Fire Suppression Impacts on Fuels and Fire Intensity in the Western U.S.: Insights from Archaeological Luminescence Dating in Northern New Mexico
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Archaeological Field Collections
4.2. OSL Methods
4.3. Tree-Ring Methods
4.4. Duff and Litter Fuel Measurement Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sample | Lab | Lab # | Radiocarbon Age (BP) | Calibrated Age (95% CI) |
---|---|---|---|---|
UB51.14C.1A | Keck | 151908 | 520 ± 20 | 1399 to 1437 cal CE |
UB51.14C.1B | Keck | 151909 | 540 ± 20 | 1324 to 1344 cal CE 1394 to 1430 cal CE |
UB51.14C.2 | Keck | 151910 | 535 ± 20 | 1326 to 1342 cal CE 1395 to 1432 cal CE |
UB51.14C.3 | Keck | 151911 | 565 ± 20 | 1315 to 1354 cal CE 1389 to 1417 cal CE |
UB51.14C.4 | Keck | 151912 | 495 ± 15 | 1414 to 1439 cal CE |
Pooled mean | 1407 to 1425 cal CE |
Sample Num. | USU Num. | Sherd Thickness | Num. of Grains a | DE b ± 2σ (Gy) | Age ± 2σ (ka) | Age in Years ±2σ | % Grains Reset c |
---|---|---|---|---|---|---|---|
A. Samples burned by 2012 CE prescribed burn | |||||||
LA 478-HC10 | USU-1923 | 5 mm | 47 (1400) | 0.21 ± 0.13 | 0.04 ± 0.03 | 40 ± 30 | 55% |
LA 478-HC13 | USU-1924 | 6.4 mm | 60 (1300) | 0.017 ± 0.019 | 0.004 ± 0.005 | 4 ± 5 | 60% |
LA 478-HC14 | USU-1925 | 6.8 mm | 77 (1000) | 1.46 ± 1.10 | 0.32 ± 0.24 | 320 ± 240 | 14% |
LA 478-HL19 | USU-1926 | 5.4 mm | 73 (700) | 0.017 ± 0.025 | 0.004 ± 0.006 | 4 ± 6 | 59% |
LA 478-HL20 | USU-1927 | 7.2 mm | 41 (400) | 0.042 ± 0.056 | 0.010 ± 0.014 | 10 ± 14 | 44% |
LA 478-HL24 | USU-1928 | 5.7 mm | 65 (600) | 0.172 ± 0.108 | 0.040 ± 0.026 | 40 ± 26 | 58% |
LA 478-HS2 | USU-1929 | 12.1 mm | 109 (800) | 0.057 ± 0.030 | 0.012 ± 0.007 | 12 ± 14 | 53% |
LA 478-HS3 | USU-1930 | 5.1 mm | 21 (1000) | 0.189 ± 0.207 | 0.042 ± 0.046 | 42 ± 46 | 71% |
LA 478-HS4 | USU-1931 | 7.6 mm | 23 (1200) | 0.48 ± 0.42 | 0.11 ± 0.10 | 110 ± 100 | 57% |
LA 478-HS-6 | USU-2217 | 5.0 mm | 100 (300) | 0.11 ± 0.05 | 0.023 ± 0.012 | 23 ± 12 | 39% |
LA 478-HS-15 | USU-2218 | 6.1 | 237 (600) | 0.06 ± 0.02 | 0.017 ± 0.007 | 17 ± 7 | 38% |
B. Surface samples not burned in 2012 CE (may have burned between 1676 and 1898 CE) | |||||||
LA 478-NM34 | USU-1932 | 10.6 mm | 78 (600) | 2.60 ± 0.16 | 0.55 ± 0.064 | 550 ± 64 | 0% |
LA 478-NM36 | USU-1933 | 9.1 mm | 27 (1300) | 2.58 ± 0.56 | 0.62 ± 0.15 | 620 ± 150 | 0% |
LA 478-NM40 | USU-1934 | 6.1 mm | 15 (2300) | 3.29 ± 0.88 | 0.75 ± 0.21 | 750 ± 210 | 0% |
