BIM-Based Co-Simulation of Fire and Occupants’ Behavior for Safe Construction Rehabilitation Planning
Abstract
:1. Introduction
2. Previous Studies
2.1. Fire Modeling and Simulation
2.2. Evacuation Modeling
2.3. Fire Evacuation Risk Assessment
3. Methodology
3.1. Preparation Phase—Building Examination and Construction Scope Definition and Planning
3.2. Simulation Phase—Fire Modeling and Evacuation Co-Simulation
3.3. Evaluation Phase—Construction Schedule Assessment
4. Case Study
4.1. Building Examination and Scope Definition
4.2. Construction Scope
4.3. Construction Planning
4.4. Fire Scenarios
4.5. Fire Modeling Steps
4.6. Evacuation Modeling
5. Results and Discussion
5.1. Fire and Evacuation Co-Simulations
5.2. Construction Planning Results (Time, Cost and Safety)
5.3. Construction Planning Evaluation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Schedule | Snapshot Duration | ∆T Tot | FR Snapshot | Raw Values | Range Normalization | TCS | Fatality? | Rank | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FR Schedule | Cost | Time | Safety | Cost | Time | |||||||
(Safety) | ||||||||||||
16 | 1 | 1 | 1 | 1.000 | 60 | 65 | 0.000 | 0.000 | 1.000 | 0.300 | No | 1 |
17 | 1 | 1.005 | 1.005 | 7.216 | 160 | 36 | 0.612 | 1.000 | 0.000 | 0.484 | Yes | |
2 | 1.018 | 2.035 | ||||||||||
4 | 1.044 | 4.175 | ||||||||||
18 | 4 | 1.044 | 4.175 | 4.175 | 160 | 36 | 0.313 | 1.000 | 0.000 | 0.394 | No | 4 |
19 | 1 | 1.007 | 1.007 | 7.191 | 160 | 36 | 0.610 | 1.000 | 0.000 | 0.483 | Yes | |
3 | 1.044 | 3.131 | ||||||||||
3 | 1.018 | 3.053 | ||||||||||
20 | 4 | 1.018 | 4.070 | 4.070 | 160 | 36 | 0.302 | 1.000 | 0.000 | 0.391 | No | 3 |
21 | 3 | 1.005 | 3.016 | 11.141 | 160 | 36 | 0.999 | 1.000 | 0.000 | 0.600 | Yes | |
2 | 1.007 | 2.014 | ||||||||||
2 | 1.021 | 2.041 | ||||||||||
4 | 1.018 | 4.070 | ||||||||||
22 | 2 | 1.018 | 2.035 | 6.118 | 160 | 36 | 0.504 | 1.000 | 0.000 | 0.451 | No | 5 |
4 | 1.021 | 4.083 | ||||||||||
23 | 4 | 1.007 | 4.028 | 7.074 | 160 | 36 | 0.598 | 1.000 | 0.000 | 0.480 | Yes | |
1 | 1.005 | 1.005 | ||||||||||
2 | 1.021 | 2.041 | ||||||||||
24 | 4 | 1.021 | 4.083 | 4.083 | 160 | 36 | 0.304 | 1.000 | 0.000 | 0.391 | No | 2 |
25 | 6 | 1.020 | 6.122 | 11.127 | 120 | 36 | 0.998 | 0.600 | 0.000 | 0.479 | Yes | |
4 | 1.000 | 4.000 | ||||||||||
1 | 1.005 | 1.005 | ||||||||||
26 | 6 | 1.028 | 6.167 | 10.170 | 120 | 36 | 0.903 | 0.600 | 0.000 | 0.451 | Yes | |
2 | 1.002 | 2.003 | ||||||||||
2 | 1.000 | 2.000 | ||||||||||
27 | 6 | 1.019 | 6.113 | 11.151 | 120 | 36 | 1.000 | 0.600 | 0.000 | 0.480 | Yes | |
4 | 1.008 | 4.031 | ||||||||||
1 | 1.007 | 1.007 | ||||||||||
28 | 6 | 1.040 | 6.239 | 10.256 | 120 | 36 | 0.912 | 0.600 | 0.000 | 0.454 | Yes | |
2 | 1.006 | 2.012 | ||||||||||
2 | 1.003 | 2.005 | ||||||||||
29 | 6 | 1.000 | 6.000 | 11.102 | 120 | 36 | 0.995 | 0.600 | 0.000 | 0.479 | Yes | |
4 | 1.020 | 4.081 | ||||||||||
1 | 1.021 | 1.021 | ||||||||||
30 | 6 | 1.002 | 6.009 | 10.118 | 120 | 36 | 0.898 | 0.600 | 0.000 | 0.449 | Yes | |
