Occurrence, Area Burned, and Seasonality Trends of Forest Fires in the Natural Subregions of Alberta over 1959–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
- i.
- National Fire Database fire point data of the Canadian National Fire Database (CNFDB), obtained from the fire history data of the Natural Resources Canada, Government of Canada [37], available up to the year 2021. It is an integrated database of the source agency (province, territory, and parks) provided data with 26 attributes, including the fire date (year, month, and day), fire size (in hectares), cause (L: lightning, H: human, H-PB: human-prescribed burn, Re: reburn, U: unknown, and n/a: not available), ecozone, and others. We used CNFDB, instead of the Historical Wildfire Database of Alberta without the fire occurrences in the national parks, because it includes the fire-occurrence points of both provincial jurisdictions and national parks.
- ii.
- Natural regions and subregion of Alberta (2005) polygons from the open data repository of the Government of Alberta [38].
- iii.
- The provincial boundary polygon of Alberta from the open data repository of the Government of Alberta [39].
2.3. Database Preparation
2.4. Methods
2.4.1. Summary Statistics
2.4.2. Trend Analyses
3. Results
3.1. Data Summary Statistics
3.1.1. Forest Fire Occurrences
3.1.2. Burned Area
3.2. Trends
3.2.1. Monthly and Annual Fire Occurrences
3.2.2. Monthly and Annual Area Burned
3.2.3. Start and End Days, and Length of Fire Season
4. Discussion
4.1. Distribution of Fire Occurrences and Area Burned
4.2. Trends in the Number of Fire Occurrences
4.3. Trends in Area Burned
4.4. Trends in Start and End Days and Length of Fire Season
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coogan, S.C.P.; Cai, X.; Jain, P.; Flannigan, M.D. Seasonality and trends in human- and lightning-caused wildfires ≥ 2 ha in Canada, 1959–2018. Int. J. Wildl. Fire 2020, 29, 473–485. [Google Scholar] [CrossRef]
- Hanes, C.C.; Wang, X.; Jain, P.; Parisien, M.A.; Little, J.M.; Flannigan, M.D. Fire-regime changes in canada over the last half century. Can. J. For. Res. 2019, 49, 256–269. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Wotton, B.M.; Marshall, G.A. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Clim. Change 2016, 134, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podur, J.; Wotton, M. Will climate change overwhelm fire management capacity? Ecol. Modell. 2010, 221, 1301–1309. [Google Scholar] [CrossRef]
- Wotton, B.M.; Nock, C.A.; Flannigan, M.D. Forest fire occurrence and climate change in Canada. Int. J. Wildl. Fire 2010, 19, 253–271. [Google Scholar] [CrossRef]
- Wotton, B.M.; Flannigan, M.D.; Marshall, G.A. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 2017, 12, 095003. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; De Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Gillett, N.P.; Weaver, A.J.; Zwiers, F.W.; Flannigan, M.D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 2004, 31, L18211. [Google Scholar] [CrossRef] [Green Version]
- Parisien, M.A.; Miller, C.; Parks, S.A.; Delancey, E.R.; Robinne, F.N.; Flannigan, M.D. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 2016, 11, 075005. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Amiro, B.D.; Logan, K.A.; Stocks, B.J.; Wotton, B.M. Forest fires and climate change in the 21ST century. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 847–859. [Google Scholar] [CrossRef]
- Flannigan, M.; Cantin, A.S.; De Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Natural Resources Canada Increases in Length of Fire Season will Affect Forest Ecosystems and Both Human Health and Safety. Available online: https://www.nrcan.gc.ca/climate-change/impacts-adaptations/climate-change-impacts-forests/forest-change-indicators/fire-weather/17776 (accessed on 2 January 2023).
