Nanotechnology in Residential Building Materials for Better Fire Protection and Life Safety Outcomes
Abstract
:1. Introduction
2. Methods
3. Nanomaterials in Building Construction
3.1. Concrete
3.2. Windows and Glass
3.3. Insulation Materials
3.4. Steel
3.5. Wood
3.6. Coatings and Composites
4. Toxicological Hazards Associated with Nanomaterials Used in Construction
4.1. Carbon Nanotubes (CNTs)
4.2. Graphene
4.3. Carbon Black
4.4. Silver
4.5. Titanium Dioxide
4.6. Zinc Oxide, Iron Oxide, and Copper Oxide
4.7. Silicon Dioxide (Silica)
5. A Way Forward in Assessing Viability of Fire-Resistant Nanotechnology in Residential Construction
5.1. Sustainability: Environmental and Economic Considerations for Nanotechnology in Building Materials
5.2. Sustainability: Safety and Environmental Health, Both Product Safety and Minimization of Toxicological Hazards and Environmental Impacts of Nanotechnology in Building Materials
5.2.1. Assessing Building Material for Fire Safety
5.2.2. Assessing Building Material for Environmental and Toxicological Hazards
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olawoyin, R. Nanotechnology: The future of fire safety. Saf. Sci. 2018, 110, 214–221. [Google Scholar] [CrossRef]
- Corbett, G.P.; Brannigan, F.L. Brannigan’s Building Construction for the Fire Service Includes Navigate Advantage Access; Jones & Bartlett Learning: Burlington, MA, USA, 2019. [Google Scholar]
- Ahrens, M.; Maheshwai, R. Home Structure Fires; National Fire Protection Agency: Quincy, MA, USA, 2021. [Google Scholar]
- U.S. Fire Administration. Statistics. Available online: https://www.usfa.fema.gov/statistics (accessed on 3 September 2022).
- Brushlinsky, N.; Sokolov, S.; Wagner, P.; Messerschmidt, B. The CTIF World Fire Statistics Report № 27. CTIF International Association of Fire and Rescue Services Center of Fire Statistics. 2022. Available online: https://www.ctif.org/news/ctif-world-fire-statistics-report-no-27-now-available-download#:~:text=The%20current%20report%20%E2%84%96%2027,since%20the%20start%20in%202005 (accessed on 3 September 2022).
- National Fire Protection Agency. NFPA 101: Life Safety Code, 2021 ed.; National Fire Protection Agency: Quincy, MA, USA, 2021. [Google Scholar]
- Png, Z.M.; Soo, X.Y.D.; Chua, M.H.; Ong, P.J.; Xu, J.; Zhu, Q. Triazine derivatives as organic phase change materials with inherently low flammability. J. Mater. Chem. A 2022, 10, 3633–3641. [Google Scholar] [CrossRef]
- Yang, Y.; Haurie, L.; Wang, D.-Y. Bio-based materials for fire-retardant application in construction products: A review. J. Therm. Anal. Calorim. 2021, 147, 1–20. [Google Scholar] [CrossRef]
- Poh, T.Y.; Ali, N.; Mac Aogáin, M.; Kathawala, M.H.; Setyawati, M.I.; Ng, K.W.; Chotirmall, S.H. Inhaled nanomaterials and the respiratory microbiome: Clinical, immunological and toxicological perspectives. Part. Fibre Toxicol. 2018, 15, 46. [Google Scholar] [CrossRef] [Green Version]
- Gibb, A.; Jones, W.; Goodier, C.; Bust, P.; Song, M.; Jin, J. Nanotechnology in construction and demolition: What we know, what we don’t. Constr. Res. Innov. 2018, 9, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Jones, W.; Gibb, A.; Goodier, C.; Bust, P.; Song, M.; Jin, J. Nanomaterials in construction–what is being used, and where? Proc. Inst. Civ. Eng. Constr. Mater. 2019, 172, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Gibb, A.; Jones, W.; Goodier, C.; Bust, P.; Song, M.; Jin, J. Nanotechnology in Construction and Demolition: What We Know, What We Don’t. Report Submitted to the IOSH Research Committee; IOSH: Wigston, UK, 2017. [Google Scholar]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Abdul Kadir, A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Li, W.; Wang, K.; Han, B.; Sheng, D.; Shah, S.P. Investigation on physicochemical and piezoresistive properties of smart MWCNT/cementitious composite exposed to elevated temperatures. Cem. Concr. Compos. 2020, 112, 103675. [Google Scholar] [CrossRef]
- Nalon, G.H.; Lopes Ribeiro, J.C.; Pedroti, L.G.; Duarte de Araújo, E.N.; Franco de Carvalho, J.M.; Soares de Lima, G.E.; de Moura Guimarães, L. Residual piezoresistive properties of mortars containing carbon nanomaterials exposed to high temperatures. Cem. Concr. Compos. 2021, 121, 104104. [Google Scholar] [CrossRef]
- Jang, D.; Yoon, H.; Seo, J.; Yang, B. Effects of exposure temperature on the piezoresistive sensing performances of MWCNT-embedded cementitious sensor. J. Build. Eng. 2022, 47, 103816. [Google Scholar] [CrossRef]
- Ming, X.; Cao, M.; Lv, X.; Yin, H.; Li, L.; Liu, Z. Effects of high temperature and post-fire-curing on compressive strength and microstructure of calcium carbonate whisker-fly ash-cement system. Constr. Build. Mater. 2020, 244, 118333. [Google Scholar] [CrossRef]
