Classification of Fire Damage to Boreal Forests of Siberia in 2021 Based on the dNBR Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Interest
2.2. Initial Data
2.3. Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shvidenko, A.Z.; Nilsson, S. Extent, Distribution, and Ecological Role of Fire in Russian Forests. In Fire, Climate Change, and Carbon Cycling in the Boreal Forest; Ecological Studies (Analysis and Synthesis); Kasischke, E.S., Stocks, B.J., Eds.; Springer: New York, NY, USA, 2000; Volume 138. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- McCarty, J.L.; Aalto, J.; Paunu, V.-V.; Arnold, S.R.; Eckhardt, S.; Klimont, Z.; Fain, J.J.; Evangeliou, N.; Venäläinen, A.; Tchebakova, N.M.; et al. Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences 2021, 18, 5053–5083. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, H. Rare and Extreme Wildland Fire in Sakha in 2021. Atmosphere 2021, 12, 1572. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Xue, N.; Du, Z. Spatiotemporal Analysis of Active Fires in the Arctic Region during 2001–2019 and a Fire Risk Assessment Model. Fire 2021, 4, 57. [Google Scholar] [CrossRef]
- Remote Monitoring Information System of the Federal Forestry Agency. Space Monitoring Data Report. 2021. Available online: https://public.aviales.ru/main_pages/public.shtml (accessed on 1 December 2021). (In Russian).
- Bartalev, S.; Egorov, V.; Zharko, V.; Loupian, E.; Plotnikov, D.; Khvostikov, S.; Shabanov, N. Land Cover Mapping over Russia Using Earth Observation Data; Russian Academy of Sciences’ Space Research Institute: Moscow, Russian, 2016; 208p. [Google Scholar]
- Bartalev, S.A.; Stytsenko, F.V. An Assessment of the Forest Stands Destruction be Fires Based on the Remote Sensing Data on a Seasonal Distribution of Burnt Areas. Russ. J. For. Sci. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Yakimov, N.D.; Ponomareva, T.V.; Yakubailik, O.E.; Conard, S.G. Current Trend of Carbon Emissions from Wildfires in Siberia. Atmosphere 2021, 12, 559. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Masyagina, O.V.; Litvintsev, K.Y.; Ponomareva, T.V.; Shvetsov, E.G.; Finnikov, K.A. The effect of post-fire disturbances on a seasonally thawed layer in the permafrost larch forests of Central Siberia. Forests 2020, 11, 790. [Google Scholar] [CrossRef]
- Ponomareva, T.V.; Litvintsev, K.Y.; Finnikov, K.A.; Yakimov, N.D.; Sentyabov, A.V.; Ponomarev, E.I. Soil Temperature in Disturbed Ecosystems of Central Siberia: Remote Sensing Data and Numerical Simulation. Forests 2021, 12, 994. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Saurer, M.; Siegwolf, R.; Knorre, A.A.; Prokushkin, A.S.; Churakova, O.V.; Fonti, M.V.; Büntgen, U. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. 2020, 15, 034061. [Google Scholar] [CrossRef]
- dos Santos, S.M.B.; Bento-Gonçalves, A.; Franca-Rocha, W.; Baptista, G. Assessment of Burned Forest Area Severity and Postfire Regrowth in Chapada Diamantina National Park (Bahia, Brazil) Using dNBR and RdNBR Spectral Indices. Geosciences 2020, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Bartalev, S.A.; Egorov, V.A.; Krylov, A.M.; Stytsenko, F.V.; Khovratovich, T.C. The evaluation of possibilities to assess forest burnt severity using multi-spectral satellite data. Mod. Probl. Remote Sens. Earth Space 2010, 3, 215–225. (In Russian) [Google Scholar]
- Krylov, A.; McCarty, J.L.; Potapov, P.; Loboda, T.; Tyukavina, A.; Turubanova, S.; Hansen, M.C. Remote sensing estimates of stand-replacement fires in Russia, 2002–2011. Environ. Res. Lett. 2014, 9, 1–8. [Google Scholar] [CrossRef]
- Delcourt, C.J.F.; Combee, A.; Izbicki, B.; Mack, M.C.; Maximov, T.; Petrov, R.; Rogers, B.M.; Scholten, R.C.; Shestakova, T.A.; van Wees, D.; et al. Evaluating the Differenced Normalized Burn Ratio for Assessing Fire Severity Using Sentinel-2 Imagery in Northeast Siberian Larch Forests. Remote Sens. 2021, 13, 2311. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. Progress Reports RSC 1978-1 93. Texas A & M University, 1973. Available online: https://ntrs.nasa.gov/citations/19730009608 (accessed on 1 December 2021).
