Measuring Initial Attack Suppression Effectiveness through Burn Probability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modelling Approach
2.2.1. Scenario One: No Suppression
2.2.2. Scenario Two: Initial Attack
2.2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stocks, B.J.; Martell, D.L. Forest fire management expenditures in Canada: 1970–2013. For. Chron. 2016, 92, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.S.; Butry, D.T.; Gilbert, S.W.; Webb, D.H.; Fung, J.F. The Costs and Losses of Wildfires. Spec. Publ. NIST SP-1215 2017. [Google Scholar] [CrossRef]
- United States Forest Service. The Rising Cost of Wildfire Operations: Effects on the Forest Service’s Non-Fire Work; USDA Forest Service: Washington, DC, USA, 2015.
- Keane, R.E.; Hessburg, P.F.; Landres, P.B.; Swanson, F.J. The use of historical range and variability (HRV) in landscape management. For. Ecol. Manag. 2009, 258, 1025–1037. [Google Scholar] [CrossRef]
- Calkin, D.E.; Thompson, M.P.; Finney, M.A. Negative consequences of positive feedbacks in US wildfire management. For. Ecosyst. 2015, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.E.; Buxton-Carr, P. Wildland fire suppression related fatalities in Canada, 1941–2010: A preliminary report. In Proceedings of the 11th International Wildland Fire Safety Summit; International Association of Wildland Fire, Missoula, MT, USA, 4–8 April 2011. [Google Scholar]
- Butler, C.; Marsh, S.; Domitrovich, J.W.; Helmkamp, J. Wildland firefighter deaths in the United States: A comparison of existing surveillance systems. J. Occup. Environ. Hyg. 2017, 14, 258–270. [Google Scholar] [CrossRef] [Green Version]
- McGee, T.; McFarlane, B.; Tymstra, C. Chapter 3-Wildfire: A Canadian Perspective. In Wildfire Hazards, Risks and Disasters; Shroder, J.F., Paton, D., Eds.; Elsevier: Oxford, UK, 2015; pp. 35–58. ISBN 978-0-12-410434-1. [Google Scholar]
- Plucinski, M.P. Fighting Flames and Forging Firelines: Wildfire Suppression Effectiveness at the Fire Edge. Curr. For. Rep. 2019, 5, 1–19. [Google Scholar] [CrossRef]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire; John Wiley and Sons: New York, NY, USA, 1996; ISBN 0-471-54913-4. [Google Scholar]
- Brown, A.A.; Davis, K.P. Forest Fire: Control and Use, 2nd ed.; McGraw-Hill: New York, NY, USA, 1973; ISBN 978-0-07-008205-2. [Google Scholar]
- Arienti, M.C.; Cumming, S.G.; Boutin, S. Empirical models of forest fire initial attack success probabilities: The effects of fuels, anthropogenic linear features, fire weather, and management. Can. J. For. Res. 2006, 36, 3155–3166. [Google Scholar] [CrossRef]
- Finney, M.; Grenfell, I.C.; McHugh, C.W. Modeling Containment of Large Wildfires Using Generalized Linear Mixed-Model Analysis. For. Sci. 2009, 55, 249–255. [Google Scholar]
- Thompson, M.P.; Scott, J.; Kaiden, J.D.; Gilbertson-Day, J.W. A polygon-based modeling approach to assess exposure of resources and assets to wildfire. Nat. Hazards 2013, 67, 627–644. [Google Scholar] [CrossRef] [Green Version]
- Parisien, M.-A.; Walker, G.R.; Little, J.M.; Simpson, B.N.; Wang, X.; Perrakis, D.D.B. Considerations for modeling burn probability across landscapes with steep environmental gradients: An example from the Columbia Mountains, Canada. Nat. Hazards 2013, 66, 439–462. [Google Scholar] [CrossRef]
- Keating, E.G.; Morral, A.R.; Price, C.C.; Woods, D.; Norton, D.M.; Panis, C.; Saltzman, E.; Sanchez, R. Air Attack Against Wildfires: Understanding U.S. Forest Service Requirements for Large Aircraft; RAND Corporation: Santa Monica, CA, USA, 2012. [Google Scholar]