- Nalon, G.H.; Ribeiro, J.C.L.; de Araújo, E.N.D.; Pedroti, L.G.; de Carvalho, J.M.F.; Santos, R.F.; de Oliveira, D.S. Effects of post-fire curing on the mechanical properties of cement composites containing carbon black nanoparticles and multi-walled carbon nanotubes. Constr. Build. Mater. 2021, 310, 125118. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L. Progress in silica aerogel-containing materials for buildings’ thermal insulation. Constr. Build. Mater. 2021, 286, 122815. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Constr. Build. Mater. 2011, 25, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Han, E.; Ke, W. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating. Surf. Coat. Technol. 2006, 200, 5706–5716. [Google Scholar] [CrossRef]
- Wang, Z.; Han, E.; Ke, W. An investigation into fire protection and water resistance of intumescent nano-coatings. Surf. Coat. Technol. 2006, 201, 1528–1535. [Google Scholar] [CrossRef]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Vakhitova, L. Fire retardant nanocoating for wood protection. In Nanotechnology in Eco-Efficient Construction; Elsevier: Amsterdam, The Netherlands, 2019; pp. 361–391. [Google Scholar]
- Taghiyari, H.R. Nanotechnology in wood and wood-composite materials. J. Nanomater. Mol. Nanotechnol. 2014, 3. [Google Scholar] [CrossRef]
- Östman, B.A.L.; Tsantaridis, L.D. Durability of the reaction to fire performance of fire-retardant-treated wood products in exterior applications—A 10-year report. Int. Wood Prod. J. 2017, 8, 94–100. [Google Scholar] [CrossRef]
- Carosio, F.; Cuttica, F.; Medina, L.; Berglund, L.A. Clay nanopaper as multifunctional brick and mortar fire protection coating—Wood case study. Mater. Des. 2016, 93, 357–363. [Google Scholar] [CrossRef]
- Fu, Q.; Medina, L.; Li, Y.; Carosio, F.; Hajian, A.; Berglund, L.A. Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl. Mater. Interfaces 2017, 9, 36154–36163. [Google Scholar] [CrossRef]
- Garba, B. Effect of zinc borate as flame retardant formulation on some tropical woods. Polym. Degrad. Stab. 1999, 64, 517–522. [Google Scholar] [CrossRef]
- Gu, J.-W.; Zhang, G.-C.; Dong, S.-L.; Zhang, Q.-Y.; Kong, J. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf. Coat. Technol. 2007, 201, 7835–7841. [Google Scholar] [CrossRef]
- Guo, B.; Liu, Y.; Zhang, Q.; Wang, F.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. Efficient flame-retardant and smoke-suppression properties of Mg–Al-layered double-hydroxide nanostructures on wood substrate. ACS Appl. Mater. Interfaces 2017, 9, 23039–23047. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yao, Q.; Wang, C.; Ma, Z.; Sun, Q.; Fan, B.; Jin, C.; Chen, Y. Hydrothermal synthesis of nanooctahedra MnFe2O4 onto the wood surface with soft magnetism, fire resistance and electromagnetic wave absorption. Nanomaterials 2017, 7, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellusci, M.; La Barbera, A.; Padella, F.; Mancuso, M.; Pasquo, A.; Grollino, M.G.; Leter, G.; Nardi, E.; Cremisini, C.; Giardullo, P. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int. J. Nanomed. 2014, 9, 1919. [Google Scholar]
- Kolibaba, T.J.; Grunlan, J.C. Environmentally benign polyelectrolyte complex that renders wood flame retardant and mechanically strengthened. Macromol. Mater. Eng. 2019, 304, 1900179. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, G. Influence of nano-boron nitride on fire protection of waterborne fire-resistive coatings. J. Coat. Technol. Res. 2014, 11, 265–272. [Google Scholar] [CrossRef]
- Sayes, C.M.; Rothrock, G.D.; Norton, C.A.; West, C.S. Life cycle considerations for engineered nanomaterials: A case study for nano-enabled coatings on drywall. Proc. NSTI-Nanotech 2013, 3, 742. [Google Scholar]
- Das, B.; Mitra, A. Nanomaterials for construction engineering—A review. Int. J. Mater. Mech. Manuf. 2014, 2, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Bakand, S.; Hayes, A.; Dechsakulthorn, F. Nanoparticles: A review of particle toxicology following inhalation exposure. Inhal. Toxicol. 2012, 24, 125–135. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Popielarczyk, T.; Sowa, T. Nanotechnology in Fire Protection—Application and Requirements. Materials 2021, 14, 7849. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Labor, Occupational Safety and Health Administration. OSHA Fact Sheet Working Safely with Nanomaterials. Available online: https://www.osha.gov/sites/default/files/publications/OSHA_FS-3634.pdf (accessed on 8 September 2022).