2 | 1.028 | 2.056 | ||||||||||
2 | 1.027 | 2.054 | ||||||||||
31 | 6 | 1.008 | 6.046 | 11.142 | 120 | 36 | 0.999 | 0.600 | 0.000 | 0.480 | Yes | |
4 | 1.019 | 4.075 | ||||||||||
1 | 1.021 | 1.021 | ||||||||||
32 | 6 | 1.006 | 6.036 | 10.151 | 120 | 36 | 0.901 | 0.600 | 0.000 | 0.450 | Yes | |
2 | 1.040 | 2.080 | ||||||||||
2 | 1.018 | 2.035 |
Schedule | Snapshot Duration | ∆T Tot | FR Snapshot | Raw Values | Range Normalization | TCS | Fatality? | Rank | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FR Schedule | Cost | Time | Safety | Cost | Time | |||||||
(Safety) | ||||||||||||
16 | 1 | 1.00 | 1 | 1.000 | 60 | 65 | 0.000 | 0.000 | 1.000 | 0.300 | No | 1 |
17 | 1 | 1.004 | 1.004 | 10.164 | 160 | 36 | 0.629 | 1.000 | 0.000 | 0.489 | Yes | |
2 | 1.493 | 2.985 | ||||||||||
4 | 1.544 | 6.175 | ||||||||||
18 | 4 | 1.544 | 6.175 | 6.175 | 160 | 36 | 0.355 | 1.000 | 0.000 | 0.406 | No | 4 |
19 | 1 | 1.016 | 1.016 | 10.125 | 160 | 36 | 0.626 | 1.000 | 0.000 | 0.488 | Yes | |
3 | 1.544 | 4.631 | ||||||||||
3 | 1.493 | 4.478 | ||||||||||
20 | 4 | 1.493 | 5.970 | 5.970 | 160 | 36 | 0.341 | 1.000 | 0.000 | 0.402 | No | 3 |
21 | 3 | 1.004 | 3.012 | 13.900 | 160 | 36 | 0.885 | 1.000 | 0.000 | 0.565 | Yes | |
2 | 1.016 | 2.032 | ||||||||||
2 | 1.560 | 3.121 | ||||||||||
4 | 1.434 | 5.734 | ||||||||||
22 | 2 | 1.434 | 2.867 | 9.109 | 160 | 36 | 0.556 | 1.000 | 0.000 | 0.467 | No | 5 |
4 | 1.560 | 6.241 | ||||||||||
23 | 4 | 1.016 | 4.065 | 7.986 | 160 | 36 | 0.479 | 1.000 | 0.000 | 0.444 | Yes | |
1 | 1.004 | 1.004 | ||||||||||
2 | 1.458 | 2.917 | ||||||||||
24 | 4 | 1.458 | 5.834 | 5.834 | 160 | 36 | 0.332 | 1.000 | 0.000 | 0.399 | No | 2 |
25 | 6 | 1.761 | 10.565 | 15.580 | 120 | 36 | 1.000 | 0.600 | 0.000 | 0.480 | Yes | |
4 | 1.003 | 4.011 | ||||||||||
1 | 1.004 | 1.004 | ||||||||||
26 | 6 | 1.334 | 8.007 | 12.067 | 120 | 36 | 0.759 | 0.600 | 0.000 | 0.408 | Yes | |
2 | 1.019 | 2.039 | ||||||||||
2 | 1.011 | 2.022 | ||||||||||
27 | 6 | 1.379 | 8.274 | 13.328 | 120 | 36 | 0.846 | 0.600 | 0.000 | 0.434 | Yes | |
4 | 1.009 | 4.038 | ||||||||||
1 | 1.016 | 1.016 | ||||||||||
28 | 6 | 1.430 | 8.582 | 12.609 | 120 | 36 | 0.796 | 0.600 | 0.000 | 0.419 | Yes | |
2 | 1.000 | 2.000 | ||||||||||
2 | 1.014 | 2.028 | ||||||||||
29 | 6 | 1.003 | 6.016 | 14.518 | 120 | 36 | 0.927 | 0.600 | 0.000 | 0.458 | Yes | |
4 | 1.761 | 7.043 | ||||||||||
1 | 1.458 | 1.458 | ||||||||||
30 | 6 | 1.019 | 6.117 | 11.403 | 120 | 36 | 0.713 | 0.600 | 0.000 | 0.394 | Yes | |
2 | 1.334 | 2.669 | ||||||||||
2 | 1.309 | 2.617 | ||||||||||
31 | 6 | 1.009 | 6.056 | 13.133 | 120 | 36 | 0.832 | 0.600 | 0.000 | 0.430 | Yes | |
4 | 1.379 | 5.516 | ||||||||||
1 | 1.560 | 1.560 | ||||||||||
32 | 6 | 1.000 | 6.000 | 11.728 | 120 | 36 | 0.736 | 0.600 | 0.000 | 0.401 | Yes | |
2 | 1.430 | 2.861 | ||||||||||
2 | 1.434 | 2.867 |
Schedule | Snapshot Duration | ∆T Tot | FR Snapshot | Raw Values | Range Normalization | TCS | Fatality? | Rank | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FR Schedule | Cost | Time | Safety | Cost | Time | |||||||