LA 478-NM41 | USU-1935 | 8.0 mm | 12 (2200) | 2.70 ± 1.12 | 0.59 ± 0.25 | 590 ± 250 | 0% |
LA 478-NM45 | USU-1936 | 7.6 mm | 197 (500) | 3.67 ± 0.12 | 0.79 ± 0.08 | 790 ± 80 | 0% |
LA 478-NM33 | USU-2219 | 5.3 mm | 41 (500) | 2.26 ± 0.18 | 0.54 ± 0.06 | 540 ± 60 | 0% |
LA 478-NM-35 | USU-2220 | 6.9 mm | 272 (300) | 0.030 ± 0.010 | 0.007 ± 0.003 | 7 ± 3 | 15% |
LA 478-NM-37 | USU-2221 | 6.1 mm | 66 (400) | 2.87 ± 0.15 | 0.69 ± 0.09 | 690 ± 90 | 0% |
LA 478-NM 39 | USU-2222 | 7.4 mm | 105 (400) | 3.16 ± 0.14 | 0.74 ± 0.09 | 740 ± 90 | 0% |
LA 478-NM42 | USU-2223 | 4.6 mm | 85 (700) | 3.38 ± 0.21 | 0.74 ± 0.10 | 740 ± 100 | 0% |
LA 478-NM43 | USU-2224 | 8.7 mm | 147 (400) | 2.31 ± 0.11 | 0.54 ± 0.052 | 540 ± 52 | 0% |
C. Samples that have not burned since antiquity | |||||||
LA 478-UB26 | USU-1937 | 5.8 mm | 96 (800) | 2.95 ± 0.19 | 0.61 ± 0.07 | 610 ± 70 | 0% |
LA 478-UB31 | USU-1938 | 5.8 mm | 49 (800) | 2.88 ± 0.22 | 0.55 ± 0.07 | 550 ± 70 | 0% |
LA 478-UB51 | USU-1939 | 5.8 mm | 41 (500) | 3.59 ± 0.40 | 0.72 ± 0.10 | 720 ± 100 | 0% |
LA 478-UB54 | USU-1940 | 5.2 mm | 39 (800) | 3.06 ± 0.32 | 0.59 ± 0.08 | 590 ± 80 | 0% |
LA 478-UP48 | USU-1941 | 6.7 mm | 55 (300) | 3.05 ± 0.19 | 0.62 ± 0.07 | 620 ± 70 | 0% |
LA 478-UB-25 | USU-2225 | 6.0 mm | 120 (400) | 3.53 ± 0.17 | 0.82 ± 0.104 | 820 ± 104 | 0% |
LA 478-UB32 | USU-2226 | 4.9 mm | 15 (600) | 2.52 ± 0.56 | 0.62 ± 0.16 | 620 ± 160 | 0% |
LA 478-UB52 | USU-2227 | 6.2 mm | 155 (400) | 2.94 ± 0.13 | 0.82 ± 0.091 | 820 ± 91 | 0% |
LA 478-UB53 | USU-2228 | 5.7 mm | 89 (700) | 3.37 ± 0.19 | 0.87 ± 0.11 | 870 ± 120 | 0% |
LA 478-UP46 | USU-2229 | 5.9 mm | 22 (900) | 3.82 ± 0.92 | 0.74 ± 0.19 | 740 ± 190 | 0% |
Sample Num. | USU Num. | Sample Type | H2O (%) a | K (%) b | Rb (ppm) b | Th (ppm) b | U (ppm) b |
---|---|---|---|---|---|---|---|
LA 478-HC10 | USU-1923 | soil | 7.8 | 2.49 ± 0.06 | - | 14.0 ± 1.3 | 3.4 ± 0.2 |
sherd | 3.02 ± 0.08 | 193.0 ± 7.7 | 22.1 ± 2.0 | 7.4 ± 0.5 | |||
LA 478-HC13 | USU-1924 | soil | 9.8 | 2.32 ± 0.06 | - | 12.8 ± 1.2 | 3.1 ± 0.2 |
sherd | 2.51 ± 0.06 | 148.5 ± 5.9 | 21.0 ± 1.9 | 5.8 ± 0.4 | |||
LA 478-HC14 | USU-1925 | soil | 10.7 | 2.42 ± 0.06 | - | 13.5 ± 1.2 | 3.2 ± 0.2 |
sherd | 2.50 ± 0.06 | 168.0 ± 6.7 | 25.3 ± 2.3 | 8.2 ± 0.6 | |||
LA 478-HL19 | USU-1926 | soil | 10.3 | 2.53 ± 0.06 | - | 14.4 ± 1.3 | 3.5 ± 0.2 |
sherd | 2.64 ± 0.07 | 122.0 ± 4.9 | 19.0 ± 1.7 | 5.8 ± 0.4 | |||
