Long-Term Effects of Repeated Prescribed Fire and Fire Surrogate Treatments on Forest Soil Chemistry in the Southern Appalachian Mountains (USA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Treatment Descriptions
2.3. Soil Sampling, Processing, and Analyses
2.4. Statistical Analyses
3. Results
3.1. O horizon Carbon, Nitrogen, and C:N
3.2. Mineral Soil Carbon, Nitrogen, and C:N
3.3. Mineral Soil Macronutrients and pH
4. Discussion
4.1. Temporal and Spatial Variability of Soil Properties and Fire Effects
4.2. Management Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland Fire in Ecosystems: Effects of Fire on Soils and Water; General Technical Report RMRS-GTR-42; USDA Forest Service Rocky Mountain Research Station: Ogden, UT, USA, 2005; Volume 4, Available online: https://www.fs.fed.us/rm/pubs/rmrs_gtr042_4.pdf (accessed on 5 April 2020).
- Boerner, R.E.J. Soil, Fire, Water, and Wind: How the Elements Conspire in the Forest Context; General Technical Report NRS-P-1; USDA Forest Service Northern Research Station: Newtown Square, PA, USA, 2006; Available online: https://www.nrs.fs.fed.us/pubs/gtr/gtr_nrs-p1/boerner_p1_104.pdf (accessed on 6 April 2020).
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 2011, 21, 1189–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santin, C.; Doerr, S.H. Fire effects on soils: The human dimension. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Ubeda, X. Effects of prescribed fire on soil properties: A review. Sci. Total Environ. 2017, 613, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Coates, T.A.; Hagan, D.L.; Aust, W.M.; Johnson, A.; Keen, J.C.; Chow, A.T.; Dozier, J.H. Mineral soil chemical properties as influenced by long-term use of prescribed fire with differing frequencies in a southeastern Coastal Plain pine forest. Forests 2018, 9, 739. [Google Scholar] [CrossRef] [Green Version]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- McKee, W.H. Changes in Soil Fertility Following Prescribed Burning on Coastal Plain Pine Sites; Research Paper RE-234; USDA Forest Service Southern Forest Experiment Station: Asheville, NC, USA, 1982. [Google Scholar] [CrossRef]
- Stephens, S.L.; McIver, J.D.; Boerner, R.E.J.; Fettig, C.J.; Fontaine, J.B.; Hartsough, B.R.; Kennedy, P.L.; Schwilk, D.W. The effects of forest fuel-reduction treatments in the United States. Bioscience 2012, 62, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, M.; Howes, C.G.; VanInsberghe, D.; Yu, H.; Bachar, D.; Christen, R.; Nilsson, R.H.; Hallam, S.J.; Mohn, W.M. Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests. ISME J. 2012, 6, 2199–2218. [Google Scholar] [CrossRef] [Green Version]
- Wells, C.G.; Campbell, R.E.; DeBano, L.F.; Lewis, C.E.; Frederickson, R.L.; Franklin, E.C.; Froelich, R.C.; Dunn, P.H. Effects of Fire on Soil: A State-of-the-Knowledge Review; General Technical Report WO-7; USDA Forest Service Washington Office: Washington, DC, USA, 1979. [Google Scholar]
- Waldrop, T.A.; Hagan, D.L.; Simon, D.M. Repeated application of fuel reduction treatments in the southern Appalachian Mountains, USA: Implications for achieving management goals. Fire Ecol. 2016, 12, 28–47. [Google Scholar] [CrossRef] [Green Version]
- Coates, T.A.; Shelburne, V.B.; Waldrop, T.A.; Smith, B.R.; Hill, H.S., Jr.; Simon, D.M. Forest soil response to fuel reduction treatments in the southern Appalachian Mountains. In Proceedings of the 14th Biennial Southern Silvicultural Research Conference, Athens, GA, USA, 26 February–1 March 2007; Stanturf, J.A., Ed.; USDA Forest Service Southern Research Station: Asheville, NC, USA, 2010; pp. 283–287. Available online: https://www.srs.fs.fed.us/pubs/gtr/gtr_srs121/gtr_srs121_283.pdf (accessed on 7 April 2020).
