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Abstract: Residential fires are the main source of fire deaths and injuries both in the United States
and globally. As such, better fire-resistant building materials are needed to bolster fire protection
and to enhance life safety. This is during a time when fewer materials are being used to construct
homes. Nanotechnology may be a solution if it can overcome its current barriers to widespread
adoption in residential construction, namely economy, sustainability, and safety. This research effort
includes a critical examination of the literature from a safety perspective to address fire deaths
and prevent personal injuries and illnesses by targeting fortification of residential construction
building materials via the use of nanotechnology. The paper reviews nanotechnology for building
materials by material type, known toxicity of various nanomaterials used in construction, and a
discussion on a way forward through assessing materials by their ability to satisfy the requirements
of sustainability, economy, and safety- both as a material designed to reduce fire injury and death
and from a toxicological hazard perspective.
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1. Introduction

With global trends of population growth, high cost of resources and a growing ne-
cessity for sustainably sourced building materials, modern buildings are often made with
fewer resources, designed to be lighter, stronger, and more durable [1]. However, without
additional treatments, this can also mean they are less fire-resistant [2], particularly, if those
materials are not fortified to meet fire resistance requirements such as those set out by the
National Fire Protection Agency (NFPA) or in local, national, or international building
codes. Fire-resistant materials are especially important in residential construction from a life
safety perspective since residential fires are the leading source of fire deaths in the United
States [3,4] and around the world [5]. The U.S. Fire Administration’s US Fire Statistics from
the years 2010–2019 indicate while fire incidents are down 3.2% from 2010, the incidence of
fire deaths has increased by 24. 1%. Residential fires were the second most frequent type of
fire, next to outdoor fires, and the leading property type for fire deaths (72.2%), fire injuries
(76.4%), and fire dollar loss (46.4%) in 2019 in the United States [4]. This trend is echoed
globally where, in 2020, residential fires were also the leading property type for fire deaths
(82.7%) and injuries (60.6%) [5].

While fire prevention is a primary mechanism of fire death prevention, prompt and
effective alarm, alarm response and safe egress are critical components of life safety [6].
Fire resistance in building materials is a growing concern as it is crucial for fire response
and egress. Variables such as fire resistance, material durability, structural strength, smoke
release, and toxicological hazards in building materials are critical in protecting inhabitants
and allowing them a better chance of escape and survival in the event of a fire. However,
many manufacturers design products to make the most profits, including using lighter,
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thinner materials, regardless of their flammability [1]. In addition to use of lighter thinner,
and less fire-resistant materials, certain flammable materials are used in building construc-
tion such as outside heat insulation panels and phase change materials used for cooling
buildings, which is leading many researchers to find innovative solutions to this growing
problem. Examples of such progress is use of triazine-based compounds to produce intrin-
sically flame retardant phase change materials [7] and use of biobased materials to impart
fire retardant properties [8].

With emerging global trends, modern building materials in residential construction
must meet a triad of requisites that fall under the umbrella of “sustainability” to be widely
adopted as practical options; they will have to be economical, sustainable to the environ-
ment, and safe. Use of nanotechnology in building materials may be an attractive solution
to meet these demands. Nanotechnology is the manipulation of materials on the molecular
and atomic scale. Nanomaterials have one or more dimensions in the 1–100 nm range [9].
Their nanoscopic size allows for coatings and material composites that are stronger, less
porous, and lightweight.

Nanomaterials can be used in building materials such as coatings, steel, clay compos-
ites, concrete, insulation, and windows. While nanomaterial use in building materials is not
widespread [10,11], demand is expected to grow due to global economic and population
growth driving demand for building materials [1]. While the application of various nan-
otechnology in building materials under fire conditions has been reviewed previously in
the literature, this paper takes a public safety perspective to address fire deaths and prevent
personal injuries and illnesses. The following is a narrative review of nanomaterials in
building construction, their known toxicity, and a discussion of a way forward for safe
and pragmatic adoption of nanomaterials in residential construction for better life safety
outcomes and fire protection.