- Stocks, B.J.; Mason, J.A.; Todd, J.B.; Bosch, E.M.; Wotton, B.M.; Amiro, B.D.; Flannigan, M.D.; Hirsch, K.G.; Logan, K.A.; Martell, D.L.; et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 2002, 107, 5–12. [Google Scholar] [CrossRef]
- Hirsch, K.G.; Corey, P.N.; Martell, D.L. Using Expert Judgment to Model Initial Attack Fire Crew Effectiveness. For. Sci. 1998, 44, 539–549. [Google Scholar]
- Williamson, M.A. Factors in United States Forest Service district rangers’ decision to manage a fire for resource benefit. Int. J. Wildland Fire 2008, 16, 755–762. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Moritz, M.A. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol. Monogr. 2009, 79, 127–154. [Google Scholar] [CrossRef]
- North, M.P.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fulé, P.Z. Reform forest fire management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.L.; Bengston, D.N.; DeVaney, L.A.; Thompson, T.A.C. Wildland fire management futures: Insights from a foresight panel. Gen. Tech. Rep. NRS 152 Newtown Sq. PA US Dep. Agric. For. Serv. North. Res. Stn. 44 P 2015, 152, 1–44. [Google Scholar]
- Hand, M.S.; Wibbenmeyer, M.J.; Calkin, D.E.; Thompson, M.P. Risk Preferences, Probability Weighting, and Strategy Tradeoffs in Wildfire Management. Risk Anal. 2015, 35, 1876–1891. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.S.; Winter, P.L.; Maguire, L.A.; Ascher, T. Managing Wildfire Events: Risk-Based Decision Making Among a Group of Federal Fire Managers. Risk Anal. 2011, 31, 805–818. [Google Scholar] [CrossRef]
- Masters, A.M. Changes in forest fire frequency in Kootenay National Park, Canadian Rockies. Can. J. Bot. 1990, 68, 1763–1767. [Google Scholar] [CrossRef]
- Hallett, D.; Walker, R. Paleoecology and its application to fire and vegetation management in Kootenay National Park, British Columbia. J. Paleolimnol. 2000, 24, 401–414. [Google Scholar] [CrossRef]
- Walker, G.R.; Taylor, A. Achieving landscape fire management goals in the southern Canadian Rocky Mountains. In Proceedings of the 22nd Tall Timbers Fire Ecology Conference: Fire in Temperate, Boreal, and Montane Ecosystems, Kananaskis, AB, Canada, 15–18 October 2001. [Google Scholar]
- Arno, S.F.; Brown, J.K. Managing Fire in Our Forests–Time for a New Initiative. J. For. 1989, 87, 44–46. [Google Scholar]
- Miller, C.; Ager, A.A. A review of recent advances in risk analysis for wildfire management. Int. J. Wildland Fire 2013, 22, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.; Parisien, M.-A.; Ager, A.A.; Finney, M.A. Evaluating spatially-explicit burn probabilities for strategic fire management planning. In WIT Transactions on Ecology and the Environment: Modelling, Monitoring and Management of Forest Fires; WIT Press: Bellerica, MA, USA, 2008; pp. 245–252. [Google Scholar]
- Wang, X.; Parisien, M.-A.; Taylor, S.W.; Perrakis, D.D.B.; Little, J.; Flannigan, M.D. Future burn probability in south-central British Columbia. Int. J. Wildland Fire 2016, 25, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Riley, K.L.; Thompson, M.P.; Scott, J.H.; Gilbertson-Day, J.W. A Model-Based Framework to Evaluate Alternative Wildfire Suppression Strategies. Resources 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Parisien, M.-A.; Kafka, V.; Hirsch, K.G.; Todd, J.B.; Lavoie, S.G.; Maczek, P.D. Mapping Wildfire Susceptibility with the BURN-P3 Simulation Model; Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Information Report NOR-X-405: Edmonton, AB, Canada, 2005; p. 36.
