What Makes Wildfires Destructive in California?
Abstract
:1. Introduction
- (1)
- What are the main differences between destructive fires and non-destructive fires?
- (2)
- What combination of fuel, weather, climate, topographic, and anthropogenic factors best differentiate between destructive and non-destructive large fires?
- (3)
- Do these explanatory factors vary among regions?
2. Materials and Methods
2.1. Study Regions
2.2. Fire and Structure Loss Data
2.3. Explanatory Variables
2.4. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Virgilio, G.; Evans, J.P.; Blake, S.A.P.; Armstrong, M.; Dowdy, A.J.; Sharples, J.; McRae, R. Climate Change Increases the Potential for Extreme Wildfires. Geophys. Res. Lett. 2019, 46, 8517–8526. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Battisti, D.S.; Williams, A.P.; Hansen, W.D.; Harvey, B.J.; Kolden, C.A. Projected increases in western US forest fire despite growing fuel constraints. Commun. Earth Environ. 2021, 2, 1–8. [Google Scholar] [CrossRef]
- Rogers, B.M.; Balch, J.K.; Goetz, S.J.; Lehmann, C.E.R.; Turetsky, M. Focus on changing fire regimes: Interactions with climate, ecosystems, and society. Environ. Res. Lett. 2020, 15, 030201. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Spalevic, V.; Mincato, R.L. Ildfire Effects on Soil Erosion Dynamics: The Case of 2021 Megafires in Greece. Agric. For. Poljopr. Sumar. 2022, 68, 49–63. [Google Scholar]
- Knapp, E.E.; Lydersen, J.M.; North, M.P.; Collins, B.M. Efficacy of variable density thinning and prescribed fire for restoring forest heterogeneity to mixed-conifer forest in the central Sierra Nevada, CA. For. Ecol. Manag. 2017, 406, 228–241. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Abrupt Climate-Independent Fire Regime Changes. Ecosystems 2014, 17, 1109–1120. [Google Scholar] [CrossRef]
- Bowman, D.; Johnston, F.A.Y. Bushfires, human health economics, and pyrogeography. Geogr. Res. 2014, 52, 340–343. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.; Barbosa, P.; Boca, R.; Justice, C. A MODIS assessment of the summer 2007 extent burned in Greece. Int. J. Remote Sens. 2008, 29, 2433–2436. [Google Scholar] [CrossRef]
- Blanchi, R.; Leonard, J.; Haynes, K.; Opie, K.; James, M.; Kilinc, M.; De Oliveira, F.D.; Van den Honert, R. Life and House Loss Database Description and Analysis; CSIRO: Canberra, Australia, 2012. [Google Scholar]
- Molina-Terrén, D.M.; Xanthopoulos, G.; Diakakis, M.; Ribeiro, L.; Caballero, D.; Delogu, G.M.; Viegas, D.; Silva, C.A.; Cardil, A. Analysis of forest fire fatalities in Southern Europe: Spain, Portugal, Greece and Sardinia (Italy). Int. J. Wildland Fire 2019, 28, 85. [Google Scholar] [CrossRef] [Green Version]
- Haque, K.; Azad, A.K.; Hossain, Y.; Ahmed, T.; Uddin, M.; Hossain, M. Wildfire in Australia during 2019–2020, Its Impact on Health, Biodiversity and Environment with Some Proposals for Risk Management: A Review. J. Environ. Prot. 2021, 12, 391–414. [Google Scholar] [CrossRef]
- Calfire. Wildland Fire Hazard Assessment; California Division of Forestry and Fire Protection: Sacramento, CA, USA, 2000. [Google Scholar]
- Syphard, A.D.; Keeley, J.E. Why are so many structures burning in California. Fremontia 2020, 47, 28–35. [Google Scholar]
- Maranghides, A.; Mell, W. A Case Study of a Community Affected by the Witch and Guejito Wildland Fires. Fire Technol. 2011, 47, 379–420. [Google Scholar] [CrossRef]
- Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Radeloff, V.C. High wildfire damage in interface communities in California. Int. J. Wildland Fire 2019, 28, 641–650. [Google Scholar] [CrossRef]