(Safety) | ||||||||||||
16 | 1 | 1.00 | 1 | 1.000 | 60 | 65 | 0.000 | 0.000 | 1.000 | 0.300 | No | 1 |
17 | 1 | 1.005 | 1.005 | 4.175 | 160 | 36 | 0.606 | 1.000 | 0.000 | 0.482 | Yes | |
2 | 1.018 | 2.035 | ||||||||||
4 | 1.044 | 4.175 | ||||||||||
18 | 4 | 1.044 | 4.175 | 4.175 | 160 | 36 | 0.606 | 1.000 | 0.000 | 0.482 | No | 4 |
19 | 1 | 1.007 | 1.007 | 3.131 | 160 | 36 | 0.407 | 1.000 | 0.000 | 0.422 | Yes | |
3 | 1.044 | 3.131 | ||||||||||
3 | 1.018 | 3.053 | ||||||||||
20 | 4 | 1.018 | 4.070 | 4.070 | 160 | 36 | 0.586 | 1.000 | 0.000 | 0.476 | No | 3 |
21 | 3 | 1.005 | 3.016 | 4.070 | 160 | 36 | 0.586 | 1.000 | 0.000 | 0.476 | Yes | |
2 | 1.007 | 2.014 | ||||||||||
2 | 1.021 | 2.041 | ||||||||||
4 | 1.018 | 4.070 | ||||||||||
22 | 2 | 1.018 | 2.035 | 4.083 | 160 | 36 | 0.588 | 1.000 | 0.000 | 0.477 | No | 5 |
4 | 1.021 | 4.083 | ||||||||||
23 | 4 | 1.007 | 4.028 | 4.028 | 160 | 36 | 0.578 | 1.000 | 0.000 | 0.473 | Yes | |
1 | 1.005 | 1.005 | ||||||||||
2 | 1.021 | 2.041 | ||||||||||
24 | 4 | 1.021 | 4.083 | 4.083 | 160 | 36 | 0.588 | 1.000 | 0.000 | 0.477 | No | 2 |
25 | 6 | 1.020 | 6.122 | 6.122 | 120 | 36 | 0.978 | 0.600 | 0.000 | 0.473 | Yes | |
4 | 1.000 | 4.000 | ||||||||||
1 | 1.005 | 1.005 | ||||||||||
26 | 6 | 1.028 | 6.167 | 6.167 | 120 | 36 | 0.986 | 0.600 | 0.000 | 0.476 | Yes | |
2 | 1.002 | 2.003 | ||||||||||
2 | 1.000 | 2.000 | ||||||||||
27 | 6 | 1.019 | 6.113 | 6.113 | 120 | 36 | 0.976 | 0.600 | 0.000 | 0.473 | Yes | |
4 | 1.008 | 4.031 | ||||||||||
1 | 1.007 | 1.007 | ||||||||||
28 | 6 | 1.040 | 6.239 | 6.239 | 120 | 36 | 1.000 | 0.600 | 0.000 | 0.480 | Yes | |
2 | 1.006 | 2.012 | ||||||||||
2 | 1.003 | 2.005 | ||||||||||
29 | 6 | 1.000 | 6.000 | 6.000 | 120 | 36 | 0.954 | 0.600 | 0.000 | 0.466 | Yes | |
4 | 1.020 | 4.081 | ||||||||||
1 | 1.021 | 1.021 | ||||||||||
30 | 6 | 1.002 | 6.009 | 6.009 | 120 | 36 | 0.956 | 0.600 | 0.000 | 0.467 | Yes | |
2 | 1.028 | 2.056 | ||||||||||
2 | 1.027 | 2.054 | ||||||||||
31 | 6 | 1.008 | 6.046 | 6.046 | 120 | 36 | 0.963 | 0.600 | 0.000 | 0.469 | Yes | |
4 | 1.019 | 4.075 | ||||||||||
1 | 1.021 | 1.021 | ||||||||||
32 | 6 | 1.006 | 6.036 | 6.036 | 120 | 36 | 0.961 | 0.600 | 0.000 | 0.468 | Yes | |
2 | 1.040 | 2.080 | ||||||||||
2 | 1.018 | 2.035 |
References
- Campbell, R. Fires in Structures under Construction or Renovation; NFPA: Quincy, MA, USA, 2020. [Google Scholar]
- Leber, F. Renovation and Construction “Are you Ensuring the Safety of Occupants and Contractors?”; Canadian Fire Safety Association: North York, ON, Canada, 2014. [Google Scholar]
- Deere, S.; Xie, H.; Galea, E.R.; Cooney, D.; Lawrence, P.J. An evacuation model validation data-set for high-rise construction sites. Fire Saf. J. 2021, 120, 103118. [Google Scholar] [CrossRef]
- Learn About the Federal Agency Working for a Fire-Safe. U.S. Fire Administration. Available online: https://www.usfa.fema.gov/index.html (accessed on 21 November 2020).