LA 478-HL20 | USU-1927 | soil | 11.0 | 2.31 ± 0.06 | - | 13.2 ± 1.2 | 2.9 ± 0.2 |
sherd | 2.75 ± 0.07 | 145.5 ± 5.8 | 19.2 ± 1.7 | 5.3 ± 0.4 | |||
LA 478-HL24 | USU-1928 | soil | 10.7 | 2.56 ± 0.06 | - | 15.8 ± 1.4 | 3.5 ± 0.2 |
sherd | 3.00 ± 0.08 | 155.5 ± 6.2 | 17.2 ± 1.5 | 4.1 ± 0.3 | |||
LA 478-HS2 | USU-1929 | soil | 11.8 | 2.42 ± 0.06 | - | 15.2 ± 1.4 | 3.2 ± 0.2 |
sherd | 2.77 ± 0.07 | 177.0 ± 7.1 | 23.9 ± 2.2 | 7.4 ± 0.5 | |||
LA 478-HS3 | USU-1930 | soil | 8.7 | 2.42 ± 0.06 | - | 15.5 ± 1.4 | 3.4 ± 0.2 |
sherd | 3.12 ± 0.08 | 173.5 ± 6.9 | 19.3 ± 1.7 | 4.6 ± 0.3 | |||
LA 478-HS4 | USU-1931 | soil | 9.5 | 2.49 ± 0.06 | - | 15.6 ± 1.4 | 3.4 ± 0.2 |
sherd | 2.71 ± 0.07 | 138.0 ± 5.5 | 15.5 ± 1.4 | 5.2 ± 0.4 | |||
LA 478-NM34 | USU-1932 | soil | 14.8 | 2.56 ± 0.06 | - | 13.8 ± 1.2 | 3.1 ± 0.2 |
sherd | 3.14 ± 0.08 | 173.5 ± 6.9 | 24.4 ± 2.2 | 6.6 ± 0.5 | |||
LA 478-NM36 | USU-1933 | soil | 12.0 | 2.32 ± 0.06 | - | 13.7 ± 1.2 | 3.0 ± 0.2 |
sherd | 2.57 ± 0.06 | 156.5 ± 6.3 | 21.6 ± 1.9 | 5.7 ± 0.4 | |||
LA 478-NM40 | USU-1934 | soil | 13.5 | 2.44 ± 0.06 | - | 14.2 ± 1.3 | 3.2 ± 0.2 |
sherd | 3.14 ± 0.08 | 172.0 ± 6.9 | 20.0 ± 1.8 | 4.8 ± 0.3 | |||
LA 478-NM41 | USU-1935 | soil | 10.3 | 2.52 ± 0.06 | - | 13.4 ± 1.2 | 3.0 ± 0.2 |
sherd | 2.82 ± 0.07 | 177.5 ± 7.1 | 24.7 ± 2.2 | 6.6 ± 0.5 | |||
LA 478-NM45 | USU-1936 | soil | 13.7 | 2.64 ± 0.07 | - | 13.4 ± 1.2 | 3.4 ± 0.2 |
sherd | 3.59 ± 0.09 | 174.0 ± 7.0 | 20.2 ± 1.8 | 3.8 ± 0.3 | |||
LA 478-UB26 | USU-1937 | soil | 12.2 | 2.78 ± 0.07 | - | 13.8 ± 1.2 | 3.3 ± 0.2 |
sherd | 2.60 ± 0.07 | 132.5 ± 5.3 | 18.1 ± 1.6 | 5.1 ± 0.4 | |||
LA 478-UB31 | USU-1938 | soil | 12.3 | 2.53 ± 0.07 | - | 14.4 ± 1.3 | 3.4 ± 0.2 |
sherd | 3.07 ± 0.08 | 194.5 ± 7.8 | 21.9 ± 2.0 | 5.1 ± 0.4 | |||
LA 478-UB51 | USU-1939 | soil | 13.4 | 2.50 ± 0.06 | - | 13.0 ± 1.2 | 2.9 ± 0.2 |
sherd | 3.24 ± 0.08 | 175.0 ± 7.0 | 19.3 ± 1.7 | 4.1 ± 0.3 | |||
LA 478-UB54 | USU-1940 | soil | 10.7 | 2.65 ± 0.07 | - | 12.8 ± 1.1 | 2.9 ± 0.2 |
sherd | 2.93 ± 0.07 | 173.5 ± 6.9 | 21.1 ± 1.9 | 6.3 ± 0.4 | |||
LA 478-UP48 | USU-1941 | soil | 12.9 | 2.58 ± 0.06 | - | 14.1 ± 1.3 | 3.0 ± 0.2 |
sherd | 3.00 ± 0.08 | 164.5 ± 6.6 | 18.3 ± 1.6 | 4.4 ± 0.3 | |||
LA 478-HS-6 | USU-2217 | soil | 11.6 | 2.84 ± 0.07 | - | 16.3 ± 1.5 | 3.4 ± 0.2 |
sherd | 2.66 ± 0.07 | 158.0 ± 6.3 | 22.5 ± 2.0 | 7.3 ± 0.5 | |||
LA 478-HS-15 | USU-2218 | soil | 11.0 | 2.32 ± 0.06 | - | 12.7 ± 1.1 | 3.1 ± 0.2 |
sherd | 2.38 ± 0.06 | 119.5 ± 4.8 | 15.2 ± 1.4 | 3.0 ± 0.2 | |||