- Lucas, C.B.; Leonard, J.; Finkele, K. Meteorological conditions and wildfire-related house loss in Australia. Int. J. Wildland Fire 2010, 19, 914–926. [Google Scholar]
- Penman, S.H.; Price, O.F.; Penman, T.D.; Bradstock, R.A. The role of defensible space on the likelihood of house impact from wildfires in forested landscapes of south eastern Australia. Int. J. Wildland Fire 2019, 28, 4–14. [Google Scholar] [CrossRef]
- Syphard, A.D.; Rustigian-Romsos, H.; Keeley, J.E. Multiple-Scale Relationships between Vegetation, the Wildland–Urban Interface, and Structure Loss to Wildfire in California. Fire 2021, 4, 12. [Google Scholar] [CrossRef]
- Syphard, A.D.; Rustigian-Romsos, H.; Mann, M.; Conlisk, E.; Moritz, M.A.; Ackerly, D. The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Glob. Environ. Chang. 2019, 56, 41–55. [Google Scholar] [CrossRef]
- Alexandre, P.M.; Stewart, S.I.; Keuler, N.S.; Clayton, M.K.; Mockrin, M.H.; Bar-Massada, A.; Syphard, A.D.; Radeloff, V.C. Factors related to building loss due to wildfires in the conterminous United States. Ecol. Appl. 2016, 26, 2323–2338. [Google Scholar] [CrossRef]
- Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Stewart, S.I.; Radeloff, V.C. Where wildfires destroy buildings in the US relative to the wildland–urban interface and national fire outreach programs. Int. J. Wildland Fire 2018, 27, 329. [Google Scholar] [CrossRef]
- Ager, A.A.; Palaiologou, P.; Evers, C.R.; Day, M.A.; Ringo, C.; Short, K. Wildfire exposure to the wildland urban interface in the western US. Appl. Geogr. 2019, 111, 102059. [Google Scholar] [CrossRef]
- Scott, J.H.; Thompson, M.P.; Gilbertson-Day, J.W. Exploring how alternative mapping approaches influence fireshed assessment and human community exposure to wildfire. GeoJournal 2015, 82, 201–215. [Google Scholar] [CrossRef]
- Schumann, R.L.; Mockrin, M.; Syphard, A.D.; Whittaker, J.; Price, O.; Johnson, C.; Emrich, C.T.; Butsic, V. Wildfire recovery as a “hot moment” for creating fire-adapted communities. Int. J. Disaster Risk Reduct. 2019, 42, 101354. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef]
- Caggiano, M.D.; Hawbaker, T.J.; Gannon, B.M.; Hoffman, C.M. Building Loss in WUI Disasters: Evaluating the Core Components of the Wildland–Urban Interface Definition. Fire 2020, 3, 73. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A.D. Twenty-first century California, USA, wildfires: Fuel-dominated vs. wind-dominated fires. Fire Ecol. 2019, 15, 24. [Google Scholar] [CrossRef]
- Mass, C.F.; Ovens, D. The Northern California Wildfires of 8–9 October 2017: The Role of a Major Downslope Wind Event. Bull. Am. Meteorol. Soc. 2019, 100, 235–256. [Google Scholar] [CrossRef]
- Nauslar, N.J.; Abatzoglou, J.T.; Marsh, P.T. The 2017 North Bay and Southern California Fires: A Case Study. Fire 2018, 1, 18. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef]
- Kraaij, T.; Baard, J.A.; Arndt, J.; Vhengani, L.; Van Wilgen, B.W. An assessment of climate, weather, and fuel factors influencing a large, destructive wildfire in the Knysna region, South Africa. Fire Ecol. 2018, 14, 4. [Google Scholar] [CrossRef]
- Hardy, C.C.; Hardy, C.E. Fire danger rating in the United States of America: An evolution since 1916. Int. J. Wildland Fire 2007, 16, 217–231. [Google Scholar] [CrossRef]
- Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The National Fire-Danger Rating System, 1978; Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1977; Volume 39. [Google Scholar] [CrossRef] [Green Version]
- Van Wagner, C.E.; Forest, P. Development and Structure of the Canadian Forest Fireweather Index System; Forestry Technical Report; Canadian Forestry Service: Ottawa, ON, Canada, 1987. [Google Scholar]