- Moosavi, S.F.; Moselhi, O. Schedule assessment and evaluation. In Proceedings of the Construction Research Congress, West Lafayette, IN, USA, 21–23 May 2012. [Google Scholar]
- Eftekharirad, R.; Nik-Bakht, M.; Hammad, A. Extending IFC for fire emergency real-time management using sensors and occupant information. In Proceedings of the ISARC 2018 34th International Symposium on Automation and Robotics in Construction, Berlin, Germany, 20–25 July 2018. [Google Scholar]
- Cao, S.-C.; Song, W.-G.; Liu, X.-D.; Mu, N. Simulation of pedestrian evacuation in a room under fire emergency. In Proceedings of the 2013 International Conference on Performance-Based Fire and Fire Protection Engineering, Wuhan, China, 16 November 2013. [Google Scholar]
- Shariff, G.N.; Yong, J.C.E.; Salleh, N.; Siow, C.L. Risk assessment of building fire evacuation with stochastic obstructed emergency exit. In Proceedings of the 2019 4th International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), Kedah, Malaysia, 28–29 November 2019. [Google Scholar]
- Lawson, J.R.; Quintiere, J.G. Slide rule estimates of fire growth. Fire Technol. 1985, 21, 267–292. [Google Scholar] [CrossRef]
- Alvares, N.; Fernandez-Pello, A. Fire initiation and spread in overloaded communication system cable trays. Exp. Therm. Fluid Sci. 2000, 21, 51–57. [Google Scholar] [CrossRef]
- Quintiere, J.G. Analytical methods for fire safety design. Fire Technol. 1987, 24, 333–352. [Google Scholar] [CrossRef]
- DRådemar, D.; Blixt, D.; Debrouwere, B.; Melin, B.G.; Purchase, A. Practicalities and Limitations of Coupling FDS with Evacuation Software. 2017. Available online: https://www.wsp.com/-/media/Insights/Sweden/Documents/2018/Practicalities-and-Limitations-of-Coupling-FDS-with-Evacuation-Software.pdf (accessed on 19 November 2020).
- Yayun, W.; Jia, W. Research on public building fire risk assessment control model. In Proceedings of the 2016 Chinese Control. and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016. [Google Scholar]
- Rein, G.; Bar-Ilan, A.; Fernandez-Pello, A.C.; Alvares, N. A comparison of three models for the simulation of accidental fires. J. Fire Prot. Eng. 2006, 16, 183–209. [Google Scholar] [CrossRef]
- Olenick, S.M.; Carpenter, D.J. An updated international survey of computer models for fire and smoke. J. Fire Prot. Eng. 2003, 13, 87–110. [Google Scholar] [CrossRef]
- McGrattan, K.B.; Forney, G.P.; E Floyd, J.; Hostikka, S. Fire Dynamics Simulator (Version 2)-User’s Guide; NIST: Gaithersburg, MD, USA, 2001. [Google Scholar]
- PyroSim User Manual, Thunderhead Engineering. 2020. Available online: https://support.thunderheadeng.com/docs/pyrosim/2020-5/user-manual/ (accessed on 20 November 2020).
