. Ibis 2001, 143, 222–232. [Google Scholar] [CrossRef]
- Tharme, A.P.; Green, R.E.; Baines, D.; Bainbridge, I.P.; O’Brien, M. The Effect of Management for Red Grouse Shooting on the Population Density of Breeding Birds on Heather-Dominated Moorland. J. Appl. Ecol. 2001, 38, 439–457. [Google Scholar] [CrossRef]
- GWCT. Your Essential Guide to Grouse Shooting and Moorland Management; Game & Wildlife Conservation Trust: Fordingbridge, UK, 2017. [Google Scholar]
- Walker, M.; Johnsen, S.; Rasmussen, S.O.; Popp, T.; Steffensen, J.-P.; Gibbard, P.; Hoek, W.; Lowe, J.; Andrews, J.; Björck, S.; et al. Formal Definition and Dating of the GSSP (Global Stratotype Section and Point) for the Base of the Holocene Using the Greenland NGRIP Ice Core, and Selected Auxiliary Records. J. Quat. Sci. 2009, 24, 3–17. [Google Scholar] [CrossRef]
- Chapin, F.S.; Woodwell, G.M.; Randerson, J.T.; Rastetter, E.B.; Lovett, G.M.; Baldocchi, D.D.; Clark, D.A.; Harmon, M.E.; Schimel, D.S.; Valentini, R.; et al. Reconciling Carbon-Cycle Concepts, Terminology, and Methods. Ecosystems 2006, 9, 1041–1050. [Google Scholar] [CrossRef]
- Davies, M.G.; Gray, A.; Hamilton, A.; Legg, C.J. The Future of Fire Management in the British Uplands. Int. J. Biodivers. Sci. Manag. 2008, 4, 127–147. [Google Scholar] [CrossRef]
- Buchanan, G.; Grant, M.; Sanderson, R.; Pearce-Higgins, J. The Contribution of Invertebrate Taxa to Moorland Bird Diets and the Potential Implications of Land-Use Management. Ibis 2006, 148, 615–628. [Google Scholar] [CrossRef]
- The Heather and Grass Etc. Burning (England) Regulations. 2021. Available online: https://www.legislation.gov.uk/uksi/2021/158/contents/made (accessed on 5 May 2023).
- Swindles, G.T.; Watson, E.; Turner, T.E.; Galloway, J.M.; Hadlari, T.; Wheeler, J.; Bacon, K.L. Spheroidal Carbonaceous Particles Are a Defining Stratigraphic Marker for the Anthropocene. Sci. Rep. 2015, 5, 10264. [Google Scholar] [CrossRef]
- Collaboration for Environmental Evidence. Guidelines and Standards for Evidence Synthesis in Environmental Management: Version 5.0; Pullin, A.S., Frampton, G.K., Livoreil, B., Petrokofsky, G., Eds.; Collaboration for Environmental Evidence: Online, 2018; Online only document of the CEE, a UK Charity No. 1157607; Available online: https://environmentalevidence.org/information-for-authors/ (accessed on 5 May 2023).