- Camia, A.; Barbosa, P.; Amatulli, G.; San-Miguel-Ayanz, J. Fire danger rating in the European Forest Fire Information System (EFFIS): Current developments. For. Ecol. Manag. 2006, 234, S20. [Google Scholar] [CrossRef]
- Turco, M.; Jerez, S.; Doblas-Reyes, F.J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A. Skillful forecasting of global fire activity using seasonal climate predictions. Nat. Commun. 2018, 9, 2718. [Google Scholar] [CrossRef] [PubMed]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Abatzoglou, J.T.; Gershunov, A.; Guzman-Morales, J.; Bishop, D.A.; Balch, J.K.; Lettenmaier, D.P. Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earths Futur. 2019, 7, 892–910. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A. Different historical fire–climate patterns in California. Int. J. Wildland Fire 2017, 26, 253. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Pfaff, A.H.; Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 13750–13755. [Google Scholar] [CrossRef]
- Weise, D.R. Modelling Wind and Slope-Induced Wildland Fire Behavior; University of California: Berkeley, CA, USA, 1993. [Google Scholar]
- Lindenmayer, D.; Taylor, C.; Blanchard, W. Empirical analyses of the factors influencing fire severity in southeastern Australia. Ecosphere 2021, 12, e03721. [Google Scholar] [CrossRef]
- Narayanaraj, G.; Wimberly, M.C. Influences of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions. Appl. Geogr. 2012, 32, 878–888. [Google Scholar] [CrossRef]
- Syphard, A.D.; Sheehan, T.; Rustigian-Romsos, H.; Ferschweiler, K. Mapping future fire probability under climate change: Does vegetation matter? PLoS ONE 2018, 13, e0201680. [Google Scholar] [CrossRef]
- Katuwal, H.; Calkin, D.E.; Hand, M.S. Production and efficiency of large wildland fire suppression effort: A stochastic frontier analysis. J. Environ. Manag. 2016, 166, 227–236. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A. Historical patterns of wildfire ignition sources in California ecosystems. Int. J. Wildland Fire 2018, 27, 781. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Balch, J.K.; Bradley, B.A.; Kolden, C. Human-related ignitions concurrent with high winds promote large wildfires across the USA. Int. J. Wildland Fire 2018, 27, 377. [Google Scholar] [CrossRef]
- Keeley, J.E.; Guzman-Morales, J.; Gershunov, A.; Syphard, A.D.; Cayan, D.; Pierce, D.W.; Flannigan, M.; Brown, T.J. Ignitions explain more than temperature or precipitation in driving Santa Ana wind fires. Sci. Adv. 2021, 7, eabh2262. [Google Scholar] [CrossRef]
- Nagy, R.C.; Fusco, E.; Bradley, B.; Abatzoglou, J.T.; Balch, J. Human-Related Ignitions Increase the Number of Large Wildfires across U.S. Ecoregions. Fire 2018, 1, 4. [Google Scholar] [CrossRef]
- Hantson, S.; Andela, N.; Goulden, M.L.; Randerson, J.T. Human-ignited fires result in more extreme fire behavior and ecosystem impacts. Nat. Commun. 2022, 13, 2717. [Google Scholar] [CrossRef]
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A.D. Nexus between wildfire, climate change and population growth in California. Fremontia 2020, 47, 4–13. [Google Scholar]
- Safford, H.D.; Van de Water, K.M. Using Fire Return Interval Departure (FRID) Analysis to Map Spatial and Temporal Changes in Fire Frequency on National Forest Lands in California; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2014. [Google Scholar]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Buckland, M. What Is a Megafire? Defining the Social and Physical Dimensions of Extreme US Wildfires (1988–2014); University of Colorado at Boulder: Boulder, CO, USA, 2019. [Google Scholar]
- Syphard, A.; Keeley, J. Factors Associated with Structure Loss in the 2013–2018 California Wildfires. Fire 2019, 2, 49. [Google Scholar] [CrossRef]