2. Methods

Databases Google Scholar as a primary search engine and EBSCOhost, JSTOR and the
Indiana State University Library as secondary search engines were used with no restrictions
on country or publication date. Search terms included the following: nanotechnology, nano-
materials AND construction, construction materials, building materials; nanotechnology,
nanomaterials AND fire protection. Additional search terms were used for specific construc-
tion nanomaterial and fire protection as follows: nanomaterial concrete, nanomaterial steel,
nanomaterial wood, nanomaterial insulation, nanomaterial coatings AND fire protection.

Health hazards of nanomaterial in construction were found with the following search
terms: nanotechnology building materials, nanomaterial construction AND toxicological
hazards, health effects, health hazards.

Additional search terms were used for toxicological hazards associated with nanoma-
terials as follows: nanomaterial carbon nanotubes, nanomaterial graphene, nanomaterial
carbon black, nanomaterial silver, nanomaterial titanium dioxide, nanomaterial zinc oxide,
nanomaterial copper oxide, nanomaterial zinc oxide, nanomaterial iron oxide, nanomaterial
copper oxide, nanomaterial silica AND toxicological hazards. Nanomaterial toxicological
exposure assessment methods were found with the following search terms: toxicological
hazard assessment methods; risk assessment methods, exposure assessment methods AND
nanotechnology; nanomaterials. Relevant articles were also found through backward
search by scanning the references of found articles.

Articles were included if they were written in the English language and if they were
relevant to the topics reviewed in this paper namely: nanomaterial use in building construc-
tion, nanomaterial use for fire protection in building construction, toxicological hazards
of nanomaterial used in building construction, and hazard assessment of nanomaterials.
Additional literature on toxicological hazards associated with specific nanomaterials were
included if those materials were also used in construction.
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3. Nanomaterials in Building Construction
3.1. Concrete

Silica, titanium dioxide, iron oxide, and carbon nanotubes are common nanomaterials
added to concrete to increase density, strength and in turn, fire resistance [11–13]. Silica
particles are added to concrete to fill the voids between cement grains making the concrete
denser and less porous. This results in increased mechanical strength [13]. There are
two types of nanomaterials used in concrete, silica fume and nano-silica—also known as
“fumed silica” [10]. Nanosized titanium dioxide can be used in concrete for self-cleaning
and removal of toxins [12]. Use of iron oxide nanoparticles can improve compressive
strength and abrasion resistance [13]. Carbon nanotubes (CNTs) in concrete have been
identified as having the potential to produce concrete that is strong, electrically conductive,
and self-healing [12]. A novel and promising development in nanotechnology in concrete
their ability to impart self-sensing properties using carbon nanotubes or carbon black
nanoparticles that have implications for better assessing a building’s structural safety
during or after a fire [14–16], as is the use of nanomaterials that aid in post-fire curing of
concrete that improve capability to recover strength post-fire event [17,18].

3.2. Windows and Glass

Nanomaterial film added to glass can provide insulation, self-cleaning and fire-
resistant properties [11,12]. Fire safety glass is another type of nanomodified material,
using either silica fume or nano-silica, that can provide high levels of fire protection by
creating an intumescent layer between two plates of glass [11,12]. During a fire, the intu-
mescent layer expands and turns opaque, providing a high level of integrity and insulation.
This type of glass has been available for over 30 years, but mainly where a high level of
thermal insulation is required such as escape routes [11].

3.3. Insulation Materials

Silica-based aerogels can be used in insulation blankets, translucent windows, or
vacuum-insulated panels and are highly effective thermal insulants [10]. Production of
these materials is expensive and not widely used [11,12]. Poor mechanical strength [19]
is another barrier to their widespread adoption. However, costs could be reduced with
improved production methods and scale as demand for energy-efficient construction
materials increases.