- Flannigan, M.D.; Wotton, B.M. Climate, Weather, and Area Burned. In Forest Fires: Behavior and Ecological Effects; Johnson, E., Miyanishi, K., Eds.; Academic Press: Cambridge, MA, USA; Elsevier Inc.: San Diego, CA, USA, 2001; pp. 351–373. ISBN 978-0-12-386660-8. [Google Scholar]
- Abatzoglou, J.T.; Kolden, C.A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildl. Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Littell, J.S.; Mckenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Wang, X.; Flannigan, M.D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildl. Fire 2017, 26, 1009–1020. [Google Scholar] [CrossRef]
- Podur, J.J.; Martell, D.L. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996–2006. Ecol. Appl. 2009, 19, 1246–1252. [Google Scholar] [CrossRef]
- Groffman, P.M.; Kareiva, P.; Carter, S.; Grimm, N.B.; Lawler, J.; Mack, M.; Matzek, V.; Tallis, H. Ecosystems, biodiversity, and ecosystem services. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 195–219. [Google Scholar]
- Gebeyehu, M.N.; Hirpo, F.H. Review on Effect of Climate Change on Forest Ecosystem. Int. J. Environ. Sci. Nat. Resour. 2019, 17, 126–129. [Google Scholar] [CrossRef]
- Pielke, R.A.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- Arneth, A.; Harrison, S.P.; Zaehle, S.; Tsigaridis, K.; Menon, S.; Bartlein, P.J.; Feichter, J.; Korhola, A.; Kulmala, M.; O’Donnell, D.; et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 2010, 3, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Osunkoya, O.O.; Sheng, T.K.; Mahmud, N.A.; Damit, N. Variation in wood density, wood water content, stem growth and mortality among twenty-seven tree species in a tropical rainforest on Borneo Island. Austral Ecol. 2007, 32, 191–201. [Google Scholar] [CrossRef]
- Lawes, M.J.; Richards, A.; Dathe, J.; Midgley, J.J. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 2011, 212, 2057–2069. [Google Scholar] [CrossRef]
- Stevens, J.T.; Kling, M.M.; Schwilk, D.W.; Varner, J.M.; Kane, J.M. Biogeography of fire regimes in western U.S. conifer forests: A trait-based approach. Glob. Ecol. Biogeogr. 2020, 29, 944–955. [Google Scholar] [CrossRef]
- Fons, W.L. Analysis of fire spread in light forest fuels. J. Agric. Res. 1946, 72, 93–121. [Google Scholar]
- Sedano, F.; Randerson, J.T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 2014, 11, 3739–3755. [Google Scholar] [CrossRef] [Green Version]
- Kitzberger, T.; Aráoz, E.; Gowda, J.H.; Mermoz, M.; Morales, J.M. Decreases in Fire Spread Probability with Forest Age Promotes Alternative Community States, Reduced Resilience to Climate Variability and Large Fire Regime Shifts. Ecosystems 2012, 15, 97–112. [Google Scholar] [CrossRef]
- Hassan, Q.K.; Ejiagha, I.R.; Ahmed, M.R.; Gupta, A.; Rangelova, E.; Dewan, A. Remote sensing of local warming trend in Alberta, Canada during 2001–2020, and its relationship with large-scale atmospheric circulations. Remote Sens. 2021, 13, 3441. [Google Scholar] [CrossRef]
- Parisien, M.; Peters, V.S.; Wang, Y.; Little, J.M.; Bosch, E.M.; Stocks, B.J. Spatial patterns of forest fires in Canada, 1980–1999. Int. J. Wildl. Fire 2006, 15, 361–374. [Google Scholar] [CrossRef]
- Tymstra, C.; Wang, D.; Rogeay, M.-P. Alberta Wildfire Regime Analysis; Alberta Department of Sustainable Resource Development, Forest Protection Division, Wildfire Policy and Business Planning Branch: Banff, AB, Canada, 2005. [Google Scholar]
- Achuff, P.L. Natural Regions, Subregions and Natural History Themes of Alberta: A Classification for Protected Areas Management; Alberta Environmental Protection: Edmonton, AB, Canada, 1994.
- Adamowicz, W.L.; Burton, P.J. Sustainability and sustainable forest management. In Towards Sustainable Management of the Boreal Forest; Burton, P.J., Messier, C., Smith, D.W., Eds.; National Research Council: Ottawa, ON, Canada, 2003; pp. 41–64. ISBN 0-660-18762-0. [Google Scholar]
- Downing, D.J.; Pettapiece, W.W. Natural Regions Committee. In Natural Regions and Subregions of Alberta; Government of Alberta: Edmonton, AB, Canada, 2006. [Google Scholar]
- Ecological Stratification Working Group. A National Ecological Framework for Canada; Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch: Ottawa/Hull, ON, Canada, 1995.