- Schwartz, M.W.; Syphard, A.D. Fitting the solutions to the problems in managing extreme wildfire in California. Environ. Res. Commun. 2021, 3, 081005. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Radeloff, V.C.H.; Kramer, D.P.; Mockrin, H.A.; Alexandre, M.H.; Massada, P.M.B.; Butsic, A.; Hawbaker, V.; Martinuzzi, T.J.; Syphard, S.; Stewart, A.D. The 1990–2010 Wildland-Urban Interface of the Conterminous United States-Geospatial Data; SILVIS Lab, Dept of Forest & Wildlife Ecology, University of Wisconsin-Madison: Madison, WI, USA, 2017. [Google Scholar]
- Parks, S.; Parisien, M.; Miller, C.; Dobrowski, S. Fire activity and severity in the Western US vary along proxy gradients representing fuel amount and fuel moisture. PLoS ONE 2014, 9, e99699. [Google Scholar] [CrossRef] [PubMed]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020. [Google Scholar]
- Olea, P.P.; Mateo-Tomás, P.; de Frutos, A. Estimating and Modelling Bias of the Hierarchical Partitioning Public-Domain Software: Implications in Environmental Management and Conservation. PLoS ONE 2010, 5, e11698. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 1984. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Monteiro-Henriques, T.; Guiomar, N.; Loureiro, C.; Barros, A.M.G. Bottom-Up Variables Govern Large-Fire Size in Portugal. Ecosystems 2016, 19, 1362–1375. [Google Scholar] [CrossRef]
- Silva, F.R.Y.; Martínez, J.R.M.; González-Cabán, A. A methodology for determining operational priorities for prevention and suppression of wildland fires. Int. J. Wildland Fire 2014, 23, 544–554. [Google Scholar] [CrossRef]
- Salis, M.; Ager, A.A.; Arca, B.; Finney, M.A.; Bacciu, V.; Duce, P.; Spano, D. Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. Int. J. Wildland Fire 2013, 22, 549–565. [Google Scholar] [CrossRef]
- Thompson, M.P.; Haas, J.R.; Gilbertson-Day, J.W.; Scott, J.H.; Langowski, P.; Bowne, E.; Calkin, D.E. Development and application of a geospatial wildfire exposure and risk calculation tool. Environ. Model. Softw. 2015, 63, 61–72. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Massada, A.B.; Brennan, T.J.; Radeloff, V.C. Housing arrangement and location determine the likelihood of housing loss due to wildfire. PLoS ONE 2012, 7, e33954. [Google Scholar] [CrossRef]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. The role of defensible space for residential structure protection during wildfires. Int. J. Wildland Fire 2014, 23, 1165–1175. [Google Scholar] [CrossRef]
- Alexandre, P.M.; Stewart, S.I.; Mockrin, M.H.; Keuler, N.S.; Syphard, A.; Bar-Massada, A.; Clayton, M.K.; Radeloff, V.C. The relative impacts of vegetation, topography and spatial arrangement on building loss to wildfires in case studies of California and Colorado. Landsc. Ecol. 2015, 31, 415–430. [Google Scholar] [CrossRef]
- Syphard, A.D.; Bar Massada, A.; Butsic, V.; Keeley, J.E. Land Use Planning and Wildfire: Development Policies Influence Future Probability of Housing Loss. PLoS ONE 2013, 8, e71708. [Google Scholar] [CrossRef]
- Mockrin, M.H.; Fishler, H.K.; Stewart, S.I. After the fire: Perceptions of land use planning to reduce wildfire risk in eight communities across the United States. Int. J. Disaster Risk Reduct. 2020, 45, 101444. [Google Scholar] [CrossRef]
- Butsic, V.; Kelly, M.; Moritz, M.A. Land Use and Wildfire: A Review of Local Interactions and Teleconnections. Land 2015, 4, 140–156. [Google Scholar] [CrossRef]
- Schmidt, J. Vegetation Cover and Structure Loss in Four Northern California Wildfires: Butte, Tubbs, Carr, and Camp. 2020. Available online: https://mpra.ub.uni-muenchen.de/104232/ (accessed on 25 August 2022).