- Pussegoda, K.; Turner, L.; Garritty, C.; Mayhew, A.; Skidmore, B.; Stevens, A.; Boutron, I.; Sarkis-Onofre, R.; Bjerre, L.M.; Hróbjartsson, A.; et al. Systematic Review Adherence to Methodological or Reporting Quality. Syst. Rev. 2017, 6, 131. [Google Scholar] [CrossRef]
- O’Leary, B.C.; Kvist, K.; Bayliss, H.R.; Derroire, G.; Healey, J.R.; Hughes, K.; Kleinschroth, F.; Sciberras, M.; Woodcock, P.; Pullin, A.S. The Reliability of Evidence Review Methodology in Environmental Science and Conservation. Environ. Sci. Policy 2016, 64, 75–82. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Macura, B. The Role of Reporting Standards in Producing Robust Literature Reviews. Nat. Clim. Chang. 2018, 8, 444–447. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Bethel, A.; Dicks, L.V.; Koricheva, J.; Macura, B.; Petrokofsky, G.; Pullin, A.S.; Savilaakso, S.; Stewart, G.B. Eight Problems with Literature Reviews and How to Fix Them. Nat. Ecol. Evol. 2020, 4, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Heinemeyer, A.; Asena, Q.; Burn, W.L.; Jones, A.L. Peatland Carbon Stocks and Burn History: Blanket Bog Peat Core Evidence Highlights Charcoal Impacts on Peat Physical Properties and Long-Term Carbon Storage. Geo Geogr. Environ. 2018, 5, e00063. [Google Scholar] [CrossRef]
- Davidson, S.J.; Van Beest, C.; Petrone, R.; Strack, M. Wildfire Overrides Hydrological Controls on Boreal Peatland Methane Emissions. Biogeosciences 2019, 16, 2651–2660. [Google Scholar] [CrossRef]
- Leifeld, J.; Alewell, C.; Bader, C.; Krüger, J.P.; Mueller, C.W.; Sommer, M.; Steffens, M.; Szidat, S. Pyrogenic Carbon Contributes Substantially to Carbon Storage in Intact and Degraded Northern Peatlands. Land Degrad. Dev. 2018, 29, 2082–2091. [Google Scholar] [CrossRef]
- Gray, A.; Davies, G.M.; Domènech, R.; Taylor, E.; Levy, P.E. Peatland Wildfire Severity and Post-Fire Gaseous Carbon Fluxes. Ecosystems 2021, 24, 713–725. [Google Scholar] [CrossRef]
- Flanagan, N.E.; Wang, H.; Winton, S.; Richardson, C.J. Low-Severity Fire as a Mechanism of Organic Matter Protection in Global Peatlands: Thermal Alteration Slows Decomposition. Glob. Chang. Biol. 2020, 26, 3930–3946. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Macura, B.; Whaley, P.; Pullin, A.S. ROSES for Systematic Map Protocols. Version 1.0. 2017. Online only Document. Available online: https://www.roses-reporting.com/systematic-map-protocols (accessed on 5 May 2023).
- Haddaway, N.R.; Macura, B.; Whaley, P.; Pullin, A.S. ROSES RepOrting Standards for Systematic Evidence Syntheses: Pro Forma, Flow-Diagram and Descriptive Summary of the Plan and Conduct of Environmental Systematic Reviews and Systematic Maps. Environ. Evid. 2018, 7, 7. [Google Scholar] [CrossRef]
- Heinemeyer, A.; Vallack, H.; Morton, P.; Pateman, R.; Dytham, C.; Ineson, P.; McClean, C.; Bristow, C.; Pearce-Higgins, J. Restoration of Heather-Dominated Blanket Bog Vegetation on Grouse Moors for Biodiversity, Carbon Storage, Greenhouse Gas Emissions and Water Regulation: Comparing Burning to Alternative Mowing and Uncut Management. Final Report to Defra on Project BD5104; Stockholm Environment Institute at the University of York: York, UK, 2019. Available online: https://sciencesearch.defra.gov.uk/ProjectDetails?ProjectId=17733 (accessed on 5 May 2023).
- Whitehead, S.; Weald, H.; Baines, D. Post-Burning Responses by Vegetation on Blanket Bog Peatland Sites on a Scottish Grouse Moor. Ecol. Indic. 2021, 123, 107336. [Google Scholar] [CrossRef]
- Whitehead, S.C.; Baines, D. Moorland Vegetation Responses Following Prescribed Burning on Blanket Peat. Int. J. Wildland Fire 2018, 27, 658–664. [Google Scholar] [CrossRef]
- Milligan, G.; Rose, R.J.; O’Reilly, J.; Marrs, R.H. Effects of Rotational Prescribed Burning and Sheep Grazing on Moorland Plant Communities: Results from a 60-Year Intervention Experiment. Land Degrad. Dev. 2018, 29, 1397–1412. [Google Scholar] [CrossRef]
- Noble, A.; Crowle, A.; Glaves, D.J.; Palmer, S.M.; Holden, J. Fire Temperatures and Sphagnum Damage during Prescribed Burning on Peatlands. Ecol. Indic. 2019, 103, 471–478. [Google Scholar] [CrossRef]