LA 478-NM33 | USU-2219 | soil | 9.3 | 2.26 ± 0.06 | - | 12.4 ± 1.1 | 2.9 ± 0.2 |
sherd | 2.59 ± 0.06 | 169.0 ± 6.8 | 24.4 ± 2.2 | 5.6 ± 0.4 | |||
LA 478-NM-35 | USU-2220 | soil | 11.4 | 2.47 ± 0.06 | - | 13.8 ± 1.2 | 3.3 ± 0.2 |
sherd | 2.77 ± 0.07 | 131.0 ± 5.2 | 18.5 ± 1.7 | 3.6 ± 0.3 | |||
LA 478-NM-37 | USU-2221 | soil | 14.5 | 2.53 ± 0.06 | - | 14.3 ± 1.3 | 3.5 ± 0.2 |
sherd | 3.00 ± 0.08 | 149.0 ± 6.0 | 17.9 ± 1.6 | 4.2 ± 0.3 | |||
LA 478-NM 39 | USU-2222 | soil | 10.5 | 2.47 ± 0.06 | - | 13.4 ± 1.2 | 2.8 ± 0.2 |
sherd | 2.66 ± 0.07 | 139.5 ± 5.6 | 19.9 ± 1.8 | 6.2 ± 0.4 | |||
LA 478-NM42 | USU-2223 | soil | 10.9 | 2.52 ± 0.06 | - | 13.8 ± 1.2 | 3.1 ± 0.2 |
sherd | 2.65 ± 0.07 | 178.0 ± 7.1 | 25.2 ± 2.3 | 7.5 ± 0.5 | |||
LA 478-NM43 | USU-2224 | soil | 13.8 | 2.53 ± 0.06 | - | 13.9 ± 1.2 | 3.1 ± 0.2 |
sherd | 2.93 ± 0.07 | 149.5 ± 6.0 | 21.0 ± 1.9 | 5.0 ± 0.4 | |||
LA 478-UB-25 | USU-2225 | soil | 14.5 | 2.98 ± 0.07 | - | 14.4 ± 1.3 | 3.4 ± 0.2 |
sherd | 3.17 ± 0.08 | 140.5 ± 5.6 | 17.6 ± 1.6 | 3.9 ± 0.3 | |||
LA 478-UB32 | USU-2226 | soil | 17.5 | 2.98 ± 0.07 | - | 14.4 ± 1.3 | 3.4 ± 0.2 |
sherd | 2.85 ± 0.07 | 155.5 ± 6.2 | 16.1 ± 1.4 | 4.6 ± 0.3 | |||
LA 478-UB52 | USU-2227 | soil | 6.6 | 2.53 ± 0.06 | - | 13.0 ± 1.2 | 3.0 ± 0.2 |
sherd | 2.44 ± 0.06 | 94.0 ± 3.8 | 13.4 ± 1.2 | 2.9 ± 0.2 | |||
LA 478-UB53 | USU-2228 | soil | 10.1 | 2.54 ± 0.06 | - | 14.3 ± 1.3 | 3.2 ± 0.2 |
sherd | 2.64 ± 0.07 | 138.0 ± 5.5 | 14.3 ± 1.3 | 3.9 ± 0.3 | |||
LA 478-UP46 | USU-2229 | soil | 12.0 | 2.53 ± 0.06 | - | 10.5 ± 0.9 | 2.4 ± 0.2 |
sherd | 2.78 ± 0.07 | 182.5 ± 7.3 | 29.8 ± 2.7 | 11.2 ± 0.8 |
Sample Num. | USU Num. | Betaa (Sherd) (Gy/Kyr) | Gamma b (Sherd) (Gy/Kyr) | Gamma c (Soil) (Gy/Kyr) | Cosmic d (Gy/Kyr) | Total Dose Rate (Gy/Kyr) |
---|---|---|---|---|---|---|
LA 478-HC10 | USU-1923 | 3.56 | 0.23 | 0.73 | 0.33 | 4.85 ± 0.33 |
LA 478-HC13 | USU-1924 | 2.94 | 0.21 | 0.66 | 0.33 | 4.14 ± 0.26 |
LA 478-HC14 | USU-1925 | 3.29 | 0.27 | 0.68 | 0.33 | 4.57 ± 0.37 |
LA 478-HL19 | USU-1926 | 2.97 | 0.20 | 0.73 | 0.33 | 4.23 ± 0.24 |
LA 478-HL20 | USU-1927 | 2.98 | 0.22 | 0.64 | 0.33 | 4.17 ± 0.24 |
LA 478-HL24 | USU-1928 | 2.99 | 0.18 | 0.76 | 0.33 | 4.26±0.22 |
LA 478-HS2 | USU-1929 | 3.34 | 0.34 | 0.68 | 0.33 | 4.69 ± 0.34 |
LA 478-HS3 | USU-1930 | 3.21 | 0.19 | 0.75 | 0.33 | 4.48 ± 0.25 |
LA 478-HS4 | USU-1931 | 2.89 | 0.20 | 0.74 | 0.33 | 4.16 ± 0.21 |
LA 478-NM34 | USU-1932 | 3.45 | 0.31 | 0.67 | 0.33 | 4.76 ± 0.33 |