- Lahaye, S.; Curt, T.; Fréjaville, T.; Sharples, J.; Paradis, L.; Hély, C. What are the drivers of dangerous fires in Mediterranean France? Int. J. Wildland Fire 2018, 27, 155–163. [Google Scholar] [CrossRef]
- Keeley, J.E.; Safford, H.; Fotheringham, C.J.; Franklin, J.; Moritz, M. The 2007 southern California wildfires: Lessons in complexity. J. For. 2009, 107, 287–296. [Google Scholar]
- Syphard, A.D.; Keeley, J.E.; Brennan, T.J. Comparing the role of fuel breaks across southern California national forests. For. Ecol. Manag. 2011, 261, 2038–2048. [Google Scholar] [CrossRef]
- Coen, J.L.; Schroeder, W.; Quayle, B. The Generation and Forecast of Extreme Winds during the Origin and Progression of the 2017 Tubbs Fire. Atmosphere 2018, 9, 462. [Google Scholar] [CrossRef]
- Brewer, M.J.; Clements, C.B. The 2018 camp fire: Meteorological analysis using in situ observations and numerical simulations. Atmosphere 2019, 11, 47. [Google Scholar] [CrossRef]
- Jin, Y.; Randerson, J.T.; Faivre, N.; Capps, S.; Hall, A.; Goulden, M.L. Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds. J. Geophys. Res. Biogeosci. 2014, 119, 432–450. [Google Scholar] [CrossRef]
- McKenzie, D.; Miller, C.; Falk, D.A. The Landscape Ecology of Fire; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Povak, N.A.; Hessburg, P.F.; Salter, R.B. Evidence for scale-dependent topographic controls on wildfire spread. Ecosphere 2018, 9, e02443. [Google Scholar] [CrossRef]
- Littell, J.S.; McKenzie, D.; Wan, H.Y.; Cushman, S.A. Climate Change and Future Wildfire in the Western United States: An Ecological Approach to Nonstationarity. Earths Futur. 2018, 6, 1097–1111. [Google Scholar] [CrossRef] [Green Version]
All Fires: Region | Destructive | Total | Proportion |
---|---|---|---|
Bay Area | 41 | 579 | 0.07 |
North Sierra Foothills | 59 | 404 | 0.15 |
South Coast | 59 | 1475 | 0.04 |
Total | 159 | 2458 | 0.06 |
Large Fires: Region | |||
Bay Area | 30 | 180 | 0.17 |
North Sierra Foothills | 33 | 89 | 0.37 |
South Coast | 54 | 349 | 0.15 |
Total | 117 | 618 | 0.19 |
Mean Fire Size | Median Fire Size | |||
---|---|---|---|---|
Region | Destructive | Non-Destructive | Destructive | Non-Destructive |
Bay Area | 11,289 | 531 | 1349 | 29 |
North Sierra Foothills | 2439 | 96 | 145 | 16 |
South Coast | 12,551 | 484 | 3537 | 14 |
Bay | North Sierra Foothills | South Coast | ||||
---|---|---|---|---|---|---|
Destructive | Non-Destructive | Destructive | Non-Destructive | Destructive | Non-Destructive | |
Relative humidity(%) | 18.7 | 25.3 | 17.9 | 20.6 | 16.7 | 23.0 |
ERC (index) | 66.7 | 57.9 | 74.0 | 69.4 | 69.9 | 61.9 |
Wind (m/s) | 3.8 | 3.1 | 3.5 | 3.2 | 8.2 | 7.7 |
Summer temp (C) | 19.8 | 19.1 | 21.8 | 22.1 | 21.7 | 19.1 |
Autumn precip (mm) | 99.4 | 93.8 | 157.7 | 142.2 | 52.7 | 42.1 |
NDVI (index) | 0.7 | 0.7 | 0.7 | 0.7 | 0.5 | 0.5 |
Slope (degrees) | 17.1 | 13.8 | 11.3 | 9.0 | 16.9 | 13.7 |
Distance roads (m) | 40.8 | 89.1 | 21.6 | 95.8 | 17.8 | 100.5 |
Distance WUI (m) | 2.0 | 2.3 | 0.7 | 1.3 | 0.6 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syphard, A.D.; Keeley, J.E.; Gough, M.; Lazarz, M.; Rogan, J. What Makes Wildfires Destructive in California? Fire 2022, 5, 133. https://doi.org/10.3390/fire5050133
Syphard AD, Keeley JE, Gough M, Lazarz M, Rogan J. What Makes Wildfires Destructive in California? Fire. 2022; 5(5):133. https://doi.org/10.3390/fire5050133
Chicago/Turabian StyleSyphard, Alexandra D., Jon E. Keeley, Mike Gough, Mitchell Lazarz, and John Rogan. 2022. "What Makes Wildfires Destructive in California?" Fire 5, no. 5: 133. https://doi.org/10.3390/fire5050133
APA StyleSyphard, A. D., Keeley, J. E., Gough, M., Lazarz, M., & Rogan, J. (2022). What Makes Wildfires Destructive in California? Fire, 5(5), 133. https://doi.org/10.3390/fire5050133