While use of nanotechnology as insulants are dependent on their ability to impart low
thermal conductivity of the building material, certain uses of nanomaterial in construction
can actually increase thermal conductivity which may be problematic for fire protection
unless the material composite also has fire resistant properties.

3.4. Steel

Nanomaterial can be used in steel as a nano-coating or incorporated into its fabrication.
Nanocomposite polymers and coatings applied to the steel structures can reduce the heat
released and improve fire retardancy [20]. By refining materials down to the nanoscale and
driving out impurities such as carbides, the steel becomes stronger, more resistant to corro-
sion, and possesses a tensile strength 100 times that of steel [20]. Manufacturers claim using
nanomaterial in steel is as effective as stainless steel but cheaper and more effective than
more traditional methods of protecting steel against corrosion such as epoxy coatings [10].

When steel structures are exposed to high temperatures, their strength and rigidity are
at risk [2]. To protect occupants and reduce loss, structural steelwork usually requires fire
protective materials such as cement-based sprays, boards, batt materials, and intumescent
coatings, however, steel coatings tend to lose durability [21]. Nanomaterials on structural
steel can provide excellent fire resistance [21,22]. In a fire, a structure may collapse if
the critical temperature is reached. During a fire, improved steel integrity would allow
prolonged time before collapse, giving occupants more time to escape, and can ensure the
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integrity of the structure during and after a fire, making it safer for rescue workers and
leaving less property damage [1].

3.5. Wood

Wood is one of the most widely used building materials and the most common
residential construction material used in North America. Timber as a building material has
good mechanical properties and can be an indefinite renewable resource if forest resources
are properly managed, and can serve to store atmospheric carbon, potentially for long
periods of time, if the life of timber products is extended [23]. However, wood is a less
resilient and fire-resistant building material than non-renewable materials such as concrete
and steel.

Untreated wood is highly combustible. Building codes limit wood use mainly to resi-
dential construction due to its low fire resistance, unless treated with fire-resistant coatings.
Fire resistance can be improved with traditional chemical fire retardants. However, tradi-
tional fire-resistant coatings can produce toxic gas [24]. The chemicals are associated with
environmental and health risks and are less effective than nanomaterial in wood composite
or by use of nano-coatings made with nanoclay and oxides SiO2 and TiO2 [25]. Further,
most fire-retardant coatings have poor resistance to external factors and weathering [26],
thus better technologies are needed. Vakhitova’s review of fire-resistant coating for wood
found the APP/PER/MA intumescent system is the most reliable and economically viable
and suggests it could be enhanced with synthesis of nanoclay, nanostructured carbon, or
amorphous silicon dioxide [24].

Researchers are working on nanotechnology wood coatings that can provide fire-
resistant properties, while posing benign health risks and have created nano-coatings that
have imparted fire-resistant properties on wood [27–31]. One interesting development in
wood construction fire protection is hydrothermal synthesis of nanooctahedra MnFe2O4
onto the wood surface that creates a fire-resistant and electromagnetic wave-absorbing
coating [32]. This might be a viable option from a safety perspective since manganese
ferrite is already used in nanoparticle-based drugs, it is soluble, so it will not remain in
the respiratory tract if inhaled, and there is evidence that the body can easily process and
remove it without organ damage [33].

Another interesting development is the use of an environmentally benign polyelec-
trolyte complex that, when coated on wood, provides fire resistance, self-extinguishing
behavior, increased time to ignition, and reduced peak heat release rate [34]. This coating
also increased the strength of the wood. These potential new construction material tech-
nologies could provide vast societal benefits by providing better fire resistance for wood
construction, which can prevent injuries and fatalities, and minimize economic loss. In
sum, nanomaterials in wood construction can prove a superior and sustainable source of
fire-resistant building materials but more research is needed to better understand lifecycle
and toxicological effects.

3.6. Coatings and Composites

Nanocoatings can be applied to various building materials. When applied to paint
and drywall, they form an intumescent layer. When exposed to heat, the intumescent layer
creates a char. This acts as a fire retardant because char is a poor conductor, offering better
fire protection for the material behind it.