LA 478-NM36 | USU-1933 | 2.94 | 0.25 | 0.65 | 0.33 | 4.17 ± 0.26 |
LA 478-NM40 | USU-1934 | 3.17 | 0.21 | 0.69 | 0.33 | 4.40 ± 0.26 |
LA 478-NM41 | USU-1935 | 3.32 | 0.27 | 0.68 | 0.33 | 4.60 ± 0.33 |
LA 478-NM45 | USU-1936 | 3.37 | 0.23 | 0.69 | 0.33 | 4.62 ± 0.27 |
LA 478-UB26 | USU-1937 | 2.87 | 0.19 | 1.48 | 0.33 | 4.87 ± 0.24 |
LA 478-UB31 | USU-1938 | 3.23 | 0.21 | 1.43 | 0.33 | 5.20 ± 0.29 |
LA 478-UB51 | USU-1939 | 3.15 | 0.19 | 1.32 | 0.32 | 4.98 ± 0.26 |
LA 478-UB54 | USU-1940 | 3.28 | 0.21 | 1.37 | 0.33 | 5.19 ± 0.30 |
LA 478-UP48 | USU-1941 | 3.01 | 0.20 | 1.38 | 0.33 | 4.92 ± 0.24 |
LA 478-HS-6 | USU-2217 | 3.22 | 0.22 | 0.80 | 0.33 | 4.57 ± 0.34 |
LA 478-HS-15 | USU-2218 | 2.37 | 0.15 | 0.65 | 0.33 | 3.50 ± 0.23 |
LA 478-NM33 | USU-2219 | 3.01 | 0.21 | 0.63 | 0.33 | 4.18 ± 0.22 |
LA 478-NM-35 | USU-2220 | 2.78 | 0.19 | 0.69 | 0.33 | 3.99 ± 0.27 |
LA 478-NM-37 | USU-2221 | 2.94 | 0.19 | 0.71 | 0.33 | 4.17 ± 0.33 |
LA 478-NM 39 | USU-2222 | 3.05 | 0.23 | 0.66 | 0.33 | 4.28 ± 0.30 |
LA 478-NM42 | USU-2223 | 3.31 | 0.22 | 0.70 | 0.33 | 4.57 ± 0.34 |
LA 478-NM43 | USU-2224 | 3.07 | 0.24 | 0.67 | 0.33 | 4.31 ± 0.34 |
LA 478-UB-25 | USU-2225 | 3.01 | 0.19 | 0.76 | 0.33 | 4.29 ± 0.33 |
LA 478-UB32 | USU-2226 | 2.80 | 0.16 | 0.75 | 0.33 | 4.04 ± 0.36 |
LA 478-UB52 | USU-2227 | 2.42 | 0.15 | 0.69 | 0.33 | 3.59 ± 0.18 |
LA 478-UB53 | USU-2228 | 2.65 | 0.16 | 0.72 | 0.33 | 3.86 ± 0.24 |
LA 478-UP46 | USU-2229 | 3.91 | 0.30 | 0.60 | 0.33 | 5.14 ± 0.44 |
References
- Stephens, S.L.; Collins, B.M.; Biber, E.; Fulé, P.Z. U.S. federal fire and forest policy: Emphasizing resilience in dry forests. Ecosphere 2016, 7, e01584. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed]
- Marlon, J.R.; Bartlein, P.J.; Gavin, D.G.; Long, C.J.; Anderson, R.S.; Briles, C.E.; Brown, K.J.; Colombaroli, D.; Hallett, D.J.; Power, M.J.; et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 2012, 109, E535–E543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swetnam, T.W.; Farella, J.; Roos, C.I.; Liebmann, M.J.; Falk, D.A.; Allen, C.D. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150168. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, A.P.; Spies, T.A.; Steelman, T.A.; Moseley, C.; Johnson, B.R.; Bailey, J.D.; Ager, A.A.; Bourgeron, P.; Charnley, S.; Collins, B.M.; et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 2016, 14, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Rhodes, E.J. Optically Stimulated Luminescence Dating of Sediments over the Past 200,000 Years. Annu. Rev. Earth Planet. Sci. 2011, 39, 461–488. [Google Scholar] [CrossRef] [Green Version]