- Noble, A.; O’Reilly, J.; Glaves, D.J.; Crowle, A.; Palmer, S.M.; Holden, J. Impacts of Prescribed Burning on Sphagnum Mosses in a Long-Term Peatland Field Experiment. PLoS ONE 2018, 13, e0206320. [Google Scholar] [CrossRef]
- Noble, A.; Palmer, S.M.; Glaves, D.J.; Crowle, A.; Holden, J. Impacts of Peat Bulk Density, Ash Deposition and Rainwater Chemistry on Establishment of Peatland Mosses. Plant Soil 2017, 419, 41–52. [Google Scholar] [CrossRef]
- Noble, A.; Palmer, S.M.; Glaves, D.J.; Crowle, A.; Holden, J. Peatland Vegetation Change and Establishment of Re-Introduced Sphagnum Moss after Prescribed Burning. Biodivers. Conserv. 2019, 28, 939–952. [Google Scholar] [CrossRef]
- Noble, A.; Palmer, S.M.; Glaves, D.J.; Crowle, A.; Brown, L.E.; Holden, J. Prescribed Burning, Atmospheric Pollution and Grazing Effects on Peatland Vegetation Composition. J. Appl. Ecol. 2018, 55, 559–569. [Google Scholar] [CrossRef]
- Marrs, R.H.; Marsland, E.-L.; Lingard, R.; Appleby, P.G.; Piliposyan, G.T.; Rose, R.J.; O’Reilly, J.; Milligan, G.; Allen, K.A.; Alday, J.G.; et al. Experimental Evidence for Sustained Carbon Sequestration in Fire-Managed, Peat Moorlands. Nat. Geosci. 2019, 12, 108–112. [Google Scholar] [CrossRef]
- Grau-Andrés, R.; Davies, G.M.; Gray, A.; Scott, E.M.; Waldron, S. Fire Severity Is More Sensitive to Low Fuel Moisture Content on Calluna Heathlands than on Peat Bogs. Sci. Total Environ. 2018, 616–617, 1261–1269. [Google Scholar] [CrossRef]
- Grau-Andrés, R.; Davies, G.M.; Waldron, S.; Scott, E.M.; Gray, A. Increased Fire Severity Alters Initial Vegetation Regeneration across Calluna-Dominated Ecosystems. J. Environ. Manag. 2019, 231, 1004–1011. [Google Scholar] [CrossRef]
- Grau-Andrés, R.; Gray, A.; Davies, G.M. Sphagnum Abundance and Photosynthetic Capacity Show Rapid Short-Term Recovery Following Managed Burning. Plant Ecol. Divers. 2017, 10, 353–359. [Google Scholar] [CrossRef]
- Grau-Andrés, R.; Gray, A.; Davies, G.M.; Scott, E.M.; Waldron, S. Burning Increases Post-Fire Carbon Emissions in a Heathland and a Raised Bog, but Experimental Manipulation of Fire Severity Has No Effect. J. Environ. Manag. 2019, 233, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Tälle, M.; Deák, B.; Poschlod, P.; Valkó, O.; Westerberg, L.; Milberg, P. Similar Effects of Different Mowing Frequencies on the Conservation Value of Semi-Natural Grasslands in Europe. Biodivers. Conserv. 2018, 27, 2451–2475. [Google Scholar] [CrossRef]
- Tälle, M.; Deák, B.; Poschlod, P.; Valkó, O.; Westerberg, L.; Milberg, P. Grazing vs. Mowing: A Meta-Analysis of Biodiversity Benefits for Grassland Management. Agric. Ecosyst. Environ. 2016, 222, 200–212. [Google Scholar] [CrossRef]
- Török, P.; Penksza, K.; Tóth, E.; Kelemen, A.; Sonkoly, J.; Tóthmérész, B. Vegetation Type and Grazing Intensity Jointly Shape Grazing Effects on Grassland Biodiversity. Ecol. Evol. 2018, 8, 10326–10335. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y. A Global Meta-Analyses of the Response of Multi-Taxa Diversity to Grazing Intensity in Grasslands. Environ. Res. Lett. 2019, 14, 114003. [Google Scholar] [CrossRef]
- Sutherland, W.; Dicks, L.; Petrovan, S.; Smith, R. What Works in Conservation 2021; Open Book Publishers: Cambridge, UK, 2021. [Google Scholar]
- Garnett, M.H.; Ineson, P.; Stevenson, A.C. Effects of Burning and Grazing on Carbon Sequestration in a Pennine Blanket Bog, UK. Holocene 2000, 10, 729–736. [Google Scholar] [CrossRef]
- Sun, T.; Guzman, J.J.L.; Seward, J.D.; Enders, A.; Yavitt, J.B.; Lehmann, J.; Angenent, L.T. Suppressing Peatland Methane Production by Electron Snorkeling through Pyrogenic Carbon in Controlled Laboratory Incubations. Nat. Commun. 2021, 12, 4119. [Google Scholar] [CrossRef]
- Jones, M.W.; Santín, C.; van der Werf, G.R.; Doerr, S.H. Global Fire Emissions Buffered by the Production of Pyrogenic Carbon. Nat. Geosci. 2019, 12, 742–747. [Google Scholar] [CrossRef]
- Heinemeyer, A. Welcome to: Peatland-ES-UK. Available online: https://peatland-es-uk.york.ac.uk/ (accessed on 5 May 2023).