- Tucker, C.J. Red and Photographic Infrared Linear Combinations Monitoring Vegetation. J. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Ponomarev, E.I.; Ponomareva, T.V. Method for Revealing Stage of Vegetation Cover Restoration by Analyzing Temperature Anomalies on Satellite Imagery of Underlying Surface in Thermal (IR) Range of Spectrum. Invention patent No RU 2754968, 2021; Priority reference No2021103603 from 15 February 2021. Available online: https://www.fips.ru/ofpstorage/BULLETIN/IZPM/2021/09/10/INDEX_RU.HTM (accessed on 1 December 2021). (In Russian).
- Key, C.H.; Benson, N.C. Landscape Assessment: Sampling and Analysis Methods. In FIREMON: Fire Effects Monitoring and Inventory System. Available online: https://www.fs.usda.gov/treesearch/pubs/24066 (accessed on 1 December 2021).
- French, N.H.F.; Kasischke, E.S.; Halle, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X.; Takeda, K. Temporal dependence of burn severity assessment in Siberian larch (larix sibirica) forest of northern Mongolia using remotely sensed data. Int. J. Wildland Fire 2016, 25, 685–698. [Google Scholar] [CrossRef]
- Guindon, L.; Gauthier, S.; Manka, F.; Parisien, M.-A.; Whitman, E.; Bernier, P.; Beaudoin, A.; Villemaire, P.; Skakun, R. Trends in wildfire burn severity across Canada, 1985 to 2015. Can. J. For. Res. 2021, 5, 1230–1244. [Google Scholar] [CrossRef]
- Stytsenko, F.V. Development and application of methods and automated technology for assessing pyrogenic forest death based on satellite data. In Abstract of Dissertation, Candidate of Technical Sciences: 25.00.34; IKI: Moscow, Russia, 2016; 24p. (In Russian) [Google Scholar]
- Fan, R.; Hou, B.; Liu, J.; Yang, J.; Hong, Z. Registration of Multiresolution Remote Sensing Images Based on L2-Siamese Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 237. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-Resolution Mapping Based on Spatial-Spectral Correlation for Spectral Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Shvetsov, E.G. Satellite detection of forest fires and geoinformation methods for calibration of results. Explor. Earth Space 2015, 1, 84–91. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Ershov, D.V.; Isaev, A.S.; Potapov, P.V.; Turubanova, S.A.; Yaroshenko, A.Y. Russia’s Forests Dominating Forest Types and Their Canopy Density Scale 1: 14 000 000; Moscow, Russia, 2004. Available online: https://www.researchgate.net/publication/272680068_Russia’s_Forests_Dominating_Forest_Types_and_Their_Canopy_Density (accessed on 1 December 2021).