- Oakman, E.C.; Hagan, D.L.; Waldrop, T.A.; Barrett, K. Understory vegetation responses to 15 years of repeated fuel reduction treatments in the southern Appalachian Mountains, USA. Forests 2019, 10, 350. [Google Scholar] [CrossRef] [Green Version]
- Boerner, R.E.J.; Coates, T.A.; Yaussy, D.A.; Waldrop, T.A. Assessing ecosystem restoration alternatives in Eastern deciduous forests: The view from belowground. Restor. Ecol. 2008, 16, 425–434. [Google Scholar] [CrossRef]
- Aber, J.D.; Nadelhoffer, P.; Steudler, P.; Melillo, J.M. Nitrogen saturation in northern forest ecosystems. Bioscience 1989, 39, 378–386. Available online: http://www.jstor.org/stable/1311067 (accessed on 7 April 2020). [CrossRef]
- Vogt, K.A.; Publicover, D.A.; Vogt, D.J. A critique of the role of ectomycorrhizas in forest ecology. Agric. Ecosyst. Environ. 1991, 35, 171–180. [Google Scholar] [CrossRef]
- Peterjohn, W.T.; Foster, C.J.; Christ, M.J.; Adams, M.B. Patterns of nitrogen availability within a forested watershed exhibiting symptoms of nitrogen saturation. For. Ecol. Manag. 1999, 119, 247–257. [Google Scholar] [CrossRef]
- Coates, T.A. Response of Forest Soil Resources to Fuel Reduction in the Southeastern Piedmont and Southern Appalachian Mountains. Master’s Thesis, Clemson University, Clemson, SC, USA, 2006. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 3; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. Available online: https://dl.sciencesocieties.org/publications/books/abstracts/sssabookseries/methodsofsoilan3/961 (accessed on 8 April 2020).
- Mehlich, A. Mehlich 3 soil test extractant: A modification of the Mehlich 2 extractant. Commun. Soil Sci. Plan. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Boss, C.B.; Freeden, K.J. Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry, 3rd ed.; Perkin Elmer Life and Analytical Sciences: Sheldon, CT, USA, 2004. [Google Scholar]
- McLean, E.O. Soil pH and lime requirements. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties; Page, A.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Pelligrini, A.; Ahlstrom, A.; Hobbie, S.; Reich, P.; Nieradzik, L.; Stayer, A.; Scharenbroch, B.; Jumpponen, A.; Anderegg, W.; Randerson, J.; et al. Fire frequency drives decadal changes in soil carbon and nitrogen in ecosystem productivity. Nature 2017, 553, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Tierney, J.A.; Hedin, L.O.; Wurzburger, N. Nitrogen fixation does not balance fire-induced nitrogen losses in longleaf pine savannas. Ecology 2019, 100, e02735. [Google Scholar] [CrossRef]
- Taylor, Q.A.; Midgley, M.G. Prescription side effects: Long-term, high frequency controlled burning enhances nitrogen availability in an Illinois oak-dominated forest. For. Ecol. Manag. 2018, 411, 82–89. [Google Scholar] [CrossRef]
- Waldrop, T.A.; Goodrick, S.L. Introduction to Prescribed Fires in Southern Ecosystems; Science Update SRS-054; USDA Forest Service Southern Research Station: Asheville, NC, USA, 2012. Available online: https://www.srs.fs.usda.gov/pubs/41316 (accessed on 6 April 2020).
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; Dover Earth Science: North Chelmsford, MA, USA, 1941; p. 281. [Google Scholar]
- Coates, T.A.; Johnson, A.; Aust, W.M.; Hagan, D.L.; Chow, A.T.; Trettin, C. Forest composition, fuel loading, and soil chemistry resulting from 50 years of forest management in two southeastern Coastal Plain watersheds, USA. For. Ecol. Manag. 2010. in review. [Google Scholar]
- Hiers, J.K.; O’Brien, J.J.; Varner, J.M.; Butler, B.W.; Dickinson, M.; Furman, J.; Gallagher, M.; Godwin, D.; Goodrick, S.L.; Hood, S.M.; et al. Prescribed fire science: The case for a refined research agenda. Fire Ecol. 2020, 16, 11. [Google Scholar] [CrossRef] [Green Version]
- Knoepp, J.D.; Swank, W.T. Site preparation burning to improve southern Appalachian pine-hardwood stands: Nitrogen responses in soil, soil water, and streams. Can. J. For. Res. 1993, 23, 2263–2270. [Google Scholar] [CrossRef]
- Williams, R.J.; Hallgren, S.W.; Wilson, G.W.T. Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. For. Ecol. Manag. 2012, 265, 241–247. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Nix, B.; Jacobs, K.A.; Bowles, M.L. Two decades of low-severity prescribed fire increases soil nutrient availability in a midwestern USA oak (Quercus) forest. Geoderma 2012, 183–184, 80–91. [Google Scholar] [CrossRef]
- Lavoie, M.; Starr, G.; Mack, M.C.; Martin, T.A.; Gholz, H.L. Effects of a prescribed fire on understory vegetation, carbon pools, and soil nutrients in a longleaf pine-slash pine forest in Florida. Nat. Areas J. 2010, 30, 82–94. [Google Scholar] [CrossRef]
- Brye, K.R. Soil physiochemical changes following 12 years of annual burning in a humid-subtropical tallgrass prairie: A hypothesis. Acta Oecol. 2006, 30, 407–413. [Google Scholar] [CrossRef]
- Boerner, R.E.J.; Brinkman, J.A.; Yaussy, D.A. Ecosystem restoration treatments affect soil physical and chemical properties in Appalachian mixed oak forests. In Proceedings of the 15th Central Hardwood Forest Conference, Knoxville, TN, USA, 21 February–1 March 2006; Buckley, D.S., Clatterbuck, W.K., Eds.; USDA Forest Service Southern Research Station e-General Technical Report e-GTR-SRS-101. USDA Forest Service Southern Research Station: Asheville, NC, USA, 2007; pp. 107–115. Available online: https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs101/gtr_srs101-13.pdf (accessed on 5 April 2020).