- Sun, Q.; Turkan, Y. A BIM-based simulation framework for fire safety management and investigation of the critical factors affecting human evacuation performance. Adv. Eng. Inform. 2020, 44, 101093. [Google Scholar] [CrossRef]
- Li, M.-X.; Zhu, S.-B.; Wang, J.-H.; Zhou, Z. Research on Fire Safety Evacuation in a University Library in Nanjing. Procedia Eng. 2018, 211, 372–378. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, W.C.; Wang, K.C.; Shih, S.Y. Applying building information modeling to support fire safety management. Autom. Constr. 2015, 59, 158–167. [Google Scholar] [CrossRef]
- Eftekharirad, R.; Hosny, A.; Nik-Bakht, M.; Hammad, A. Planning building renovation projects for safe evacuation provisions—An agent-based. In Proceedings of the IPBSA Building Simulation 2019, Rome, Italy, 2–4 September 2019. [Google Scholar]
- Bonabeau, E. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 2002, 99, 7280–7287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathfinder, Thunderhead Engineering. Available online: https://www.thunderheadeng.com/pathfinder/ (accessed on 25 November 2020).
- AnyLogic. Available online: https://www.anylogic.com/ (accessed on 3 December 2020).
- STEPS Simulating Pedestrian Dynamics—Mott MacDonald. Available online: https://www.steps.mottmac.com/steps-dynamics (accessed on 3 December 2020).
- FDS+EVAC, VTT, October 2016. Available online: http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html (accessed on 3 December 2020).
- SFPE Guide to Human Behavior in Fire; Springer International Publishing: New York, NT, USA, 2019.
- Afshar, A.; Zolfaghar Dolabi, H.R. Multi-objective optimization of time-cost-safety using genetic algorithm. Int. J. Optim. Civil. Eng. 2014, 4, 433–450. [Google Scholar]
- Purser, D. ASET and RSET: Addressing some issues in relation to occupant behaviour and tenability. Fire Saf. Sci. 2003, 7, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Pathfinder User Manual, Thunderhead Engineering. 2020. Available online: https://support.thunderheadeng.com/docs/pathfinder/2020-5/user-manual/ (accessed on 22 November 2020).
- Mirahadi, F.; McCabe, B.; Shahi, A. IFC-centric performance-based evaluation of building evacuations using fire dynamics simulation and agent-based modeling. Autom. Constr. 2019, 101, 1–16. [Google Scholar] [CrossRef]
- Ronchi, E.; Arias, S.; La Mendola, S.; Johansson, N. A fire safety assessment approach for evacuation analysis in under-ground physics research facilities. Fire Saf. J. 2019, 108, 102839. [Google Scholar] [CrossRef]
- Gerges, M.; Demian, P.; Adamu, Z. Customising evacuation instructions for high-rise residential occupants to expedite fire egress: Results from agent-based simulation. Fire 2021, 4, 21. [Google Scholar] [CrossRef]
- Wang, N.; Gao, Y.; Li, C.Y.; Gai, W.M. Integrated agent-based simulation and evacuation risk-assessment model for underground building fire: A case study. J. Build. Eng. 2021, 40, 102609. [Google Scholar] [CrossRef]
- Hurley, M.J.; Gottuk, D.T.; Hall, J.R., Jr.; Harada, K.; Kuligowski, E.D.; Puchovsky, M.; Wieczorek, C.J. SFPE Handbook of Fire Protection Engineering; Springer: New York, NY, USA, 2015; Volume 1, p. 3510. [Google Scholar]
- The Ontario Building Code, Occupant Load Determination. 2017. Available online: http://www.buildingcode.online/115.html (accessed on 19 November 2020).
- RSMeans Online, Gordian. 2011. Available online: https://www.rsmeansonline.com/ (accessed on 23 November 2020).
- Hosny, A.; Nik-Bakht, M.; Moselhi, O. Workspace planning in construction: Non-deterministic factors. Autom. Constr. 2020, 116, 103222. [Google Scholar] [CrossRef]
- PyroSim, Thunderhead Engineering. 2020. Available online: https://www.thunderheadeng.com/pyrosim/ (accessed on 25 November 2020).
- PyroSim Tutorials, Thunderhead Engineering. 2020. Available online: https://support.thunderheadeng.com/tutorials/pyrosim/ (accessed on 22 November 2020).
- National Fire Protection Association. Available online: https://www.nfpa.org/ (accessed on 22 November 2020).
- Cortés, D.; Gil, D.; Azorín, J.; Vandecasteele, F.; Verstockt, S. A review of modelling and simulation methods for flashover prediction in confined space fires. Appl. Sci. 2020, 10, 5609. [Google Scholar] [CrossRef]
- Concordia University’s Office of Emergency. Interview with Concordia University Fire Marshall, Fire Evacuation Practices in University Buildings; Concordia University: Montreal, QC, Canada, 2018. [Google Scholar]
- Concordia University. Available online: https://www.concordia.ca/ (accessed on 3 December 2020).
- Pathfinder Technical Reference Manual, Thunderhead Engineering. 2020. Available online: https://support.thunderheadeng.com/docs/pathfinder/2020-5/technical-reference-manual/ (accessed on 1 December 2020).