- Roberts, R.G.; Jacobs, Z.; Li, B.; Jankowski, N.R.; Cunningham, A.C.; Rosenfeld, A.B. Optical dating in archaeology: Thirty years in retrospect and grand challenges for the future. J. Archaeol. Sci. 2015, 56, 41–60. [Google Scholar] [CrossRef] [Green Version]
- Elliott, M.L. Large Pueblo Sites Near Jemez Springs, New Mexico; Santa Fe National Forest: Santa Fe, NM, USA, 1982.
- Kulisheck, J. ‘Like Butterflies on a Mounting Board’ Pueblo Mobility and Demography before 1825 Jeremy Kulisheck. In Across A Great Divide: Continuity and Change in Native North American Societies, 1400–1900; Schieber, L.L., Mitchell, M.D., Eds.; University of Arizona Press: Tucson, AZ, USA, 2010; pp. 174–191. [Google Scholar]
- Liebmann, M.J.; Farella, J.; Roos, C.I.; Stack, A.; Martini, S.; Swetnam, T.W. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492–1900 CE. Proc. Natl. Acad. Sci. USA 2016, 113, E696–E704. [Google Scholar] [CrossRef] [Green Version]
- Falk, D.A.; Heyerdahl, E.K.; Brown, P.M.; Farris, C.; Fulé, P.Z.; McKenzie, D.; Swetnam, T.W.; Taylor, A.H.; van Horne, M.L. Multi-scale controls of historical forest-fire regimes: New insights from fire-scar networks. Front. Ecol. Environ. 2011, 9, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.D.; Savage, M.; Falk, D.A.; Suckling, K.F.; Swetnam, T.W.; Schulke, T.; Stacey, P.B.; Morgan, P.; Hoffman, M.; Klingel, J.T. Ecological restoration of Southwestern ponderosa pine ecosystems. Ecol. Appl. 2002, 12, 1418–1433. [Google Scholar] [CrossRef]
- Covington, W.W.; Moore, M.M. Southwestern ponderosa pine forest structure and resource conditions: Changes since Euro-American settlement. J. For. 1994, 92, 39–47. [Google Scholar] [CrossRef]
- Allen, C.D.; Anderson, R.S.; Jass, R.B.; Toney, J.L.; Baisan, C.H. Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites. Int. J. Wildland Fire 2008, 17, 115–130. [Google Scholar] [CrossRef]
- Farella, J. Terminus Ante Quem Constraint of Pueblo Occupation Periods in the Jemez Province, New Mexico; University of Arizona: Tucson, AZ, USA, 2015. [Google Scholar]
- Sackett, S.S. Natural Fuel Loadings in Ponderosa Pine and Mixed Conifer Forests of the Southwest; USDA Forest Service—Rocky Mountain Research Station: Fort Collins, CO, USA, 1979; Volume RM-213.