- Marshall, I.B.; Smith, S.C.A.; Selby, C.J. A national framework for monitoring and reporting on environmental sustainability in Canada. Environ. Monit. Assess. 1996, 39, 25–38. [Google Scholar] [CrossRef]
- Natural Resources Canada CWFIS (Canadian Wildland Fire Information System) Datamart. Available online: https://cwfis.cfs.nrcan.gc.ca/datamart (accessed on 1 October 2022).
- Government of Alberta Natural Regions and Subregions of Alberta. Available online: https://open.alberta.ca/opendata/gda-2f36921e-41e3-4cd8-813e-3333ea3c5983#summary (accessed on 2 October 2022).
- Government of Alberta Alberta Provincial Boundary. 2007. Available online: https://open.alberta.ca/opendata/gda-b4d9ba14-5429-42d5-992c-feae995dbf95 (accessed on 2 October 2022).
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Chelsea Nagy, R.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [Green Version]
- Albert-Green, A.; Dean, C.B.; Martell, D.L.; Woolford, D.G. A methodology for investigating trends in changes in the timing of the fire season with applications to lightning-caused forest fires in Alberta and Ontario, Canada. Can. J. For. Res. 2013, 43, 39–45. [Google Scholar] [CrossRef]
- Salguero, J.; Li, J.; Farahmand, A.; Reager, J.T. Wildfire Trend Analysis over the Contiguous United States Using Remote Sensing Observations. Remote Sens. 2020, 12, 2565. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Bevan, J.M.; Kendall, M.G. Rank Correlation Methods. Statistician 1971, 20, 74. [Google Scholar] [CrossRef]
- Kocsis, T.; Kovács-Székely, I.; Anda, A. Comparison of parametric and non-parametric time-series analysis methods on a long-term meteorological data set. Cent. Eur. Geol. 2017, 60, 316–332. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Hassan, Q.K.; Abdollahi, M.; Gupta, A. Introducing a New Remote Sensing-Based Model for Forecasting Forest Fire Danger Conditions at a Four-Day Scale. Remote Sens. 2019, 11, 2101. [Google Scholar] [CrossRef] [Green Version]
- Law, L.; Law, M. 16 Top-Rated Tourist Attractions in Alberta. Available online: https://www.planetware.com/tourist-attractions-/alberta-cdn-ab-ab.htm (accessed on 9 January 2023).
- Wang, Y.; Anderson, K.R. An evaluation of spatial and temporal patterns of lightning- and human- caused forest fires in Alberta, Canada, 1980–2007. Int. J. Wildl. Fire 2010, 19, 1059–1072. [Google Scholar] [CrossRef]
- Alberta Parks. Natural Regions and Subregions of Alberta: A Framework for Alberta’s Parks; Alberta Tourism, Parks and Recreation: Edmonton, AB, Canada, 2015; ISBN 978-1-4601-1362-2.
- Ejiagha, I.R.; Ahmed, M.R.; Dewan, A.; Gupta, A.; Rangelova, E.; Hassan, Q.K. Urban Warming of the Two Most Populated Cities in the Canadian Province of Alberta, and Its Influencing Factors. Sensors 2022, 22, 2894. [Google Scholar] [CrossRef]
- Price, C.; Rind, D. The impacts of a 2 X CO2 climate on lightning-caused fires. J. Clim. 1994, 7, 1484–1494. [Google Scholar] [CrossRef]
- Romps, D.M.; Seeley, J.T.; Vollaro, D.; Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 2014, 346, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Bush, E.; Lemmen, D.S. (Eds.) Canada’s Changing Climate Report; Environment and Climate Change Canada, Government of Canada: Ottawa, ON, Canada, 2019.