- Fruin, J.J. Pedestrian Planning and Design; Elevator World: Mobile, AL, USA, 1987. [Google Scholar]
- IMO. IMO Guidelines for Evacuation Analysis for New and Existing Passenger Ships; International Maritime Organization: London, UK, 2007. [Google Scholar]
- Ronchi, E. A research roadmap for evacuation models used in fire safety engineering. In Proceedings of the Fire and Evacuation Modelling Technical Conference, Torremolinos, Spain, 16–18 November 2016. [Google Scholar]
- ISO/TC 92/SC 4/WG 7—Verification and Validation of Calculation Methods, November 2020. Available online: https://www.iso.org/standard/78348.html (accessed on 3 September 2021).
Author (Year) | Simulation Purpose | Simulation Method | Simulation Tool | Impact of Fire on Evacuation | Vertical/Horizontal Modeling |
---|---|---|---|---|---|
Mirhadi et al. (2019) [31] | Evaluating fire-related safety of evacuation in a two-story office building by considering the distance of agents from fire and safe evacuation. | A 6-step framework (EvacuSafe) including BIM, Fire Simulation Module, Path Identification Module, Agent-Based Crowd Simulation Module, Calculation of Risk Indices, and Analysis of Design Scenario | • Fire: CYPECAD MEP (FDS) • Evacuation: MassMotion | Defining open/close schedules of gates for affecting the flow because of fire influence on agents’ behavior | Horizontal and Vertical |
Ronchi et al. (2019) [32] | A complex agent-based evacuation simulation using a simplified egress model and the smoke-filled portions | A multi-model approach including Basic Assumptions (Fire design, Design behavioral scenario, and Boundary conditions); 1D Smoke Propagation (Visibility) and Toxic Species; Simplified Egress Modeling (in smoked filled areas); Arrival Times to Smoke-free Areas; Advanced Egress Modeling (in complex spaces); and Safe Area | • Fire: FDS • Evacuation: Pathfinder (ABM) | Smoke effect on visibility and speed of occupants | Only Horizontal |
Li et al. (2020) [19] | Introducing a method, called FREEgress (Fire Risk Emulated Environment for Egress) to evaluate the impact of three factors: initial fire location; evacuation delay time; and occupants’ behavior) on evacuation process | Generating 30 scenarios based on the initial location of the fire, delay time, and behavior type; Then modeling and running the simulation in the associated software tools | • Fire: Pyrosim • Evacuation: FREEgress (developed based on the SAFEgress software tool) | Impact of fire temperature, toxic gases, and smoke on occupants’ physiology (motion speed and health) and navigation strategy | Only Horizontal |
Q. Sun and Y. Turkan (2020) [18] | Developing a BIM Based framework and implementing FDS and ABM for simulation of fire propagation and evacuation performance | (i) A linear regression between the building design and RSET; (ii) Finding the relationship between the fire growth rate and NFH; and (iii) evaluating the effects of designed model parameters by applying two sample t-tests | • Fire: Pyrosim (FDS) • Evacuation: Anylogic (ABM) | Finding effective escape routes as recommended by evacuation scenarios and hazardous zones as reflected in fire simulation | Only Horizontal |
Eftekharirad, et al. (2019) [21] | Studying the impact of temporary repurposing and changing the layout due to construction, on the fire and evacuation behavior | Using a co-simulation of the fire propagation and agents’ evacuation under the physical constraints of the construction project | • Fire: Pyrosim (FDS) • Evacuation: Pathfinder (ABM) | Temporary blockage of access due to construction and exit blockage due to fire | Only Horizontal |