- Clay, G.D.; Worrall, F.; Rose, R. Carbon Budgets of an Upland Blanket Bog Managed by Prescribed Fire. J. Geophys. Res. Biogeosci. 2010, 115, G04037. [Google Scholar] [CrossRef]
- Clay, G.D.; Worrall, F.; Aebischer, N.J. Carbon Stocks and Carbon Fluxes from a 10-Year Prescribed Burning Chronosequence on a UK Blanket Peat. Soil Use Manag. 2015, 31, 39–51. [Google Scholar] [CrossRef]
- Evans, C.; Artz, R.; Moxley, J.; Smyth, M.-A.; Taylor, E.; Archer, E.; Burden, A.; Williamson, J.; Donnelly, D.; Thomson, A.; et al. Implementation of an Emission Inventory for UK Peatlands; Report to the Department for Business, Energy and Industrial Strategy; Centre for Ecology and Hydrology: Bangor, UK, 2017; p. 88. [Google Scholar]
- Heinemeyer, A.; David, T.; Pateman, R. Restoration of Heather-Dominated Blanket Bog Vegetation for Biodiversity, Carbon Storage, Greenhouse Gas Emissions and Water Regulation: Comparing Burning to Alternative Mowing and Uncut Management: Final 10-Year Report to the Project Advisory Group of Peatland-ES-UK. Research Report; Stockholm Environment Institute at the University of York: York, UK, 2023. [Google Scholar]
- Heinemeyer, A.; Croft, S.; Garnett, M.H.; Gloor, E.; Holden, J.; Lomas, M.R.; Ineson, P. The MILLENNIA Peat Cohort Model: Predicting Past, Present and Future Soil Carbon Budgets and Fluxes under Changing Climates in Peatlands. Clim. Res. 2010, 45, 207–226. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H.; Preston, C.M.; González-Rodríguez, G. Pyrogenic Organic Matter Production from Wildfires: A Missing Sink in the Global Carbon Cycle. Glob. Chang. Biol. 2015, 21, 1621–1633. [Google Scholar] [CrossRef]
- Albertson, K.; Aylen, J.; Cavan, G.; McMorrow, J. Climate Change and the Future Occurrence of Moorland Wildfires in the Peak District of the UK. Clim. Res. 2010, 45, 105–118. [Google Scholar] [CrossRef]
- Barber-Lomax, A.; Battye, R.; Gibson, S.; Castellnou, M.; Bachfischer, M. Peak District National Park Wildfire Risk Assessment; Peak District National Park Wildfire Risk Assessment Steering Group: Peak District, UK, 2022. [Google Scholar]
- Baird, A.J.; Evans, C.D.; Mills, R.; Morris, P.J.; Page, S.E.; Peacock, M.; Reed, M.; Robroek, B.J.M.; Stoneman, R.; Swindles, G.T.; et al. Validity of Managing Peatlands with Fire. Nat. Geosci. 2019, 12, 884–885. [Google Scholar] [CrossRef]
- Granath, G.; Moore, P.A.; Lukenbach, M.C.; Waddington, J.M. Mitigating Wildfire Carbon Loss in Managed Northern Peatlands through Restoration. Sci. Rep. 2016, 6, 28498. [Google Scholar] [CrossRef]
- Glaves, D.; Crowle, A.; Bruemmer, C.; Lenaghan, S. The Causes and Prevention of Wildfire on Heathlands and Peatlands in England (NEER014); Natural England: Peterborough, UK, 2020. [Google Scholar]
- Lin, S.; Sun, P.; Huang, X. Can Peat Soil Support a Flaming Wildfire? Int. J. Wildland Fire 2019, 28, 601–613. [Google Scholar] [CrossRef]
- Huang, X.; Rein, G. Downward Spread of Smouldering Peat Fire: The Role of Moisture, Density and Oxygen Supply. Int. J. Wildland Fire 2017, 26, 907–918. [Google Scholar] [CrossRef]