- Tymstra, C.; Stocks, B.J.; Cai, X.; Flannigan, M.D. Wildfire management in Canada: Review, challenges and opportunities. Prog. Disaster Sci. 2019, 5, 100045. [Google Scholar] [CrossRef]
- Arienti, M.C.; Cumming, S.G.; Boutin, S. Empirical models of forest fire initial attack success probabilities: The effects of fuels, anthropogenic linear features, fire weather, and management. Can. J. For. Res. 2006, 36, 3155–3166. [Google Scholar] [CrossRef]
- Robinne, F.-N.; Parisien, M.-A.; Flannigan, M. Anthropogenic influence on wildfire activity in Alberta, Canada. Int. J. Wildl. Fire 2016, 25, 1131–1143. [Google Scholar] [CrossRef]
- Campos-Ruiz, R.; Parisien, M.A.; Flannigan, M.D. Temporal patterns of wildfire activity in areas of contrasting human influence in the Canadian boreal forest. Forests 2018, 9, 159. [Google Scholar] [CrossRef] [Green Version]
- Skakun, R.; Whitman, E.; Little, J.M.; Parisien, M.A. Area burned adjustments to historical wildland fires in Canada. Environ. Res. Lett. 2021, 16, 064014. [Google Scholar] [CrossRef]
- Stocks, B.J.; Mason, J.A.; Todd, J.B.; Bosch, E.M.; Wotton, B.M.; Amiro, B.D.; Flannigan, M.D.; Hirsch, K.G.; Logan, K.A.; Martell, D.L.; et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 2003, 108, 8149. [Google Scholar] [CrossRef]
- Cumming, S.G. Effective fire suppression in boreal forests. Can. J. For. Res. 2005, 35, 772–786. [Google Scholar] [CrossRef]
- Stocks, B.J.; Martell, D.L. Forest fire management expenditures in Canada: 1970–2013. For. Chron. 2016, 92, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Newton, B.W.; Farjad, B.; Orwin, J.F. Spatial and temporal shifts in historic and future temperature and precipitation patterns related to snow accumulation and melt regimes in Alberta, Canada. Water 2021, 13, 1013. [Google Scholar] [CrossRef]
Subregion | Area (1000 ha) | Human (H and H-PB) | Lightning (L) | Others | Total | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | % | D | M ± SD | # | % | D | M ± SD | # | % | D | M ± SD | # | % | D | M ± SD | ||
Alpine | 1352.5 | 41 | 0.12 | 0.03 | 0.7 ± 0.9 | 36 | 0.13 | 0.02 | 0.6 ± 1.2 | 4 | 0.24 | 0 | 0.1 ± 0.4 | 81 | 0.12 | 0.05 | 1.3 ± 2 |
Subalpine | 1182.3 | 845 | 2.44 | 0.34 | 13.4 ± 9.8 | 567 | 1.99 | 0.22 | 9 ± 9.4 | 20 | 1.18 | 0.01 | 0.3 ± 0.6 | 1432 | 2.21 | 0.57 | 22.7 ± 14.6 |
Montane | 16,785.6 | 3704 | 10.71 | 4.22 | 58.8 ± 47.3 | 400 | 1.40 | 0.46 | 6.3 ± 5.6 | 108 | 6.37 | 0.12 | 1.7 ± 2.1 | 4212 | 6.50 | 4.80 | 66.9 ± 49.9 |
