Elevated Wildfire and Ecosystem Carbon Loss Risks Due to Plant Hydraulic Stress Functions: A Global Modeling Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Fire Module
2.3. Plant Hydraulic Stress Configuration
3. Results
3.1. Changes in Ecosystem Water Transports
3.2. Fire Count Changes
3.3. Fire Induced Carbon Emissions and Ecosystem Net Primary Productivity
3.4. Plant Hydraulic Stress Function Impacts from the Global Perspective
4. Discussion
5. Conclusions
- From the global perspective, the PHS functions increased plant transpiration via hydraulic redistribution (HR) of soil water by roots, and increased fire occurrence (count), fire-induced carbon loss, and ecosystem carbon gain (i.e., net primary productivity) by 72%, 49%, and 15%, respectively.
- Spatially, the PHS functions greatly promoted fire occurrence and fire-induced carbon emissions in circumboreal forests and tropical savannas, while limited changes or even decreases occurred in equatorial rainforests.
- The downward HR process in the humid rainforests transported rainwater into deep soil layers, and strict stomatal regulation of the tropical trees restricted transpiration increase under atmospheric aridity, both of which helped to buffer the rainforests against drought and thus decreased fire risk.
- The upward HR process in the dry (woody) savannas increased water loss via soil evaporation and transpiration of the shallow-rooted grasses. The tree–grass competition for limited soil water in the savannas benefited soil evaporation, which might increase plant mortality and fire risk.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abatzoglou, J.T.; Williams, A.P.; Boschetti, L.; Zubkova, M.; Kolden, C.A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 2018, 24, 5164–5175. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Env. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Field, C.B.; Lobell, D.B.; Peters, H.A.; Chiariello, N.R. Feedbacks of terrestrial ecosystems to climate change. Annu. Rev. Env. Resour. 2007, 32, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeo. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.; Genet, H.; McGuire, A.D.; Hu, F.S. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests. Nat. Clim. Change 2016, 6, 79–82. [Google Scholar] [CrossRef]
- Balshi, M.S.; McGuire, A.D.; Zhuang, Q.; Melillo, J.; Kicklighter, D.W.; Kasischke, E.; Wirth, C.; Flannigan, M.; Harden, J.; Clein, J.S.; et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res. Biogeo. 2007, 112, G02029. [Google Scholar] [CrossRef] [Green Version]
- Jensen, D.; Reager, J.T.; Zajic, B.; Rousseau, N.; Rodell, M.; Hinkley, E. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett. 2018, 13, 014021. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef]
- Pivovaroff, A.L.; Emery, N.; Sharifi, M.R.; Witter, M.; Keeley, J.E.; Rundel, P.W. The effect of ecophysiological traits on live fuel moisture content. Fire 2019, 2, 28. [Google Scholar] [CrossRef]
- Prieto, I.; Armas, C.; Pugnaire, F.I. Water release through plant roots: New insights into its consequences at the plant and ecosystem level. New Phytol. 2012, 193, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Fu, C.; Wu, H.; Zhang, L. Influence of the dry event induced hydraulic redistribution on water and carbon cycles at five AsiaFlux forest sites: A site study combining measurements and modeling. J. Hydrol. 2020, 587, 124979. [Google Scholar] [CrossRef]
- Fu, C.; Wang, G.; Goulden, M.L.; Scott, R.L.; Bible, K.; Cardon, Z.G. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites. Hydrol. Earth Syst. Sci. 2016, 20, 2001–2018. [Google Scholar] [CrossRef] [Green Version]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Scarff, F.R.; Lenz, T.; Richards, A.E.; Zanne, A.E.; Wright, I.J.; Westoby, M. Effects of plant hydraulic traits on the flammability of live fine canopy fuels. Funct. Ecol. 2021, 35, 835–846. [Google Scholar] [CrossRef]
- Sperry, J.S.; Venturas, M.D.; Anderegg, W.R.L.; Meccano, M.; Mackay, D.S.; Wang, Y.; Love, D.M. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ. 2017, 40, 816–830. [Google Scholar] [CrossRef]
- Xu, X.; Medvigy, D.; Powers, J.S.; Becknell, J.M.; Guan, K. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 2016, 212, 80–95. [Google Scholar] [CrossRef]
- Kennedy, D.; Swenson, S.; Oleson, K.W.; Lawrence, D.M.; Fisher, R.; Lola da Costa, A.C.; Gentine, P. Implementing Plant Hydraulics in the Community Land Model, Version 5. J. Adv. Model. Earth Syst. 2019, 11, 485–513. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Lu, X.; Wei, Z.; Zhu, S.; Wei, N.; Zhang, S.; Yuan, H.; Shangguan, W.; Liu, S.; Zhang, S.; et al. New representation of plant hydraulics improves the estimates of transpiration in land surface model. Forests 2021, 12, 722. [Google Scholar] [CrossRef]