- Waldrop, T.A.; Van Lear, D.H.; Lloyd, F.T.; Harms, W.R. Long-Term Studies of Prescribed Burning in Loblolly Pine Forests of the Southeastern Coastal Plain; General Technical Report SE-45; USDA Forest Service Southeastern Forest Experiment Station: Asheville, NC, USA, 1987. [Google Scholar] [CrossRef] [Green Version]
- Mohr, H.H.; Waldrop, T.A.; Rideout-Hanzak, S.; Phillips, R.J.; Flint, C.T. Effectiveness of Fire and Fire Surrogate Treatments for Controlling Wildfire Behavior in Piedmont Forests: A Simulation Study; General Technical Report SRS-GTR-71, 71-73; USDA Forest Service Southern Research Station: Asheville, NC, USA, 2004. Available online: https://www.fs.usda.gov/treesearch/pubs/6609 (accessed on 6 April 2020).
- Kawaguchi, H.; Yoda, K. Carbon-cycling changes during regeneration of a deciduous broadleaf forest after clear-cutting. II. Aboveground net production. Ecol. Res. 1989, 4, 271–286. [Google Scholar] [CrossRef]
- Knoepp, J.D.; Swank, W.T. Forest management effects on surface soil carbon and nitrogen. Soil Sci. Soc. Am. J. 1997, 61, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils, 4th ed.; John-Wiley & Sons: Chichester, UK, 2013; pp. 8–20. [Google Scholar]
- Brose, P.H.; Dey, D.C.; Phillips, R.J.; Waldrop, T.A. A meta-analysis of the fire-oak hypothesis: Does prescribed burning promote oak reproduction in eastern North America? For. Sci. 2013, 59, 322–334. Available online: https://www.fs.usda.gov/treesearch/pubs/43818 (accessed on 7 April 2020). [CrossRef] [Green Version]
- Keyser, T.L.; Greenberg, C.H.; McNab, W.H. Season of burn effects on vegetation structure and composition in oak-dominated Appalachian hardwood forests. For. Ecol. Manag. 2019, 433, 441–452. [Google Scholar] [CrossRef]
- Van Lear, D.H.; Brose, P.H.; Keyser, P.D. Using prescribed fire to regenerate oaks. In Proceedings of the Workshop on Fire, People, and the Central Hardwoods Landscape, Richmond, KY, USA, 12–14 March 2000; Yaussy, D.A., Ed.; USDA Forest Service Northern Research Station General Technical Report GTR-NE-274. USDA Forest Service Northern Research Station: Newtown Square, PA, USA, 2000; pp. 97–102. Available online: https://www.fs.usda.gov/treesearch/pubs/23082 (accessed on 5 April 2020).