Upper Foothills | 8532.1 | 3244 | 9.38 | 1.51 | 51.5 ± 53 | 2019 | 7.07 | 0.94 | 32 ± 23.5 | 114 | 6.72 | 0.05 | 1.8 ± 2.3 | 5377 | 8.29 | 2.50 | 85.3 ± 57 |
Lower Foothills | 1185.8 | 6368 | 18.42 | 1.42 | 101.1 ± 53.3 | 4064 | 14.23 | 0.91 | 64.5 ± 48.3 | 306 | 18.04 | 0.07 | 4.9 ± 4 | 10,738 | 16.56 | 2.39 | 170.4 ± 83.1 |
Dry Mixedgrass | 5561.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.12 | 0 | 0 ± 0.2 | 2 | 0 | 0 | 0 ± 0.2 |
Mixedgrass | 2951.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0.29 | 0 | 0.1 ± 0.4 | 5 | 0.01 | 0 | 0.1 ± 0.4 |
Northern Fescue | 553.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0 |
Foothills Fescue | 971.9 | 8 | 0.02 | 0.01 | 0.1 ± 0.4 | 2 | 0.01 | 0 | 0 ± 0.2 | 3 | 0.18 | 0 | 0 ± 0.3 | 13 | 0.02 | 0.01 | 0.2 ± 0.5 |
Foothills Parkland | 4489.9 | 79 | 0.23 | 0.20 | 1.3 ± 1.2 | 2 | 0.01 | 0.01 | 0 ± 0.2 | 6 | 0.35 | 0.02 | 0.1 ± 0.3 | 87 | 0.13 | 0.22 | 1.4 ± 1.4 |
Central Parkland | 2153.7 | 8 | 0.02 | 0 | 0.1 ± 0.5 | 2 | 0.01 | 0 | 0 ± 0.2 | 0 | 0 | 0 | 0 ± 0 | 10 | 0.02 | 0 | 0.2 ± 0.6 |
Peace River Parkland | 4693.7 | 23 | 0.07 | 0.07 | 0.4 ± 0.7 | 10 | 0.04 | 0.03 | 0.2 ± 0.5 | 4 | 0.24 | 0.01 | 0.1 ± 0.4 | 37 | 0.06 | 0.12 | 0.6 ± 1 |
Dry Mixedwood | 1362.3 | 5133 | 14.84 | 0.60 | 81.5 ± 36.9 | 1404 | 4.92 | 0.16 | 22.3 ± 20.8 | 343 | 20.22 | 0.04 | 5.4 ± 4.8 | 6880 | 10.61 | 0.81 | 109.2 ± 49.3 |
Central Mixedwood | 2007.2 | 12,626 | 36.51 | 0.75 | 200.4 ± 97.9 | 10,583 | 37.06 | 0.63 | 168 ± 116.6 | 594 | 35.02 | 0.04 | 9.4 ± 7.5 | 23,803 | 36.72 | 1.42 | 377.8 ± 186.7 |
Lower Boreal Highlands | 1493.3 | 1458 | 4.22 | 0.26 | 23.1 ± 18.9 | 3537 | 12.39 | 0.64 | 56.1 ± 40.7 | 98 | 5.78 | 0.02 | 1.6 ± 2.3 | 5093 | 7.86 | 0.92 | 80.8 ± 54.1 |
Upper Boreal Highlands | 5370.6 | 1456 | 0.39 | 0.11 | 2.1 ± 3 | 977 | 3.42 | 0.82 | 15.5 ± 11.5 | 13 | 0.77 | 0.01 | 0.2 ± 0.4 | 1124 | 1.73 | 0.95 | 17.8 ± 13.2 |
Athabasca Plain | 392.1 | 125 | 0.36 | 0.09 | 2 ± 2.5 | 775 | 2.71 | 0.57 | 12.3 ± 9.9 | 19 | 1.12 | 0.01 | 0.3 ± 0.7 | 919 | 1.42 | 0.68 | 14.6 ± 11.3 |
Peace-Athabasca Delta | 312 | 43 | 0.12 | 0.08 | 0.7 ± 1.1 | 100 | 0.35 | 0.18 | 1.6 ± 2 | 5 | 0.29 | 0.01 | 0.1 ± 0.3 | 148 | 0.23 | 0.27 | 2.3 ± 2.6 |
Northern Mixedwood | 1508.4 | 414 | 1.20 | 0.14 | 6.6 ± 7.3 | 2359 | 8.26 | 0.80 | 37.4 ± 24.2 | 23 | 1.36 | 0.01 | 0.4 ± 0.5 | 2796 | 4.31 | 0.95 | 44.4 ± 28.8 |