- Wu, H.; Fu, C.; Wu, H.; Zhang, L. Plant hydraulic stress strategy improves model predictions of the response of gross primary productivity to drought across China. J. Geophys. Res. Atmos. 2020, 125, e2020JD033476. [Google Scholar] [CrossRef]
- Li, F.; Martin, M.V.; Andreae, M.O.; Arneth, A.; Hantson, S.; Kaiser, J.W.; Lasslop, G.; Yue, C.; Bachelet, D.; Forrest, M.; et al. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 2019, 19, 12545–12567. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.; Ichii, K.; Patra, P.K.; Canadell, J.G.; Poulter, B.; Sitch, S.; Calle, L.; Liu, Y.Y.; van Dijk, A.I.J.M.; Saeki, T.; et al. Land use change and El Nino-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nat. Commun. 2018, 9, 1154. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; van Kampenhout, L.; Kennedy, D.; et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef] [Green Version]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E., Jr.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. Roy. Meteor. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, K.; Kanamitsu, M. Dynamical global downscaling of global reanalysis. Mon. Weather Rev. 2008, 136, 2983–2998. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Lawrence, D.M. Role of Fire in the Global Land Water Budget during the Twentieth Century due to Changing Ecosystems. J. Clim. 2017, 30, 1893–1908. [Google Scholar] [CrossRef]
- van der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Bronnimann, S.; Schurer, A.; Cowan, T. The early 20th century warming: Anomalies, causes, and consequences. Wires. Clim. Change 2018, 9, e522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csiszar, I.; Denis, L.; Giglio, L.; Justice, C.O.; Hewson, J. Global fire activity from two years of MODIS data. Int. J. Wildland Fire 2005, 14, 117–130. [Google Scholar] [CrossRef]
- Richards, J.H.; Caldwell, M.M. Hydraulic lift—Substantial nocturnal water transport between soil layers by artemisia-tridentata roots. Oecologia 1987, 73, 486–489. [Google Scholar] [CrossRef]
- Burgess, S.S.O.; Adams, M.A.; Turner, N.C.; Ong, C.K. The redistribution of soil water by tree root systems. Oecologia 1998, 115, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Smart, D.R.; Carlisle, E.; Goebel, M.; Nunez, B.A. Transverse hydraulic redistribution by a grapevine. Plant Cell Environ. 2005, 28, 157–166. [Google Scholar] [CrossRef]
- Ryel, R.J.; Caldwell, M.M.; Yoder, C.K.; Or, D.; Leffler, A.J. Hydraulic redistribution in a stand of Artemisia tridentata: Evaluation of benefits to transpiration assessed with a simulation model. Oecologia 2002, 130, 173–184. [Google Scholar] [CrossRef]
- Amenu, G.G.; Kumar, P. A model for hydraulic redistribution incorporating coupled soil-root moisture transport. Hydrol. Earth Syst. Sci. 2008, 12, 55–74. [Google Scholar] [CrossRef] [Green Version]
- Martin-StPaul, N.; Delzon, S.; Cochard, H. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 2017, 20, 1437–1447. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Konings, A.G.; Gentine, P. Global variations in ecosystem-scale isohydricity. Global Change Biol. 2017, 23, 891–905. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.S.; Dawson, T.E.; Burgess, S.S.O.; Nepstad, D.C. Hydraulic redistribution in three Amazonian trees. Oecologia 2005, 145, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, M.; Staver, C. Droughts and the ecological future of tropical savanna vegetation. J. Ecol. 2019, 107, 1531–1549. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Fu, C.; Zhang, L.; Wu, H. Elevated Wildfire and Ecosystem Carbon Loss Risks Due to Plant Hydraulic Stress Functions: A Global Modeling Perspective. Fire 2022, 5, 187. https://doi.org/10.3390/fire5060187
Wu H, Fu C, Zhang L, Wu H. Elevated Wildfire and Ecosystem Carbon Loss Risks Due to Plant Hydraulic Stress Functions: A Global Modeling Perspective. Fire. 2022; 5(6):187. https://doi.org/10.3390/fire5060187
Chicago/Turabian StyleWu, Haohao, Congsheng Fu, Lingling Zhang, and Huawu Wu. 2022. "Elevated Wildfire and Ecosystem Carbon Loss Risks Due to Plant Hydraulic Stress Functions: A Global Modeling Perspective" Fire 5, no. 6: 187. https://doi.org/10.3390/fire5060187
APA StyleWu, H., Fu, C., Zhang, L., & Wu, H. (2022). Elevated Wildfire and Ecosystem Carbon Loss Risks Due to Plant Hydraulic Stress Functions: A Global Modeling Perspective. Fire, 5(6), 187. https://doi.org/10.3390/fire5060187