- Covington, W.W.; Sackett, S.S. Effect of Periodic Burning on Soil Nitrogen Concentrations in Ponderosa Pine. Soil Sci. Soc. Am. J. 1986, 50, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Covington, W.W.; Moore, M.M. Post settlement changes in natural fire regimes and forest structure: Ecological restoration of old-growth ponderosa pine forests. J. Sustain. For. 1994, 2, 153–181. [Google Scholar] [CrossRef]
- Ideker, C.J.; Finley, J.B.; Rittenour, T.M.; Nelson, M.S. Single-grain optically stimulated luminescence dating of quartz temper from prehistoric Intermountain Ware ceramics, northwestern Wyoming, USA. Quat. Geochronol. 2017, 42, 42–55. [Google Scholar] [CrossRef]
- Rowlett, R.M. Ceramic Thermoluminescence Response Effects after the La Mesa Forest Fire, Bandelier National Monument. Archaeol. Mont. 1991, 32, 49–56. [Google Scholar]
- Herbert, J.M.; Feathers, J.K. Luminescence Dating Sandhills Ceramics: A Review. North Carol. Archaeol. 2015, 64, 68–103. [Google Scholar]
- Marlon, J.R.; Bartlein, P.J.; Carcaillet, C.; Gavin, D.G.; Harrison, S.P.; Higuera, P.E.; Joos, F.; Power, M.J.; Prentice, I.C. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 2008, 1, 697–702. [Google Scholar] [CrossRef]
- Roos, C.I.; Swetnam, T.W. A 1416-year reconstruction of annual, multi-decadal, and centennial variability in area burned for ponderosa pine forests of the southern Colorado Plateau region, Southwest US. Holocene 2012, 22, 281–290. [Google Scholar] [CrossRef]
- Odion, D.C.; Hanson, C.T.; Arsenault, A.; Baker, W.L.; Dellasala, D.A.; Hutto, R.L.; Klenner, W.; Moritz, M.A.; Sherriff, R.L.; Veblen, T.T.; et al. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America. PLoS ONE 2014, 9, e87852. [Google Scholar] [CrossRef] [Green Version]
- Balch, J.K.; Schoennagel, T.; Williams, A.P.; Abatzoglou, J.T.; Cattau, M.E.; Mietkiewicz, N.P.; St. Denis, L.A. Switching on the Big Burn of 2017. Fire 2018, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Kolden, C.A. We’re Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risk. Fire 2019, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef] [PubMed]
- Borchers Arriagada, N.; Bowman, D.M.J.S.; Palmer, A.J.; Johnston, F.H. Climate Change, Wildfires, Heatwaves and Health Impacts in Australia. In Extreme Weather Events and Human Health: International Case Studies; Akhtar, R., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 99–116. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Moreira-Muñoz, A.; Kolden, C.A.; Chávez, R.O.; Muñoz, A.A.; Salinas, F.; González-Reyes, Á.; Rocco, R.; de la Barrera, F.; Williamson, G.J.; et al. Human–Environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 2019, 48, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Kolden, C.A.; Williams, A.P.; Lutz, J.A.; Smith, A.M.S. Climatic influences on interannual variability in regional burn severity across western US forests. Int. J. Wildland Fire 2017, 26, 269–275. [Google Scholar] [CrossRef]