Boreal Subarctic | 876.8 | 112 | 0.32 | 0.09 | 1.8 ± 2.9 | 849 | 2.97 | 0.72 | 13.5 ± 11.7 | 1 | 0.06 | 0 | 0 ± 0.1 | 962 | 1.48 | 0.81 | 15.3 ± 12.2 |
Kazan Uplands | 2521.8 | 214 | 0.62 | 0.22 | 3.4 ± 3.1 | 868 | 3.04 | 0.89 | 13.8 ± 14.8 | 28 | 1.65 | 0.03 | 0.4 ± 1 | 1110 | 1.71 | 1.14 | 17.6 ± 16.3 |
TOTAL | 66,258.3 | 35,901 | 28,554 | 1696 | 64,829 |
Subregion | Small (<200 ha) | Large (≥200 ha) | Total (All Fires by All Causes) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Human | Lightning | Human | Lightning | |||||||||||||||||
# | BA | % | M ± SD | # | BA | % | M ± SD | # | BA | % | M ± SD | # | BA | % | M ± SD | # | BA | % | M ± SD | |
Alpine | 37 | 0.11 | 0.10 | 0.00 ± 0.01 | 36 | 0.01 | 0.01 | 0.0 ± 0.001 | 4 | 3.69 | 0.21 | 0 ± 0 | 0 | 0.00 | 0.00 | 0 ± 0 | 81 | 3.81 | 0.03 | 0.06 ± 0.27 |
Subalpine | 824 | 1.90 | 1.79 | 0.03 ± 0.06 | 549 | 1.24 | 1.22 | 0.02 ± 0.05 | 21 | 59.36 | 3.34 | 0.02 ± 0.10 | 18 | 29.11 | 0.34 | 0 ± 0 | 1432 | 91.61 | 0.72 | 1.45 ± 5.59 |
Montane | 3691 | 4.33 | 4.07 | 0.07 ± 0.07 | 394 | 0.41 | 0.40 | 0.01 ± 0.03 | 13 | 12.31 | 0.69 | 0.60 ± 2.57 | 6 | 9.45 | 0.11 | 9.49 ± 41.17 | 4212 | 26.71 | 0.21 | 0.42 ± 0.90 |
Upper Foothills | 3235 | 2.46 | 2.31 | 0.04 ± 0.05 | 2007 | 2.22 | 2.19 | 0.04 ± 0.07 | 9 | 18.02 | 1.01 | 1.40 ± 3.65 | 12 | 38.81 | 0.45 | 3.81 ± 13.07 | 5377 | 81.57 | 0.65 | 1.30 ± 3.79 |
Lower Foothills | 6331 | 10.98 | 10.33 | 0.17 ± 0.20 | 4018 | 6.48 | 6.40 | 0.10 ± 0.15 | 37 | 95.94 | 5.40 | 5.21 ± 17.47 | 46 | 143.39 | 1.68 | 13.96 ± 38.28 | 10,738 | 257.43 | 2.04 | 4.09 ± 9.21 |
Dry Mixedgrass | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 42.64 ± 86.89 | 2 | 2.39 | 0.02 | 0.04 ± 0.26 |
Mixedgrass | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 | 5 | 8.19 | 0.06 | 0.13 ± 0.842 |
Northern Fescue | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 |
Foothills Fescue | 8 | 0.17 | 0.16 | 0.00 ± 0.02 | 2 | 0 | 0 | 0 ± 0 | 0 | 0 | 0 | 0.01 ± 0.09 | 0 | 0 | 0 | 0 ± 0 | 13 | 0.20 | 0.00 | 0.003 ± 0.02 |
Foothills Parkland | 75 | 0.60 | 0.57 | 0.01 ± 0.03 | 2 | 0 | 0 | 0 ± 0 | 4 | 5.32 | 0.30 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 | 87 | 6.09 | 0.05 | 0.10 ± 0.35 |
Central Parkland | 5 | 0.02 | 0.02 | 0.0 ± 0.002 | 2 | 0 | 0 | 0 ± 0 | 3 | 9.18 | 0.52 | 0 ± 0 | 0 | 0 | 0 | 0 ± 0 | 10 | 9.20 | 0.07 | 0.15 ± 1.07 |