Control | Burn-Only | Cut + Burn | Cut-Only | Treatment p-Value | |
---|---|---|---|---|---|
O Horizon | |||||
n | 29 | 29 | 29 | 29 | |
2001 C (g kg−1) | 446.54 ± 7.16a | 457.20 ± 4.19a | 411.77 ± 9.76b | 414.35 ± 8.94b | <0.0001 |
2018 C (g kg−1) | 281.53 ± 2.10a | 266.59 ± 17.17a | 248.67 ± 21.75a | 314.90 ± 15.31a | 0.0695 |
ΔC (g kg−1) | −165.01 ± 22.98ab | −190.61 ± 18.05b | −163.10 ± 24.90ab | −99.45 ± 17.29a | <0.0001 |
2001 N (g kg−1) | 12.44 ± 0.27ab | 12.44 ± 0.19a | 11.10 ± 0.27c | 11.52 ± 0.28bc | 0.0001 |
2018 N (g kg−1) | 7.96 ± 0.53ab | 7.12 ± 0.48ab | 6.28 ± 0.48b | 8.69 ± 0.46a | 0.0042 |
ΔN (g kg−1) | −4.48 ± 0.59ab | −5.32 ± 0.54b | −4.82 ± 0.63ab | −2.83 ± 0.49a | 0.0005 |
2001 C:N | 36.21 ± 7.56a | 36.92 ± 5.33a | 37.33 ± 0.82a | 36.29 ± 0.86a | 0.6798 |
2018 C:N | 35.15 ± 1.29a | 38.56 ± 1.15a | 38.93 ± 1.11a | 37.11 ± 1.17a | 0.0793 |
ΔC:N | −1.06 ± 1.02a | 1.64 ± 1.21a | 1.60 ± 1.00a | 0.82 ± 0.97a | 0.2286 |
Mineral Soil | |||||
n | 29 | 27 | 29 | 29 | |
2001 C (g kg−1) | 26.17 ± 1.33b | 22.77 ± 0.87b | 33.20 ± 2.03a | 34.55 ± 1.68a | <0.0001 |
2018 C (g kg−1) | 32.49 ± 2.52a | 27.54 ± 1.97ab | 24.81 ± 2.00b | 32.68 ± 2.10a | 0.0074 |
ΔC (g kg−1) | 6.32 ± 2.72a | 4.77 ± 0.09a | −8.39 ± 2.52b | −1.87 ± 2.33ab | <0.0001 |
2001 N (g kg−1) | 1.22 ± 0.07ab | 1.06 ± 0.05b | 1.34 ± 0.08a | 1.41 ± 0.09a | 0.0057 |
2018 N (g kg−1) | 1.22 ± 0.10a | 1.04 ± 0.08ab | 0.92 ± 0.08b | 1.16 ± 0.08ab | 0.0412 |
ΔN (g kg−1) | 0.00 ± 0.11a | 0.02 ± 0.09a | −0.42 ± 0.10b | −0.25 ± 0.10ab | 0.0040 |
2001 C:N | 21.80 ± 0.62b | 21.99 ± 0.69b | 24.96 ± 0.65a | 25.13 ± 7.02a | <0.0001 |
2018 C:N | 27.46 ± 1.19a | 27.38 ± 0.91a | 27.35 ± 0.47a | 28.78 ± 1.04a | 0.6152 |
ΔC:N | 5.66 ± 1.03a | 5.39 ± 0.90a | 2.39 ± 0.50b | 3.65 ± 0.74ab | 0.0111 |
Replication 1 | Replication 2 | Replication 3 | p-Value | |
---|---|---|---|---|
n | 37 | 38 | 40 | |
O horizon ΔC (g kg−1) | −105.86 ± 19.93a | −209.81 ± 15.78b | −148.44 ± 17.28a | 0.0002 |
O horizon ΔN (g kg−1) | −3.28 ± 0.54a | −5.58 ± 0.49b | −4.24 ± 0.43ab | 0.0032 |
O horizon ΔC:N | 2.43 ± 0.92a | −1.37 ± 0.85b | 12.06 ± 8.99ab | 0.0122 |
n | 39 | 39 | 36 | |
Mineral Soil ΔC (g kg−1) | 6.51 ± 2.51a | −6.54 ± 1.88b | 0.45 ± 1.99a | <0.0001 |
Mineral Soil ΔN (g kg−1) | 0.13 ± 0.09a | −0.50 ± 0.08c | −0.16 ± 0.07b | < 0.0001 |
Mineral Soil ΔC:N | 2.83 ± 0.68b | 5.36 ± 0.76a | 4.58 ± 0.69ab | 0.0254 |
n | 39 | 39 | 35 | |
Mineral Soil ΔP (mg kg−1) | −7.12 ± 0.48a | −7.69 ± 0.44a | −7.36 ± 0.61a | 0.6403 |
Mineral Soil ΔK (mg kg−1) | −13.38 ± 1.88a | −22.12 ± 1.92b | −25.01 ± 2.36b | 0.0003 |
Mineral Soil ΔCa (mg kg−1) | −134.19 ± 31.60a | −198.15 ± 38.06a | −157.57 ± 34.45a | 0.3606 |