- Shvetsov, E.G.; Ponomarev, E.I. Postfire Effects in Siberian Larch Stands on Multispectral Satellite Data. Contemp. Probl. Ecol. 2020, 1, 104–112. [Google Scholar] [CrossRef]
- McRae, D.J.; Conard, S.G.; Ivanova, G.A.; Sukhinin, A.I.; Baker, S.; Samsonov, Y.N.; Blake, T.W.; Ivanov, V.A.; Ivanov, A.V.; Churkina, T.V.; et al. Variability of fire behavior, fire effects, and emissions in Scotch pine forests of Central Siberia. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 45–74. [Google Scholar] [CrossRef]
- Ivanova, G.A.; Conard, S.G.; McRae, D.J.; Bezkorovaynaya, I.N.; Bogorodskaya, A.V.; Zhila, S.V.; Ivanov, V.A.; Ivanov, A.V.; Kovaleva, N.M.; Krasnoshchekova, E.N.; et al. The Impact of Fires on the Ecosystem Components of the Middle Taiga Pine Forests of Siberia; Science: Novosibirsk, Russia, 2014; 232p, ISBN 978-5-02-019163-1. (In Russian) [Google Scholar]
- IPCC. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes, Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Valendik, E.N.; Kisilyakhov, E.K.; Ryzhkova, V.A.; Ponomarev, E.I.; Danilova, I.V. Conflagration Fires in Taiga Landscapes of Central Siberia. Geogr. Nat. Resour. 2014, 35, 41–47. [Google Scholar] [CrossRef]
- Conard, S.G.; Ponomarev, E.I. Fire in the North—The 2020 Siberian Fire Season. Wildfire 2020, 29, 26–32. [Google Scholar]
- Goldammer, J.G.; Sukhinin, A.; Csiszar, I. The Current Fire Situation in the Russian Federation: Implications for Enhancing International and Regional Cooperation in the UN Framework and the Global Programs on Fire Monitoring and Assessment. In Proceedings of the GFMC Contribution to the International Workshop “New Approaches to Forest Protection and Fire Management at an Ecosystem Level” Khabarovsk, Russian, 9–12 September 2003; 33p. [Google Scholar]
- de Groot, W.J.; Cantin, A.S.; Flannigan, M.D.; Soja, A.J.; Gowman, L.M.; Newbery, A. A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manag. 2013, 294, 23–34. [Google Scholar] [CrossRef]
- Furyaev, V.V. Pyrological regimes and dynamics of the southern taiga forests in Siberia. In Fire in Ecosystems of Boreal EURASIA; Goldammer, J.G., Furyaev, V.V., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 168–185. [Google Scholar]
- Korovin, G.N. Analysis of the Distribution of Forest Fires in Russia. In Fire in Ecosystems of Boreal Eurasia; Forestry Sciences; Goldammer, J.G., Furyaev, V.V., Eds.; Springer: Dordrecht, The Netherlands, 1996; Volume 48, pp. 112–128. [Google Scholar] [CrossRef]
- Conard, S.G.; Davidenko, E.P. Fire in Siberian Boreal Forests—Implications for Global Climate and Air Quality. In Proceedings of the International Symposium on Air Pollution and Climate Change Effects on Forest Ecosystems. Gen. Tech. Rep. PSW-GTR-166; USDA Forest Service: Albany, CA, USA, 1998; pp. 87–94. [Google Scholar]
- Kajii, Y.; Kato, S.; Streets, D.; Nancy, Y.T.; Shvidenko, A.; Nilsson, S.; McCallum, I.; Minko, N.; Abushenko, N.A.; Altyntsev, D.; et al. Boreal forest fires in Siberia in 1998: Estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data. J. Geophys. Res. 2002, 107, ACH 4-1–ACH 4-8. [Google Scholar] [CrossRef]