Gerges et al. (2021) [33] | Develop a BIM Based platform combined with ABM and FDS and sending instructions to the smartphones to improve evacuation from high-rise residential buildings | Using BIM to identify agents’ locations to send them evacuation instructions and simulate them in evacuation software under various scenarios; Then, comparing the regular evacuation time with the constraint evacuation time to evaluate the impact of sending instructions, on the process | • Evacuation: Pathfinder (ABM) | No impact of fire; rather studied the influence of sending instructions to smartphones during the evacuation | Horizontal and Vertical (11-story) |
Wang et al. (2021) [34] | Risk evaluation of underground facilities through a proposed risk-assessment method associated with evacuation in fire | Selecting the most likely ignition source of fire by the proposed ‘multi-exit fire-location-selection method’; Then estimating ASET and RSET as inputs for risk assessment. Calculating associated risk with each area and exit route; Finally, evaluating the overall risk of the entire facility | • Fire: Pyrosim • Evacuation: Pathfinder | Considering the CO concentration and outside temperature caused by fire but not directly in the simulation | Horizontal and Vertical |
Lab | Area (m2) | Max. Capacity * | Existing Capacity * | Extra Capacity due Relocation * | No. Female <30 yrs old | No. Male <30 yrs old | No. Female 30 < F < 50 | No. Male 30 < M < 50 |
---|---|---|---|---|---|---|---|---|
A | 187.46 | 40 | 20 | 20 | 8 | 8 | 2 | 2 |
B | 192.82 | 41 | 20 | 21 | 8 | 8 | 2 | 2 |
C | 187.97 | 40 | 20 | 20 | 8 | 8 | 2 | 2 |
D | 106.47 | 23 | 11 | 12 | 5 | 5 | 0 | 1 |
E | 171.36 | 37 | 19 | 18 | 7 | 8 | 2 | 2 |
F | 136.23 | 29 | 14 | 15 | 5 | 5 | 2 | 2 |
Total | 982.31 | 210 | 104 | 106 | 41 | 42 | 10 | 11 |
Floor Number in Fire Zone | Number of Female < 30 | Number of Male < 30 | Number of 30 < Female < 50 | Number of 30 < Male < 50 | Total |
---|---|---|---|---|---|
8, 9, 10 | 66 | 67 | 17 | 19 | 169 |
# | Activity 1 | Activity 2 | Activity 3 | Activity 4 |
---|---|---|---|---|
1 | B | C | G | I |
2 | B | F | G | I |
3 | A | C | G | I |
4 | A | E | G | I |
5 | A | F | G | I |
6 | B | C | H | I |
7 | B | E | H | I |
8 | B | F | H | I |
9 | A | C | H | I |
10 | A | E | H | I |
11 | A | F | H | I |
12 | B | D | I | N.A. |
13 | A | D | I | N.A. |
14 | B | D | H | N.A. |
15 | A | D | H | N.A. |
16 | B | D | G | N.A. |
17 | B | E | G | N.A. |
18 | A | D | G | N.A. |
No | Fire Location | Intensity | Label |
---|---|---|---|
1 | Exit Door-01 | High | A1 |
2 | Exit Door-01 | Low | A2 |
3 | Exit Door-02 | High | H1 |
4 | Exit Door-02 | Low | H2 |
5 | Exit Door-03 | Low | L |
6 | Exit Door-04 | Low | R |
7 | Spiral | High | Spiral |
Female < 30 (Years Old) | Male <30 | 30 < Female < 50 | 30 < Male < 50 | Crew |
---|---|---|---|---|
0.93–1.55 | 1.11–1.85 | 0.71–1.19 | 0.97–1.62 | 1.11–1.85 |
Schedule Type | Schedule Number | Crew Combination | Total Duration (Days) | Mode cost ($) |
---|---|---|---|---|
1 | Schedule 1 to 16 | 1 crew (lab)–1 crew (corridor) | 65 | 60 |
2 | Schedule 17 to 24 | 2 crew (lab)–1 crew (corridor) | 36 | 120 |
3 | Schedule 25 to 32 | 2 crew (lab)–2 crew (corridor) | 36 | 160 |
Schedule | Snapshot Duration | ∆T Tot | FR Snapshot | Raw Values | Range Normalization | TCS | Fatality? | Rank | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FR Schedule (Safety) | Cost | Time | Safety | Cost | Time | |||||||