- Baron, M. Safe handling of nano materials and other advanced materials at workplaces. Proj. Number F 2015, 2268, 52. [Google Scholar]
- Donaldson, K.; Poland, C.A. Nanotoxicity: Challenging the myth of nano-specific toxicity. Curr. Opin. Biotechnol. 2013, 24, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Krug, H.F. Nanosafety research—Are we on the right track? Angew. Chem. Int. Ed. 2014, 53, 12304–12319. [Google Scholar] [CrossRef] [Green Version]
- Savolainen, K.; Alenius, H.; Norppa, H.; Pylkkänen, L.; Tuomi, T.; Kasper, G. Risk assessment of engineered nanomaterials and nanotechnologies—A review. Toxicology 2010, 269, 92–104. [Google Scholar] [CrossRef]
- Jayapalan, A.R.; Lee, B.Y.; Kurtis, K.E. Can nanotechnology be ‘green’? Comparing efficacy of nano and microparticles in cementitious materials. Cem. Concr. Compos. 2013, 36, 16–24. [Google Scholar] [CrossRef]
- Sackey, S.; Lee, D.-E.; Kim, B.-S. Life cycle assessment for the production phase of nano-silica-modified asphalt mixtures. Appl. Sci. 2019, 9, 1315. [Google Scholar] [CrossRef] [Green Version]
- Hischier, R.; Walser, T. Life cycle assessment of engineered nanomaterials: State of the art and strategies to overcome existing gaps. Sci. Total Environ. 2012, 425, 271–282. [Google Scholar] [CrossRef]
- Helland, A.; Wick, P.; Koehler, A.; Schmid, K.; Som, C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 2007, 115, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Moller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef]
- Braakhuis, H.M.; Park, M.V.; Gosens, I.; De Jong, W.H.; Cassee, F.R. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 2014, 11, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016, 13, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali-Boucetta, H.; Bitounis, D.; Raveendran-Nair, R.; Servant, A.; Van den Bossche, J.; Kostarelos, K. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv. Healthc. Mater. 2013, 2, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Yang, S.-T.; Liu, J.-H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011, 200, 201–210. [Google Scholar] [CrossRef]
- Sahu, A.; Choi, W.I.; Tae, G. A stimuli-sensitive injectable graphene oxide composite hydrogel. Chem. Commun. 2012, 48, 5820–5822. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 2012, 33, 8017–8025. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.M.; Lalwani, G.; Zhang, K.; Yang, J.Y.; Neville, K.; Sitharaman, B. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials 2013, 34, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Wen, K.P.; Chen, Y.C.; Chuang, C.H.; Chang, H.Y.; Lee, C.Y.; Tai, N.H. Accumulation and toxicity of intravenously-injected functionalized graphene oxide in mice. J. Appl. Toxicol. 2015, 35, 1211–1218. [Google Scholar] [CrossRef]
- Lindner, K.; Ströbele, M.; Schlick, S.; Webering, S.; Jenckel, A.; Kopf, J.; Danov, O.; Sewald, K.; Buj, C.; Creutzenberg, O.; et al. Biological effects of carbon black nanoparticles are changed by surface coating with polycyclic aromatic hydrocarbons. Part. Fibre Toxicol. 2017, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, K.; Czajka, M.; Matysiak-Kucharek, M.; Fal, B.; Drop, B.; Męczyńska-Wielgosz, S.; Sikorska, K.; Kruszewski, M.; Kapka-Skrzypczak, L. Toxicity of metallic nanoparticles in the central nervous system. Nanotechnol. Rev. 2019, 8, 175–200. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Yi-Yi, W.; Huang, J.; Chun-Yuan, C.; Zhen-Xing, W.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Occupational Safety and Health. Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide. 2011. Available online: https://www.cdc.gov/niosh/docs/2011-160/default.html (accessed on 10 September 2022).