- Gallego-Sala, A.V.; Colin Prentice, I. Blanket Peat Biome Endangered by Climate Change. Nat. Clim. Chang. 2013, 3, 152–155. [Google Scholar] [CrossRef]
- Gallego-Sala, A.V.; Clark, J.M.; House, J.I.; Orr, H.G.; Prentice, I.C.; Smith, P.; Farewell, T.; Chapman, S.J. Bioclimatic Envelope Model of Climate Change Impacts on Blanket Peatland Distribution in Great Britain. Clim. Res. 2010, 45, 151–162. [Google Scholar] [CrossRef]
- Belcher, C.; Brown, I.; Clay, G.; Doerr, S.; Elliott, A.; Gazzard, R.; Kettridge, N.; Morison, J.; Perry, M.; Santin, C.; et al. UK Wildfires and Their Climate Challenges. Expert Led Report Prepared for the Third Climate Chang. Risk Assessment; Global Systems Institute, University of Exeter: Exeter, UK, 2021. [Google Scholar]
- Graham, A.M.; Pope, R.J.; McQuaid, J.B.; Pringle, K.P.; Arnold, S.R.; Bruno, A.G.; Moore, D.P.; Harrison, J.J.; Chipperfield, M.P.; Rigby, R.; et al. Impact of the June 2018 Saddleworth Moor Wildfires on Air Quality in Northern England. Environ. Res. Commun. 2020, 2, 031001. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Truu, J.; Espenberg, M.; Mander, Ü.; Smith, P. Emissions of Methane from Northern Peatlands: A Review of Management Impacts and Implications for Future Management Options. Ecol. Evol. 2016, 6, 7080–7102. [Google Scholar] [CrossRef] [PubMed]
- Balcombe, P.; Speirs, J.F.; Brandon, N.P.; Hawkes, A.D. Methane Emissions: Choosing the Right Climate Metric and Time Horizon. Environ. Sci. Process. Impacts 2018, 20, 1323–1339. [Google Scholar] [CrossRef] [PubMed]
- Kendon, M.; McCarthy, M.; Jevrejeva, S.; Matthews, A.; Sparks, T.; Garforth, J.; Kennedy, J. State of the UK Climate 2021. Int. J. Climatol. 2022, 42 (Suppl. S1), 1–80. [Google Scholar] [CrossRef]
- Leifeld, J.; Menichetti, L. The Underappreciated Potential of Peatlands in Global Climate Change Mitigation Strategies. Nat. Commun. 2018, 9, 1071. [Google Scholar] [CrossRef] [PubMed]
- Holden, J.; Burt, T.P. Runoff Production in Blanket Peat Covered Catchments. Water Resour. Res. 2003, 39, 1191. [Google Scholar] [CrossRef]
- Acreman, M.; Holden, J. How Wetlands Affect Floods. Wetlands 2013, 33, 773–786. [Google Scholar] [CrossRef]
- Holden, J.; Kirkby, M.J.; Lane, S.N.; Milledge, D.G.; Brookes, C.J.; Holden, V.; McDonald, A.T. Overland Flow Velocity and Roughness Properties in Peatlands. Water Resour. Res. 2008, 44, W06415. [Google Scholar] [CrossRef]
- Allott, T.; Auñón, J.; Dunn, C.; Evans, M.; Labadz, J.; Lunt, P.; MacDonald, M.; Nisbet, T.; Owen, R.; Pilkington, M.; et al. Peatland Catchments and Natural Flood Management; IUCN UK Peatland Programme: Edinburgh, UK, 2019. [Google Scholar]
- Gillingham, P.; Stewart, J.; Binney, H. The Historic Peat Record: Implications for the Restoration of Blanket Bog. Natural England, Evidence Review NEER011; Natural England: Peterborough, UK, 2016. [Google Scholar]
- Shepherd, M.; Labadz, J.; Caporn, S.; Crowle, A.; Goodison, R.; Rebane, M.; Waters, R. Restoration of Degraded Blanket Bog. Natural England Evidence Review NEER003; Natural England: Peterborough, UK, 2013. [Google Scholar]