Peace River Parkland | 21 | 0.15 | 0.14 | 0.0 ± 0.01 | 9 | 0 | 0 | 0 ± 0 | 2 | 0.77 | 0.04 | 0 ± 0 | 1 | 0.42 | 0 | 0 ± 0 | 37 | 1.34 | 0.01 | 0.02 ± 0.09 |
Dry Mixedwood | 5045 | 30.84 | 29.01 | 0.49 ± 0.50 | 1368 | 3.24 | 3.20 | 0.05 ± 0.07 | 88 | 363.42 | 20.44 | 6.13 ± 23.54 | 36 | 110.32 | 1.29 | 0.003 ± 0.03 | 6880 | 589.84 | 4.67 | 9.36 ± 38.33 |
Central Mixedwood | 12,468 | 49.44 | 46.51 | 0.79 ± 0.60 | 10,254 | 39.38 | 38.86 | 0.63 ± 0.51 | 158 | 942.64 | 53.01 | 14.14 ± 51.45 | 329 | 3164.66 | 36.99 | 16.56 ± 52.79 | 23,803 | 5493.82 | 43.46 | 87.20 ± 157.42 |
Lower Boreal Highlands | 1444 | 2.84 | 2.68 | 0.05 ± 0.07 | 3385 | 12.37 | 12.21 | 0.20 ± 0.18 | 14 | 13.02 | 0.73 | 0.06 ± 0.17 | 152 | 1470.78 | 17.19 | 31.04 ± 72.51 | 5093 | 1505.53 | 11.91 | 23.90 ± 78.55 |
Upper Boreal Highlands | 134 | 0.34 | 0.32 | 0.01 ± 0.02 | 933 | 3.61 | 3.56 | 57 ± 83 | 0 | 0.00 | 0.00 | 0.03 ± 0.12 | 44 | 310.59 | 3.63 | 9.51 ± 57.42 | 1124 | 314.58 | 2.49 | 4.99 ± 13.21 |
Athabasca Plain | 123 | 0.23 | 0.22 | 0.00 ± 0.02 | 730 | 4.71 | 4.65 | 0.08 ± 0.10 | 2 | 225.69 | 12.69 | 0.13 ± 0.70 | 45 | 1003.81 | 11.73 | 4.05 ± 28.72 | 919 | 1282.05 | 10.14 | 20.35 ± 69.93 |
Peace-Athabasca Delta | 39 | 0.10 | 0.10 | 0.00 ± 0.01 | 90 | 0.68 | 0.67 | 0.01 ± 0.03 | 4 | 20.44 | 1.15 | 0.01 ± 0.07 | 10 | 22.29 | 0.26 | 0.11 ± 0.55 | 148 | 74.79 | 0.59 | 1.19 ± 4.17 |
Northern Mixedwood | 412 | 1.09 | 1.03 | 0.02 ± 0.04 | 2199 | 17.62 | 17.38 | 0.28 ± 0.23 | 2 | 6.18 | 0.35 | 0.36 ± 2.28 | 160 | 1335.78 | 15.62 | 0.01 ± 0.10 | 2796 | 1387.02 | 10.97 | 22.02 ± 46.54 |
Boreal Subarctic | 112 | 0.25 | 0.23 | 0.00 ± 0.02 | 772 | 5.92 | 5.85 | 0.09 ± 0.12 | 0 | 0.00 | 0.00 | 0.13 ± 1.02 | 77 | 432.29 | 5.05 | 4.02 ± 17.68 | 962 | 438.46 | 3.47 | 6.96 ± 19.53 |
Kazan Uplands | 211 | 0.44 | 0.42 | 0.01 ± 0.03 | 811 | 3.45 | 3.40 | 0.06 ± 0.08 | 3 | 2.21 | 0.12 | 0 ± 0 | 57 | 482.69 | 5.64 | 0.28 ± 1.51 | 1110 | 1066.97 | 8.44 | 16.94 ± 76.13 |
TOTAL | 34,215 | 106 | 27,561 | 101 | 364 | 1778 | 993 | 8554 | 64,829 | 12,642 |
NSR | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | YR | Jun | Jul | Aug | Sep | YR | Jun | YR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<200 ha: Human | <200 ha: Lightning | ≥200 ha: Lightning | ||||||||||||||
SA | 0.08 * | 0.22 * | ||||||||||||||
M | 0.14 * | 0.41 * | 0.06 + | 0.19 * | 0.19 * | 0.11 * | 0.03 + | 0.85 * | 0.05 + | |||||||
UF | 0.04 + | 0.49 * | 0.12 * | 0.25 * | 0.25 * | 0.18 * | 1.41 * | −0.12 * | ||||||||