Nano-sized Boron Nitride (BN) and micron-sized BN used as fillers in fire-resistive
coatings were found to be effective in enhancing fire-resistive coating’s thermal stability,
especially under high temperature [35]. In a comparison between organic and inorganic
intumescent coatings, Wang et al. [22] found organic intumescent coatings have a good
expanding effect and char structure, but they generate solvent toxic gas and smoke in a
fire. Inorganic intumescent coatings such as salt silicate coatings do not create organic
solvent in application and have little toxic gas emissions and smoke when heated. However,
inorganic intumescent coatings are vulnerable to moisture and give fire protection only
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at a low temperature [19]. There is still much research needed to understand the product
lifecycle and toxicological effects of nanocoatings [36]. However, the fire safety implications
of nano-coating materials are enormous.

Nanocomposites such as nanoclay can be used to fortify building materials and
aid in fire resitance. Nanoclays can be used as coatings and as composites in building
material. Benefits of nanoclays are increased density and strength of building materials [37].
Nanoclays can be naturally occurring or synthetic, formed with layers of silicate-based
materials, and can be used in polymers to improve functionality in various ways, but there
are currently no products available for use in construction [10]. Nanoclay brick has vast
potential benefits in fire protection if introduced into the construction material market [12].

4. Toxicological Hazards Associated with Nanomaterials Used in Construction

Hazards of nanoparticles are dependent on size, shape, aggregation, agglomeration,
solubility, electrical charge, and toxicity [10]. Nanoparticles are primarily absorbed through
the respiratory system [38]. Particles smaller than 10 nm are retained in the respiratory
tract whereas particles with dimensions 10–100 nm are deposited in the bronchioles and
alveoli [39]. Nanomaterials can also be absorbed through skin contact and ingestion [40].

As particles get smaller, their surface area to mass ratio increases. This is associ-
ated with an increase in their reactivity. The shape of the particle plays a critical role.
Fiber-shaped particles such as those found in carbon nanotubes (CNTs) are a particular
concern [10]. Because of their microscopic size, they can travel to the deepest regions of
the lungs and, because of their long shape, like asbestos, they can become trapped in the
lower respiratory tract [11]. Airborne nanoparticles can enter the bloodstream 15 min after
inhalation because nanoparticles are able to break the barrier between the lungs and the
bloodstream, increasing the risk of a heart attack or stroke [39].

How particles stick together also influences the extent the particle can penetrate deep
into the lungs and their solubility affects whether they remain in the lungs. Insoluble
nanoparticles can penetrate the lower respiratory tract making it difficult for the lungs
to clear. This can cause inflammation of the lung as well as inflammation in other body
parts or can be carried through the circulatory system to other organs. Nanomaterial with
water solubility higher than 100 mg/L, are considered to be sufficiently soluble and can be
assessed by traditional chemical toxicity since they are no longer nanomaterials after they
have been absorbed by the body [12,41].

In many cases, toxicity can be assessed based on traditional toxicology by evaluating
dose–response of the parent material in non-nano form [12,42–44]. However, some nanopar-
ticles have been found to be more harmful than their larger scale counterparts. For example,
nanoscale titanium dioxide particles have higher mass-based potency than larger particles
and should be treated as a potential occupational carcinogen [40]. The surface area and the
number of particles in the air are a better measure of exposure than the mass concentra-
tion [36]. Further, thorough life cycle analysis (LCA) to assess the environmental impacts
of a nanomaterial, from a cradle to grave perspective, are needed to understand when and
how the material may be harmful to people and the environment. While these assessments
on certain nanomaterials used in construction are available in the literature [45–47], studies
applying LCA to nanotechnology are limited [47]. Considering LCA is a critical compo-
nent in anticipating how individuals may be exposed to toxicological hazards associated
with nanomaterial.

The following is a summary of known toxicity of nanomaterial used in building construction.