16 | 1 | 1.00 | 1.000 | 1 | 60 | 65 | 0.000 | 0.000 | 1.000 | 0.300 | No | 1 |
17 | 1 | 1.00 | 1.004 | 10 | 160 | 36 | 0.629 | 1.000 | 0.000 | 0.489 | Yes | |
2 | 1.49 | 2.985 | ||||||||||
4 | 1.54 | 6.175 | ||||||||||
18 | 4 | 1.54 | 6.175 | 6 | 160 | 36 | 0.355 | 1.000 | 0.000 | 0.406 | No | 4 |
19 | 1 | 1.02 | 1.016 | 10 | 160 | 36 | 0.626 | 1.000 | 0.000 | 0.488 | Yes | |
3 | 1.54 | 4.631 | ||||||||||
3 | 1.49 | 4.478 | ||||||||||
20 | 4 | 1.49 | 5.970 | 6 | 160 | 36 | 0.341 | 1.000 | 0.000 | 0.402 | No | 3 |
21 | 3 | 1.00 | 3.012 | 14 | 160 | 36 | 0.885 | 1.000 | 0.000 | 0.565 | Yes | |
2 | 1.02 | 2.032 | ||||||||||
2 | 1.56 | 3.121 | ||||||||||
4 | 1.43 | 5.734 | ||||||||||
22 | 2 | 1.43 | 2.867 | 9 | 160 | 36 | 0.556 | 1.000 | 0.000 | 0.467 | No | 5 |
4 | 1.56 | 6.241 | ||||||||||
23 | 4 | 1.02 | 4.065 | 8 | 160 | 36 | 0.479 | 1.000 | 0.000 | 0.444 | Yes | |
1 | 1.00 | 1.004 | ||||||||||
2 | 1.46 | 2.917 | ||||||||||
24 | 4 | 1.46 | 5.834 | 6 | 160 | 36 | 0.332 | 1.000 | 0.000 | 0.399 | No | 2 |
25 | 6 | 1.76 | 10.565 | 16 | 120 | 36 | 1.000 | 0.600 | 0.000 | 0.480 | Yes | |
4 | 1.00 | 4.011 | ||||||||||
1 | 1.00 | 1.004 | ||||||||||
26 | 6 | 1.33 | 8.007 | 12 | 120 | 36 | 0.759 | 0.600 | 0.000 | 0.408 | Yes | |
2 | 1.02 | 2.039 | ||||||||||
2 | 1.01 | 2.022 | ||||||||||
27 | 6 | 1.38 | 8.274 | 13 | 120 | 36 | 0.846 | 0.600 | 0.000 | 0.434 | Yes | |
4 | 1.01 | 4.038 | ||||||||||
1 | 1.02 | 1.016 | ||||||||||
28 | 6 | 1.43 | 8.582 | 13 | 120 | 36 | 0.796 | 0.600 | 0.000 | 0.419 | Yes | |
2 | 1.00 | 2.000 | ||||||||||
2 | 1.01 | 2.028 | ||||||||||
29 | 6 | 1.00 | 6.016 | 15 | 120 | 36 | 0.927 | 0.600 | 0.000 | 0.458 | Yes | |
4 | 1.76 | 7.043 | ||||||||||
1 | 1.46 | 1.458 | ||||||||||
30 | 6 | 1.02 | 6.117 | 11 | 120 | 36 | 0.713 | 0.600 | 0.000 | 0.394 | Yes | |
2 | 1.33 | 2.669 | ||||||||||
2 | 1.31 | 2.617 | ||||||||||
31 | 6 | 1.01 | 6.056 | 13 | 120 | 36 | 0.832 | 0.600 | 0.000 | 0.430 | Yes | |
4 | 1.38 | 5.516 | ||||||||||
1 | 1.56 | 1.560 | ||||||||||
32 | 6 | 1.00 | 6.000 | 12 | 120 | 36 | 0.736 | 0.600 | 0.000 | 0.401 | Yes | |
2 | 1.43 | 2.861 | ||||||||||
2 | 1.43 | 2.867 |
Evaluation Method | Min TCS | Max TCS | Average TCS | Preferred Schedule | TCS Value |
---|---|---|---|---|---|
Method A—8th Floor | 0.3 | 0.565 | 0.434 | 24 | 0.399 |
Method A—Whole Building | 0.3 | 0.6 | 0.453 | 20 | 0.391 |
Method B—8th Floor | 0.3 | 0.565 | 0.434 | 24 | 0.399 |
Method B—Whole Building | 0.3 | 0.482 | 0.461 | 20 | 0.476 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shams Abadi, S.T.; Moniri Tokmehdash, N.; Hosny, A.; Nik-Bakht, M. BIM-Based Co-Simulation of Fire and Occupants’ Behavior for Safe Construction Rehabilitation Planning. Fire 2021, 4, 67. https://doi.org/10.3390/fire4040067
Shams Abadi ST, Moniri Tokmehdash N, Hosny A, Nik-Bakht M. BIM-Based Co-Simulation of Fire and Occupants’ Behavior for Safe Construction Rehabilitation Planning. Fire. 2021; 4(4):67. https://doi.org/10.3390/fire4040067
Chicago/Turabian StyleShams Abadi, Seyedeh Tannaz, Nojan Moniri Tokmehdash, Abdelhady Hosny, and Mazdak Nik-Bakht. 2021. "BIM-Based Co-Simulation of Fire and Occupants’ Behavior for Safe Construction Rehabilitation Planning" Fire 4, no. 4: 67. https://doi.org/10.3390/fire4040067
APA StyleShams Abadi, S. T., Moniri Tokmehdash, N., Hosny, A., & Nik-Bakht, M. (2021). BIM-Based Co-Simulation of Fire and Occupants’ Behavior for Safe Construction Rehabilitation Planning. Fire, 4(4), 67. https://doi.org/10.3390/fire4040067