- Fyfe, R.M.; Woodbridge, J. Differences in Time and Space in Vegetation Patterning: Analysis of Pollen Data from Dartmoor, UK. Landsc. Ecol. 2012, 27, 745–760. [Google Scholar] [CrossRef]
- Fyfe, R.M.; Brown, A.G.; Rippon, S.J. Mid- to Late-Holocene Vegetation History of Greater Exmoor, UK: Estimating the Spatial Extent of Human-Induced Vegetation Change. Veg. Hist. Archaeobotany 2003, 12, 215–232. [Google Scholar] [CrossRef]
- Fyfe, R.M.; Ombashi, H.; Davies, H.J.; Head, K. Quantified Moorland Vegetation and Assessment of the Role of Burning over the Past Five Millennia. J. Veg. Sci. 2018, 29, 393–403. [Google Scholar] [CrossRef]
- McCarroll, J.; Chambers, F.M.; Webb, J.C.; Thom, T. Application of Palaeoecology for Peatland Conservation at Mossdale Moor, UK. Quat. Int. 2017, 432, 39–47. [Google Scholar] [CrossRef]
- Webb, J.C.; McCarroll, J.; Chambers, F.M.; Thom, T. Evidence for the Little Ice Age in Upland Northwestern Europe: Multiproxy Climate Data from Three Blanket Mires in Northern England. Holocene 2022, 32, 451–467. [Google Scholar] [CrossRef]
- Chambers, F.; Crowle, A.; Daniell, J.; Mauquoy, D.; McCarroll, J.; Sanderson, N.; Thom, T.; Toms, P.; Webb, J. Ascertaining the Nature and Timing of Mire Degradation: Using Palaeoecology to Assist Future Conservation Management in Northern England. AIMS Environ. Sci. 2017, 4, 54–82. [Google Scholar] [CrossRef]
- Piilo, S.R.; Zhang, H.; Garneau, M.; Gallego-Sala, A.; Amesbury, M.J.; Väliranta, M.M. Recent Peat and Carbon Accumulation Following the Little Ice Age in Northwestern Québec, Canada. Environ. Res. Lett. 2019, 14, 075002. [Google Scholar] [CrossRef]
- Clymo, R.S.; Kramer, J.R.; Hammerton, D.; Beament, J.W.L.; Bradshaw, A.D.; Chester, P.F.; Holdgate, M.W.; Sugden, T.M.; Thrush, B.A. Sphagnum-Dominated Peat Bog: A Naturally Acid Ecosystem. Philos. Trans. R. Soc. London. B Biol. Sci. 1984, 305, 487–499. [Google Scholar] [CrossRef]
- Bacon, K.L.; Baird, A.J.; Blundell, A.; Bourgault, M.-A.; Chapman, P.J.; Dargie, G.; Dooling, G.P.; Gee, C.; Holden, J.; Kelly, T.J.; et al. Questioning Ten Common Assumptions about Peatlands. Mires Peat 2017, 19, 1–23. [Google Scholar]
- Gorham, E. The Development of Peat Lands. Q. Rev. Biol. 1957, 32, 145–166. [Google Scholar] [CrossRef]
- van Breemen, N. How Sphagnum Bogs down Other Plants. Trends Ecol. Evol. 1995, 10, 270–275. [Google Scholar] [CrossRef]
- Fenner, N.; Freeman, C. Woody Litter Protects Peat Carbon Stocks during Drought. Nat. Clim. Chang. 2020, 10, 363–369. [Google Scholar] [CrossRef]
- Simmons, I. The Moorlands of England and Wales an Environmental History, 8000 BC–AD 2000; Edinburgh University Press: Edinburgh, UK, 2003. [Google Scholar]
- Simmons, I.; Tooley, M. The Environment in British Prehistory; Duckworth: London, UK, 1981. [Google Scholar]
- Moore, J. Forest Fire and Human Interaction in the Early Holocene Woodlands of Britain. Palaeogeogr. Palaeoclim. Palaeoecol. 2000, 164, 125–137. [Google Scholar] [CrossRef]