4.1. Carbon Nanotubes (CNTs)

Carbon nanotubes (CNTs) are hollow structures constructed from layers of rolled
graphene [10]. They can be several microns or longer. Their tiny diameter and longer
fiber-like length make them potentially toxic if they have similar shape and structure to
asbestos: long, thin, and insoluble. Hard insoluble CNTs longer than 5 µm are more toxic,
can embed into the lung tissue, and are difficult to expel than shorter or tangled CNTs [8].
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However, some studies have identified that shorter fibers (i.e., less than 2 µm) can still have
adverse effects, and there is also a lack of agreement on the diameter of CNTs which are the
most problematic [10]. The adverse health effects are inflammation, respiratory distress,
clotting, fibrosis, vascular damage, and other cardiovascular effects [10,13,48,49].

Carbon nanoparticles with dimensions below 100 nm were found to remain in the
respiratory system for long periods. One study showed only 25% of the deposited nanopar-
ticles were removed from the respiratory system within 24 h and retention time of 75% of
inhaled particles exceeded 48 h [50]. This long retention time promotes their penetration
into the epithelial cells of the respiratory tract, bloodstream, or lymphatic system [39].

4.2. Graphene

Graphene carbon nanomaterial can be used in coatings, electrodes, transistors, and
concrete. Research into the health effects is at an early stage [12]. There are conflicting
opinions on toxicity of nanoparticle graphene [51]. There is literature indicating graphene
materials are biocompatible [52–54], while other studies have reported adverse effects
and cytotoxicity [55–57].

4.3. Carbon Black

Carbon black (CB) is found in rubber manufacturing and can be used in construction
in coatings to shield against radio waves or to provide electrical conductivity. Carbon black
is classed as a possible carcinogen and associated with irreversible respiratory illnesses [10].
Biological effects of carbon black nanoparticles vary in different target cells and are de-
termined by a combination of surface area and composition of surface-bound polycyclic
aromatic hydrocarbons [58].

4.4. Silver

Silver is known for its antimicrobial properties. Silver nanoparticles can accumulate in
various organs including liver, kidney, and brain and can lead to cell death [39]. They can
also damage the blood–brain barrier, cause inflammation and damage DNA [39,59,60].

4.5. Titanium Dioxide

Ultra-fine particles of titanium dioxide are a suspected occupational carcinogen. In
their 2011 Current Intelligence Bulletin 63, the United States National Institute for Occupa-
tional Safety and Health (NIOSH) recommended a maximum workplace exposure level
for nanoparticle titanium oxide as one-eighth of the exposure level for non-nano titanium
dioxide [61]. Titanium dioxide is considered to be neurotoxic and can also accumulate in
the nervous system of fetuses [39]. It is also associated with inflammation in the lungs,
changes in DNA, metabolic changes, and cell death [13].

4.6. Zinc Oxide, Iron Oxide, and Copper Oxide

Zinc oxide can be used in construction and window coatings. There have been few
studies of nanomaterial zinc oxide toxicity however there is some evidence it is linked with
inflammation, cell proliferation, and cytotoxicity [13,62,63]. Iron oxide and copper oxide
nanoparticles can damage DNA [13]. Copper oxide nanoparticles are neurotoxic and tend
to be more neurotoxic than other metals [39].

4.7. Silicon Dioxide (Silica)

Unlike crystalline silica, which is associated with severe adverse health effects in the
construction industry, nanosilica is usually amorphous [12]. Nano silica aerogels appear to
commonly use amorphous silica [64,65]. Amorphous silica nanoparticles are considered
to be relatively low risk, however, there is insufficient evidence to declare nanosilica as
‘safe’ [12,66], as there is some evidence of cytotoxicity [13,67].
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5. A Way Forward in Assessing Viability of Fire-Resistant Nanotechnology in
Residential Construction

Use of nanotechnology in building materials can be highly effective in providing
fire-resistant and structure-strengthening properties. However, their current barriers to
widespread adoption are cost and the need for assurances of their safety since there is
limited information available on the toxicological effects of nanomaterial exposure and
limited provisions for their control [1,20,68–70]. These same barriers are also likely drivers
of mainstream adoption of nanomaterials in residential construction as discussed below.