Mineral Soil ΔMg (mg kg−1) | −6.32 ± 2.10a | −14.04 ± 1.43b | −11.81 ± 2.42ab | 0.0186 |
Mineral Soil ΔpH | −0.39 ± 0.05a | −0.31 ± 0.03a | −0.32 ± 0.03a | 0.3135 |
Soil Property | Control | Burn-Only | Cut + Burn | Cut-Only | Treatment p-Value |
---|---|---|---|---|---|
n | 28 | 27 | 29 | 29 | |
2001 P (mg kg−1) | 14.36 ± 0.50ab | 15.13 ± 0.49a | 13.19 ± 0.48bc | 12.45 ± 0.44c | 0.0006 |
2018 P (mg kg−1) | 6.39 ± 0.29a | 6.48 ± 0.41a | 6.31 ± 0.40a | 6.28 ± 0.31a | 0.9762 |
ΔP (mg kg−1) | −7.97 ± 0.57ab | −8.65 ± 0.42b | −6.88 ± 0.67ab | −6.17 ± 0.54a | 0.0115 |
2001 K (mg kg−1) | 55.61 ± 2.64ab | 57.15 ± 2.68a | 48.78 ± 1.97b | 50.47 ± 2.28ab | 0.0144 |
2018 K (mg kg−1) | 34.11 ± 2.61a | 35.33 ± 1.73a | 31.10 ± 1.87a | 31.28 ± 2.16a | 0.3713 |
ΔK (mg kg−1) | −21.50 ± 3.17a | −21.82 ± 2.27a | −17.68 ± 2.20a | −19.19 ± 2.38a | 0.4787 |
2001 Ca (mg kg−1) | 346.69 ± 45.71a | 311.85 ± 43.64a | 230.33 ± 29.43b | 183.48 ± 29.55b | 0.0245 |
2018 Ca (mg kg−1) | 92.42 ± 8.78a | 87.83 ± 5.73a | 135.96 ± 28.91a | 88.21 ± 7.07a | 0.1688 |
ΔCa (mg kg−1) | −254.27 ± 45.34b | −224.02 ± 42.85ab | −94.37 ± 44.85a | −95.27 ± 29.49a | 0.0116 |
2001 Mg (mg kg−1) | 34.33 ± 3.05a | 31.29 ± 1.43a | 30.52 ± 1.59a | 30.52 ± 1.66a | 0.3039 |
2018 Mg (mg kg−1) | 20.00 ± 2.46a | 19.75 ± 1.18a | 21.25 ± 3.71a | 20.04 ± 2.49a | 0.9898 |
ΔMg (mg kg−1) | −14.33 ± 2.34a | −11.54 ± 1.70a | −9.27 ± 3.79a | −10.48 ± 2.14a | 0.6269 |
2002 pH | 4.55 ± 0.05a | 4.58 ± 0.05a | 4.60 ± 0.03a | 4.58 ± 0.04a | 0.7455 |
2018 pH | 4.25 ± 0.06a | 4.24 ± 0.05a | 4.28 ± 0.06a | 4.17 ± 0.04a | 0.3110 |
ΔpH | −0.30 ± 0.05a | −0.34 ± 0.06a | −0.32 ± 0.05a | −0.41 ± 0.04a | 0.3537 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dukes, C.J.; Coates, T.A.; Hagan, D.L.; Aust, W.M.; Waldrop, T.A.; Simon, D.M. Long-Term Effects of Repeated Prescribed Fire and Fire Surrogate Treatments on Forest Soil Chemistry in the Southern Appalachian Mountains (USA). Fire 2020, 3, 20. https://doi.org/10.3390/fire3020020
Dukes CJ, Coates TA, Hagan DL, Aust WM, Waldrop TA, Simon DM. Long-Term Effects of Repeated Prescribed Fire and Fire Surrogate Treatments on Forest Soil Chemistry in the Southern Appalachian Mountains (USA). Fire. 2020; 3(2):20. https://doi.org/10.3390/fire3020020
Chicago/Turabian StyleDukes, Christopher J., T. Adam Coates, Donald L. Hagan, W. Michael Aust, Thomas A. Waldrop, and Dean M. Simon. 2020. "Long-Term Effects of Repeated Prescribed Fire and Fire Surrogate Treatments on Forest Soil Chemistry in the Southern Appalachian Mountains (USA)" Fire 3, no. 2: 20. https://doi.org/10.3390/fire3020020