LF | 0.14 + | 0.56 * | 0.18 * | 0.25 * | 0.15 * | 1.56 * | ||||||||||
DM | 0.01 + | 0.28 * | 0.18 * | 0.12 * | 0.07 + | 0.51 * | ||||||||||
CM | 1.1 * | 1.56 * | 0.17 + | 0.1 + | 0.1 + | 3.68 * | 0.87 * | 0.96 * | 0.21 + | 2.04 * | ||||||
LBH | 0.21 * | 0.05 * | 0.06 * | 0.64 * | 0.42 * | 0.35 * | 0.64 * | |||||||||
UBH | 0.09 * | 0.11 * | 0.22 + | |||||||||||||
AP | 0.09 * | 0.17 * | ||||||||||||||
PAD | -0.02 + | |||||||||||||||
NM | 0.04 * | 0.02 * | 0.04 + | 0.11 * | 0.18 + | 0.22 * | 0.59 * | 0.03 * | 0.05 + | |||||||
BS | 0.05 + | |||||||||||||||
KU | 0.04 + | 0.09 + | 0.25 * |
NSR | May | Jun | Jul | Aug | Sep | Oct | YR | May | Jun | Jul | Aug | Sep | YR | May |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<200 ha: Human | <200 ha: Lightning | ≥200 ha: Lightning | ||||||||||||
A | −0.01 + | −0.01 + | ||||||||||||
SA | −0.80 + | −0.60 * | −0.10 * | −0.10 * | −0.80 + | −0.17 + | −0.20 + | |||||||
M | −0.70 + | −0.13 + | 0.83 * | −0.13 + | ||||||||||
UF | 0.51 * | −0.25 * | −0.19 * | −0.12 + | −0.1 + | |||||||||
LF | −0.83 + | −0.82 * | −0.24 + | −1.66 + | −0.33 + | −0.23 + | ||||||||
DM | −8.24 * | −0.52 * | −0.15 * | −0.74 * | −0.46 + | −0.22 + | −14.83 * | 0.12 + | 0.41 + | |||||
CM | −0.56 + | 1.91 + | 6.72 + | 549.29 + | ||||||||||
LBH | 0.16 * | −0.23 + | −0.17 + | 0.40 * | 0.69 * | 3.15 * | ||||||||
UBH | 0.27 * | 0.78 * | ||||||||||||
AP | −0.60 + | −0.02 + | −0.18 + | |||||||||||
NM | 1.52 + | 5.11 * | ||||||||||||
BS | −0.40 + | |||||||||||||
KU | −0.17 * | −0.25 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.R.; Hassan, Q.K. Occurrence, Area Burned, and Seasonality Trends of Forest Fires in the Natural Subregions of Alberta over 1959–2021. Fire 2023, 6, 96. https://doi.org/10.3390/fire6030096
Ahmed MR, Hassan QK. Occurrence, Area Burned, and Seasonality Trends of Forest Fires in the Natural Subregions of Alberta over 1959–2021. Fire. 2023; 6(3):96. https://doi.org/10.3390/fire6030096
Chicago/Turabian StyleAhmed, M. Razu, and Quazi K. Hassan. 2023. "Occurrence, Area Burned, and Seasonality Trends of Forest Fires in the Natural Subregions of Alberta over 1959–2021" Fire 6, no. 3: 96. https://doi.org/10.3390/fire6030096
APA StyleAhmed, M. R., & Hassan, Q. K. (2023). Occurrence, Area Burned, and Seasonality Trends of Forest Fires in the Natural Subregions of Alberta over 1959–2021. Fire, 6(3), 96. https://doi.org/10.3390/fire6030096