Because the majority of fire deaths occur in residential properties both in the United
States and around the world and to address life safety in fire protection, better fire-resistant
materials in residential construction are needed. In North America and many other coun-
tries around the world, better protected wooden construction will have maximum impact
on fire death and injury prevention as this is a primary material used in residential con-
struction [23,34]. Use of nanotechnology in building materials has significant potential
to create safer and more resilient residential structures, however, to overcome barriers to
widespread adoption, certain criteria must be met.

To assess the viability of a particular nanomaterial product to be adopted for residential
construction, it is important to understand its strengths and limitations compared with
current fire-resistant coatings available on the market. They must also be assessed by
their ability to satisfy the requirements of sustainability and its three pillars as adopted
by the United Nations and United States Environmental Protection Agency: economy,
environment, and social/people—primarily from a social construct are assurances of safety,
both as a material designed to reduce fire injury and death and from a toxicological hazard
perspective. These variables are deeply interdependent on one another, as discussed below,
for the viability of a particular nanotechnology to emerge as an ideal solution to improve
life safety outcomes in fire protection for residential construction.

5.1. Sustainability: Environmental and Economic Considerations for Nanotechnology in
Building Materials

Beyond altruistic intentions of using a renewable material or one that has low envi-
ronmental impact, a more likely practical driver of renewable and less impactful product
demand will be as costs of non-renewable resources increase and material availability of
non-renewables decrease, builders will gravitate to more pragmatic options to manage
costs and ensure a steady supply of building materials. Thus, considerations for economy
are interconnected in ensuring a robust and cost-effective supply chain. Simplicity and
scalability of production are other important economic factors in viability of bringing a
nanotechnology building material to market. However, cost can be driven down by process
improvements and in sourcing lower-cost options in their synthesis or manufacture. Low-
ering cost through economies of scale will be heavily dependent on mainstream demand
which is partially contingent on assurances the product is safe [1,69,71]. No one wants to
re-create the tragic mistakes of the past such as the use of asbestos or lead in construction.

5.2. Sustainability: Safety and Environmental Health, Both Product Safety and Minimization of
Toxicological Hazards and Environmental Impacts of Nanotechnology in Building Materials

To justify widespread adoption of a particular construction material, it should show
superior fire resistance, structural strength, durability, release less hazardous smoke, and
finally, present fewer toxicological hazards than conventional coatings and materials.

5.2.1. Assessing Building Material for Fire Safety

ASTM E119-20 Standard Test Methods for Fire Tests of Building Construction and
Materials [72] and Underwriters Laboratory UL 263 Fire Tests of Building Construction and
Materials [73] are examples of guidance materials that can be used to determine material fire
resistance. ASTM D4761-19 Standard Test Methods for Mechanical Properties of Lumber
and Wood-Based Structural Materials [74] is an example of guidance that can be used to
evaluate structural strength of material. An example of guidance that could be used to
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assess material durability is Underwriters Laboratory UL 2431 Standard for Safety for
Durability of Fire Resistive Coatings and Materials [75] ASTM E1354-22a Standard Test
Method for Heat and Visible Smoke Release Rates for Materials and Products Using an
Oxygen Consumption Calorimeter [76] is an example of a standard that can be used to
evaluate smoke release.

5.2.2. Assessing Building Material for Environmental and Toxicological Hazards

There has been a significant amount of research on the development of nanotechnol-
ogy and concern for health [77]. Knowledge of nanomaterial risks is based on laboratory
research vs. reported cases of illness [10], it is uncertain if this is indicative of nanomaterial
safety or long latency periods like those of asbestos exposure. Furthermore, there are multi-
ple assessment methods and different material compositions making comparison of results
across studies difficult [12,43]. Other than some specific recommended exposure limits for
nanoform TiO2, CNT and nanofibers, information on exposure thresholds is limited [78].