- Liu, J.; Kang, Y.; Yin, S.; Song, B.; Wei, L.; Chen, L.; Shao, L. Zinc oxide nanoparticles induce toxic responses in human neuroblastoma SHSY5Y cells in a size-dependent manner. Int. J. Nanomed. 2017, 12, 8085–8099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ickrath, P.; Wagner, M.; Scherzad, A.; Gehrke, T.; Burghartz, M.; Hagen, R.; Radeloff, K.; Kleinsasser, N.; Hackenberg, S. Time-dependent toxic and genotoxic effects of zinc oxide nanoparticles after long-term and repetitive exposure to human mesenchymal stem cells. Int. J. Environ. Res. Public Health 2017, 14, 1590. [Google Scholar] [CrossRef] [PubMed]
- Nocentini, K.; Achard, P.; Biwole, P.; Stipetic, M. Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation. Energy Build. 2018, 158, 14–22. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011, 43, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Vareda, J.P.; García-González, C.A.; Valente, A.J.; Simón-Vázquez, R.; Stipetic, M.; Durães, L. Insights on toxicity, safe handling and disposal of silica aerogels and amorphous nanoparticles. Environ. Sci. Nano 2021, 8, 1177–1195. [Google Scholar] [CrossRef]
- Lin, W.; Huang, Y.-W.; Zhou, X.-D.; Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 2006, 217, 252–259. [Google Scholar] [CrossRef]
- Landsiedel, R. Nanotechnology—Safety first. Chem. Ind. 2014, 78, 28. [Google Scholar] [CrossRef]
- Schulte, P.A.; Geraci, C.L.; Murashov, V.; Kuempel, E.D.; Zumwalde, R.D.; Castranova, V.; Hoover, M.D.; Hodson, L.; Martinez, K.F. Occupational safety and health criteria for responsible development of nanotechnology. J. Nanopart. Res. 2013, 16, 2153. [Google Scholar] [CrossRef] [Green Version]
- Berekaa, M.M. Nanotechnology in food industry; advances in food processing, packaging and food safety. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 345–357. [Google Scholar]
- He, X.; Hwang, H.-M. Nanotechnology in food science: Functionality, applicability, and safety assessment. J. Food Drug Anal. 2016, 24, 671–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM E119-20; Standard Test Methods for Fire Tests of Building Construction and Materials. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Underwriters Laboratory. Fire Tests of Building Construction and Materials (UL 263); Underwriters Laboratory: Northbrook, IL, USA, 2011. [Google Scholar]
- ASTM D4761-19; Standard Test Methods for Mechanical Properties of Lumber and Wood-Based Structural Materials. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Laboratory, U. Standard for Safety for Durability of Fire Resistive Coatings and Materials (UL 2431); Underwriters Laboratory: Northbrook, IL, USA, 2014. [Google Scholar]
- ASTM E1354-22a; Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Kühnel, D.; Marquardt, C.; Nau, K.; Krug, H.F.; Paul, F.; Steinbach, C. Environmental benefits and concerns on safety: Communicating latest results on nanotechnology safety research—The project DaNa2.0. Environ. Sci. Pollut. Res. 2017, 24, 11120–11125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aznar Mollá, F.; Fito-López, C.; Heredia Alvaro, J.A.; Huertas-López, F. New tools to support the risk assessment process of nanomaterials in the insurance sector. Int. J. Environ. Res. Public Health 2021, 18, 6985. [Google Scholar] [CrossRef] [PubMed]
- American Conference of Governmental Industrial Hygienists (ACGIH). Threshold Limit Values TLV® and Biological Exposure Indices BEI®; ACGIH: Cincinnati, OH, USA, 2021. [Google Scholar]
- Gorsuch, J.; Link, A.N. Nanotechnology: A call for policy research. Ann. Sci. Technol. Policy 2018, 2, 307–463. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mullins-Jaime, C.; Smith, T.D. Nanotechnology in Residential Building Materials for Better Fire Protection and Life Safety Outcomes. Fire 2022, 5, 174. https://doi.org/10.3390/fire5060174
Mullins-Jaime C, Smith TD. Nanotechnology in Residential Building Materials for Better Fire Protection and Life Safety Outcomes. Fire. 2022; 5(6):174. https://doi.org/10.3390/fire5060174
Chicago/Turabian StyleMullins-Jaime, Charmaine, and Todd D. Smith. 2022. "Nanotechnology in Residential Building Materials for Better Fire Protection and Life Safety Outcomes" Fire 5, no. 6: 174. https://doi.org/10.3390/fire5060174
APA StyleMullins-Jaime, C., & Smith, T. D. (2022). Nanotechnology in Residential Building Materials for Better Fire Protection and Life Safety Outcomes. Fire, 5(6), 174. https://doi.org/10.3390/fire5060174