- Caseldine, C.; Hatton, J. The Development of High Moorland on Dartmoor: Fire and the Influence of Mesolithic Activity on Vegetation Change. In Climate Change and Human Impact on the Landscape: Studies in Palaeoecology and Environmental Archaeology; Chambers, F.M., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 119–131. [Google Scholar] [CrossRef]
- Innes, J.B.; Blackford, J.J. The Ecology of Late Mesolithic Woodland Disturbances: Model Testing with Fungal Spore Assemblage Data. J. Archaeol. Sci. 2003, 30, 185–194. [Google Scholar] [CrossRef]
- Froyd, C.A. Holocene Fire in the Scottish Highlands: Evidence from Macroscopic Charcoal Records. Holocene 2006, 16, 235–249. [Google Scholar] [CrossRef]
- Dodgshon, R.A.; Olsson, G.A. Heather Moorland in the Scottish Highlands: The History of a Cultural Landscape, 1600–1880. J. Hist. Geogr. 2006, 32, 21–37. [Google Scholar] [CrossRef]
- Tsakiridou, M.; Hardiman, M.; Grant, M.J.; Lincoln, P.C.; Cunningham, L. Evidence of Wildfire in the British Isles during the Last Glacial-Interglacial Transition: Revealing Spatiotemporal Patterns and Controls. Proc. Geol. Assoc. 2020, 131, 562–577. [Google Scholar] [CrossRef]
- Innes, J.; Blackford, J.; Simmons, I. Woodland Disturbance and Possible Land-Use Regimes during the Late Mesolithic in the English Uplands: Pollen, Charcoal and Non-Pollen Palynomorph Evidence from Bluewath Beck, North York Moors, UK. Veg. Hist. Archaeobotany 2010, 19, 439–452. [Google Scholar] [CrossRef]
- Jacobi, R.M.; Tallis, J.H.; Mellars, P.A. The Southern Pennine Mesolithic and the Ecological Record. J. Archaeol. Sci. 1976, 3, 307–320. [Google Scholar] [CrossRef]
- Radley, J. Significance of Major Moorland Fires. Nature 1965, 205, 1254–1259. [Google Scholar] [CrossRef]
- Sotherton, N.; Baines, D.; Aebischer, N.J. An Alternative View of Moorland Management for Red Grouse Lagopus Lagopus Scotica. Ibis 2017, 159, 693–698. [Google Scholar] [CrossRef]
- Thompson, P.S.; Douglas, D.J.T.; Hoccom, D.G.; Knott, J.; Roos, S.; Wilson, J.D. Environmental Impacts of High-Output Driven Shooting of Red Grouse Lagopus Lagopus Scotica. Ibis 2016, 158, 446–452. [Google Scholar] [CrossRef]
- Brown, L.; Holden, J.; Palmer, S. Effects of Moorland Burning on the Ecohydrology of River Basins. Key Findings from the EMBER Project; University of Leeds: Leeds, UK, 2014. [Google Scholar]
- Holden, J.; Palmer, S.M.; Johnston, K.; Wearing, C.; Irvine, B.; Brown, L.E. Impact of Prescribed Burning on Blanket Peat Hydrology. Water Resour. Res. 2015, 51, 6472–6484. [Google Scholar] [CrossRef]
- Holden, J.; Wearing, C.; Palmer, S.; Jackson, B.; Johnston, K.; Brown, L.E. Fire Decreases Near-Surface Hydraulic Conductivity and Macropore Flow in Blanket Peat. Hydrol. Process. 2014, 28, 2868–2876. [Google Scholar] [CrossRef]
- Brown, L.E.; Johnston, K.; Palmer, S.M.; Aspray, K.L.; Holden, J. River Ecosystem Response to Prescribed Vegetation Burning on Blanket Peatland. PLoS ONE 2013, 8, e81023. [Google Scholar] [CrossRef]
- Brown, L.E.; Palmer, S.M.; Johnston, K.; Holden, J. Vegetation Management with Fire Modifies Peatland Soil Thermal Regime. J. Environ. Manag. 2015, 154, 166–176. [Google Scholar] [CrossRef]