Life cycle analysis of all aspects of their potential to create harm from inception to
final disposal are an ideal framework for their assessment. However, while there are
various provisions such as those under EU’s REACH, US Toxic Substance Control Act,
and from regulators such as OSHA, there are limited regulatory framework guidance
and enforcement to ensure the responsible development of nanotechnology [1,17,66,67].
Without clear direction and a regulatory requirement to do so, there is little incentive for
manufacturers to put efforts into anticipation, assessment, and control of nanoparticle
hazards to protect both the public and the employees who manufacture the products.
However, recent amendments to EU’s REACH attempt to address this problem by requiring
material hazard assessments, but this is not applicable to materials made, used, or sold
outside the European Union. Thus, manufacturers must ensure toxicological hazards are
assessed thoroughly for each product/technology and product purchasers/builders must
share in this onus by ensuring these hazard assessments are completed prior to mainstream
adoption for residential construction.

Some researchers note risk of nanomaterials can be assessed and managed using
existing toxicity models, starting with whether the non-nanoform substance is known to
be hazardous [12,42–44]. However, traditional industrial hygiene approaches use a mass-
based method which may not be suitable if the material poses additional health risks due to
aspects such as smaller size, large surface-to-volume ratios, and material differences [12,43],
as is the case for nanosized TiO2 and carbon nanotubes. Thus, assessments using surface
area and number of respirable particles is recommended [40]. Furthermore, differentiating
solubility, shape, size, and agglomeration will also be important in assessing the toxico-
logical hazards of a nanomaterial. Taking an industrial hygiene approach, exposure levels
could be assessed quantitatively and qualitatively under certain test conditions such as
during a fire, when material is cut, sanded, etc., and compared with known biological
outcomes associated with the found exposure level. Industrial hygiene guidance such as
the American Conference of Governmental Industrial Hygienists Threshold Limit Values
TLV® and Biological Exposure Indices BEI® [79] is an example of guidance available on
exposure limits and toxicological effects.

6. Conclusions

Residential fire deaths and injuries are a growing safety and public health concern.
Better fire-resistant building materials are needed in residential construction to bolster fire
protection and to improve life safety outcomes. This review examined literature, from a
safety perspective, to address these concerns by examining the application of nanotech-
nology to building materials to improve safety. The review specifically addressed and
provided guidance on nanotechnology applications related to construction materials in-
cluding concrete, windows and glass, insulation, steel, wood and coatings and composites.
Concurrently, the review noted potential and existing hazards that need to be addressed
to satisfy the requirements of sustainability including economy, environment, and safety.
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Potential and existing hazards were presented for carbon nanotubes, graphene, carbon
black, silver, titanium dioxide, silicon dioxide and zinc oxide, iron oxide, and copper oxide.
As noted, nanotechnology has enormous potential to improve fire safety in residential con-
struction and prevent unnecessary injuries and deaths if barriers to widespread adoption
are overcome. Guidance on a way forward was offered. Thorough assessments of viability,
driven by economy and functionality, are deeply connected to their safety and thus safety
must be at the forefront of emerging nanotechnologies in residential construction.

Regardless of the contributions of this review, additional research explorations and
research related to nanotechnology applications to construction and nanomaterial use in
construction are needed. As this research provided hazard information of nanomaterials
generally related to public health and safety, more research is needed from a building
construction safety and risk management perspective. Particularly, this work should aim to
address hazards during the construction phase and the remainder of the building life cycle.
Further, following guidance from Gorsuch and Link [80] additional policy related research is
needed. Given where we are currently, more information is needed regarding the adoption
of nanotechnologies and its long-term consequences. As such, longitudinal studies are
warranted, especially as researchers seek to understand the impact of nanotechnologies on
ecosystems once adopted.
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