- Keyser, A.; Westerling, A.L. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States. Environ. Res. Lett. 2017, 12, 065003. [Google Scholar] [CrossRef]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Kolden, C.A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; McIver, J.D.; Metlen, K.; et al. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecol. Appl. 2009, 19, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.M.S.; Kolden, C.A.; Bowman, D.M.J.S. Biomimicry can help humans to coexist sustainably with fire. Nat. Ecol. Evol. 2018, 2, 1827–1829. [Google Scholar] [CrossRef] [PubMed]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duller, G.A.T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 2003, 37, 161–165. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Bøtter-Jensen, L.; Andersen, C.E.; Duller, G.A.T.; Murray, A.S. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiat. Meas. 2003, 37, 535–541. [Google Scholar] [CrossRef]
- Galbraith, R.F.; Roberts, R.G. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quat. Geochronol. 2012, 11, 1–27. [Google Scholar] [CrossRef]
- Arnold, L.J.; Roberts, R.G.; Galbraith, R.F.; DeLong, S.B. A revised burial dose estimation procedure for optical dating of young and modern-age sediments. Quat. Geochronol. 2009, 4, 306–325. [Google Scholar] [CrossRef]
- Guérin, G.; Mercier, N.; Adamiec, G. Dose-rate conversion factors: Update. Anc. TL 2011, 29, 5–8. [Google Scholar]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Aitken, M.J. Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Dieterich, J.H.; Swetnam, T.W. Dendrochronology of a fire scarred ponderosa pine. For. Sci. 1984, 30, 238–247. [Google Scholar] [CrossRef]
- Garlough, E.C.; Keyes, C.R. Influences of moisture content, mineral content and bulk density on smouldering combustion of ponderosa pine duff mounds. Int. J. Wildland Fire 2011, 20, 589–596. [Google Scholar] [CrossRef]
- Van Wagtendonk, J.W.; Benedict, J.M.; Sydoriak, W.M. Fuel Bed Characteristics of Sierra Nevada Conifers. West. J. Appl. For. 1998, 13, 73–84. [Google Scholar] [CrossRef]
- Duller, G.A.T. Single-grain optical dating of Quaternary sediments: Why aliquot size matters in luminescence dating. Boreas 2008, 37, 589–612. [Google Scholar] [CrossRef]
- Aitken, M.J. Thermoluminescence Dating; Academic Press: London, UK, 1985. [Google Scholar]
- Prescott, J.R.; Hutton, J.T. Environmental dose rates and radioactive disequilibrium from some Australian luminescence dating sites. Quat. Sci. Rev. 1995, 14, 439–448. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roos, C.I.; Rittenour, T.M.; Swetnam, T.W.; Loehman, R.A.; Hollenback, K.L.; Liebmann, M.J.; Rosenstein, D.D. Fire Suppression Impacts on Fuels and Fire Intensity in the Western U.S.: Insights from Archaeological Luminescence Dating in Northern New Mexico. Fire 2020, 3, 32. https://doi.org/10.3390/fire3030032
Roos CI, Rittenour TM, Swetnam TW, Loehman RA, Hollenback KL, Liebmann MJ, Rosenstein DD. Fire Suppression Impacts on Fuels and Fire Intensity in the Western U.S.: Insights from Archaeological Luminescence Dating in Northern New Mexico. Fire. 2020; 3(3):32. https://doi.org/10.3390/fire3030032
Chicago/Turabian StyleRoos, Christopher I., Tammy M. Rittenour, Thomas W. Swetnam, Rachel A. Loehman, Kacy L. Hollenback, Matthew J. Liebmann, and Dana Drake Rosenstein. 2020. "Fire Suppression Impacts on Fuels and Fire Intensity in the Western U.S.: Insights from Archaeological Luminescence Dating in Northern New Mexico" Fire 3, no. 3: 32. https://doi.org/10.3390/fire3030032
APA StyleRoos, C. I., Rittenour, T. M., Swetnam, T. W., Loehman, R. A., Hollenback, K. L., Liebmann, M. J., & Rosenstein, D. D. (2020). Fire Suppression Impacts on Fuels and Fire Intensity in the Western U.S.: Insights from Archaeological Luminescence Dating in Northern New Mexico. Fire, 3(3), 32. https://doi.org/10.3390/fire3030032