- Davies, G.M.; Gray, A. Don’t Let Spurious Accusations of Pseudoreplication Limit Our Ability to Learn from Natural Experiments (and Other Messy Kinds of Ecological Monitoring). Ecol. Evol. 2015, 5, 5295–5304. [Google Scholar] [CrossRef]
- Alday, J.G.; Santana, V.M.; Lee, H.; Allen, K.A.; Marrs, R.H. Above-Ground Biomass Accumulation Patterns in Moorlands after Prescribed Burning and Low-Intensity Grazing. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 388–396. [Google Scholar] [CrossRef]
- Yallop, A.R.; Thacker, J.I.; Thomas, G.; Stephens, M.; Clutterbuck, B.; Brewer, T.; Sannier, C.A.D. The Extent and Intensity of Management Burning in the English Uplands. J. Appl. Ecol. 2006, 43, 1138–1148. [Google Scholar] [CrossRef]
- Thacker, J.I.; Yallop, A.R.; Clutterbuck, B. Burning in the English Uplands—A Review, Reconciliation and Comparison of Results of Natural England’s Burn Monitoring: 2005–2014 (IPENS055); Natural England: Peterborough, UK, 2014. [Google Scholar]
- Lees, K.J.; Buxton, J.; Boulton, C.A.; Abrams, J.F.; Lenton, T.M. Using Satellite Data to Assess Management Frequency and Rate of Regeneration on Heather Moorlands in England as a Resilience Indicator. Environ. Res. Commun. 2021, 3, 085003. [Google Scholar] [CrossRef]
- Heinemeyer, A.; Burn, W.L.; Asena, Q.; Jones, A.L.; Ashby, M.A. Response to: Comment on “Peatland Carbon Stocks and Burn History: Blanket Bog Peat Core Evidence Highlights Charcoal Impacts on Peat Physical Properties and Long-Term Carbon Storage” by Evans et al. (Geo: Geography and Environment 2019; E00075). Geo Geogr. Environ. 2019, 6, e00078. [Google Scholar] [CrossRef]
- Santana, V.M.; Alday, J.G.; Lee, H.; Allen, K.A.; Marrs, R.H. Modelling Carbon Emissions in Calluna Vulgaris–Dominated Ecosystems When Prescribed Burning and Wildfires Interact. PLoS ONE 2016, 11, e0167137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinemeyer, A.; Ashby, M.A. Prescribed Fire in UK Heather-Dominated Blanket Bog Peatlands: A Critical Review of “Carbon Storage and Sequestration by Habitat: A Review of the Evidence (Second Edition)” by Gregg et al., 2021. Fire 2023, 6, 204. https://doi.org/10.3390/fire6050204
Heinemeyer A, Ashby MA. Prescribed Fire in UK Heather-Dominated Blanket Bog Peatlands: A Critical Review of “Carbon Storage and Sequestration by Habitat: A Review of the Evidence (Second Edition)” by Gregg et al., 2021. Fire. 2023; 6(5):204. https://doi.org/10.3390/fire6050204
Chicago/Turabian StyleHeinemeyer, Andreas, and Mark A. Ashby. 2023. "Prescribed Fire in UK Heather-Dominated Blanket Bog Peatlands: A Critical Review of “Carbon Storage and Sequestration by Habitat: A Review of the Evidence (Second Edition)” by Gregg et al., 2021" Fire 6, no. 5: 204. https://doi.org/10.3390/fire6050204
APA StyleHeinemeyer, A., & Ashby, M. A. (2023). Prescribed Fire in UK Heather-Dominated Blanket Bog Peatlands: A Critical Review of “Carbon Storage and Sequestration by Habitat: A Review of the Evidence (Second Edition)” by Gregg et al., 2021. Fire, 6(5), 204. https://doi.org/10.3390/fire6050204