- Matveeva, T.M.; Matveev, A.M. Wildfires in Mountain Forests of Middle and Southern Taiga; DarMa: Krasnoyarsk, Russia, 2008; 213p. (In Russian) [Google Scholar]
- Zalesov, S.V. Lesnaya Pirologiya (Forest Pyrology); Izdatelstvo UGLTU: Yekaterinburg, Russia, 2013; 332p. (In Russian) [Google Scholar]
- Ivanova, G.A.; Kukavskaya, E.A.; Ivanov, V.A.; Conard, S.G.; McRae, D.J. Fuel characteristics, loads and consumption in Scots pine forests of central Siberia. J. For. Res. 2020, 31, 2507–2524. [Google Scholar] [CrossRef] [Green Version]
Address of the Image | Pre-Fire Image Date | Post-Fire Image Date | |
---|---|---|---|
Path | Row | ||
116 | 15, 18, 19 | 01/09/2019, 17/07/2020, 19/09/2020 | 06/09/2021 |
117 | 17 | 22/07/2019 | 13/09/2021 |
119 | 18 | 22/07/2020 | 10/08/2021, 11/09/2021 |
121 | 16, 17 | 17/05/2020, 21/08/2020, 05/06/2021 | 09/09/2021 |
126 | 14, 17, 18 | 21/07/2019, 24/08/2020, 09/09/2020 | 12/09/2021 |
128 | 13, 18 | 17/06/2019, 22/06/2021 | 26/09/2021 |
130 | 15, 16 | 20/08/2020 | 23/08/2021 |
133 | 16 | 21/05/2020 | 28/08/2021 |
134 | 16 | 13/08/2013 | 16/08/2014, 08/06/2018 |
135 | 17, 18 | 23/08/2020 | 25/07/2021, 26/08/2021 |
137 | 17 | 05/08/2014 | 11/09/2016, 16/06/2019 |
Degree of Fire Impact | Class Number | dNBR Range | Fire Severity |
---|---|---|---|
Low | 1 | <−0.100 | Healthy |
2 | −0.101 … 0.099 | Nonburned vegetation | |
3 | 0.100 … 0.269 | Low severity | |
Moderate | 4 | 0.270 … 0.439 | Moderate-low severity |
5 | 0.440 … 0.659 | Moderate-high severity | |
High | 6 | >0.660 | High severity |
Dominant Tree Stands/Vegetation Types | Fire Events of the Sampling | |||
---|---|---|---|---|
S < 2 × 103 ha | 2 × 103 ha < S < 2 × 104 ha | S > 2 × 104 ha | Total | |
Larch (Larix sibirica, L. dahurica) and Larch sparse | 3 | 5 | 4 | 12 |
Larch and Scots pine (Pinus sylvestris) * | 6 | 7 | 3 | 16 |
Scots pine (Pinus sylvestris) | 1 | 2 | 1 | 4 |
Interface between taiga and tundra, Siberian dwarf pine (Pinus pumila) | 3 | – | – | 3 |
Dark coniferous stands (Pinus sibirica, Abies sibirica, Picea obovata) | – | 3 | – | 3 |
Nonforest types/Tundra | 1 | 1 | – | 2 |
Degree of Fire Impact | In Dense Forest Stands | In Sparse and Tundra | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Low | 37.16 | 17.28 | 30.42 | 7.26 |
Moderate | 38.79 | 6.96 | 57.09 | 7.41 |
High | 24.05 | 11.92 | 12.49 | 7.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponomarev, E.; Zabrodin, A.; Ponomareva, T. Classification of Fire Damage to Boreal Forests of Siberia in 2021 Based on the dNBR Index. Fire 2022, 5, 19. https://doi.org/10.3390/fire5010019
Ponomarev E, Zabrodin A, Ponomareva T. Classification of Fire Damage to Boreal Forests of Siberia in 2021 Based on the dNBR Index. Fire. 2022; 5(1):19. https://doi.org/10.3390/fire5010019
Chicago/Turabian StylePonomarev, Evgenii, Andrey Zabrodin, and Tatiana Ponomareva. 2022. "Classification of Fire Damage to Boreal Forests of Siberia in 2021 Based on the dNBR Index" Fire 5, no. 1: 19. https://doi.org/10.3390/fire5010019
APA StylePonomarev, E., Zabrodin, A., & Ponomareva, T. (2022). Classification of Fire Damage to Boreal Forests of Siberia in 2021 Based on the dNBR Index. Fire, 5(1), 19. https://doi.org/10.3390/fire5010019