- Finney, M.A.; McHugh, C.W.; Grenfell, I.C.; Riley, K.L.; Short, K.C. A simulation of probabilistic wildfire risk components for the continental United States. Stoch. Environ. Res. Risk Assess. 2011, 25, 973–1000. [Google Scholar] [CrossRef] [Green Version]
- Tolhurst, K.; Shields, B.; Chong, D. Phoenix: Development and Application of a Bushfire Risk Management Tool. Aust. J. Emerg. Manag. 2008, 23, 47. [Google Scholar]
- Tymstra, C.; Bryce, R.W.; Wotton, B.M.; Taylor, S.W.; Armitage, O.B. Development and Structure of Prometheus: The Canadian Wildland Fire Growth Simulation Model; Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Information Report NOR-X-417: Edmonton, AB, Canada, 2010; Volume 417, ISBN 978-1-100-14674-4.
- Stocks, B.J.; Lynham, T.J.; Lawson, B.D.; Alexander, M.E.; Wagner, C.E.V.; McAlpine, R.S.; Dubé, D.E. Canadian Forest Fire Danger Rating System: An Overview. For. Chron. 1989, 65, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Merrill, D.F.; Alexander, M.E. Glossary of Forest Fire Management Terms; Canadian Committee on Forest Fire Management, National Research Council of Canada: Ottawa, ON, Canada, 1987.
- Podur, J.; Wotton, B.M. Defining fire spread event days for fire-growth modelling. Int. J. Wildland Fire 2011, 20, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Parisien, M.-A.; Parks, S.A.; Miller, C.; Krawchuk, M.A.; Heathcott, M.; Moritz, M.A. Contributions of Ignitions, Fuels, and Weather to the Spatial Patterns of Burn Probability of a Boreal Landscape. Ecosystems 2011, 14, 1141–1155. [Google Scholar] [CrossRef]
- Beverly, J.L.; Herd, E.P.K.; Conner, J.C.R. Modeling fire susceptibility in west central Alberta, Canada. For. Ecol. Manag. 2009, 258, 1465–1478. [Google Scholar] [CrossRef]
- Kubian, R. Characterizing the Mixed-Severity Fire Regime of the Kootenay Valley, Kootenay National Park. Master’s Thesis, University of Victoria, Victoria, BC, Canada, 2013. [Google Scholar]
- Calkin, D.; Ager, A.; Thompson, M.; Finney, M.; Lee, D.; Quigley, T.; McHugh, C.; Riley, K.; Gilbertson-Day, J. A Comparative Risk Assessment Framework for Wildland Fire Management: The 2010 Cohesive Strategy Science Report; USDA Forest Service/UNL Faculty Publications: Washington, DC, USA, 2011.
- Mees, R.; Strauss, D.; Chase, R. Modeling Wildland Fire Containment with Uncertain Flame Length and Fireline Width. Int. J. Wildland Fire 1993, 3, 179–185. [Google Scholar] [CrossRef]
- Rodríguez y Silva, F.; Molina, J.R.; Rodríguez, J. The efficiency analysis of the fire control operations using Visual SEVEIF tool. In Advances in Forest Fire Research; Viegas, D.X., Ed.; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2014; pp. 1883–1894. [Google Scholar]
- O’Connor, C.D.; Calkin, D.E.; Thompson, M.P. An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int. J. Wildland Fire 2017, 26, 587–597. [Google Scholar]
- Taylor, S.W.; Carroll, A.L. Disturbance, forest age, and mountain pine beetle outbreak dynamics in BC: A historical perspective. In Mountain Pine Beetle Symposium: Challenges and Solutions; Information Report BC-X-399; Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada, 2004; p. 298. ISBN 978-0-662-38389-5. [Google Scholar]
- Millington, J.D.A.; Wainwright, J.; Perry, G.L.W.; Romero-Calcerrada, R.; Malamud, B.D. Modelling Mediterranean landscape succession-disturbance dynamics: A landscape fire-succession model. Environ. Model. Softw. 2009, 24, 1196–1208. [Google Scholar] [CrossRef]
- Erni, S.; Arseneault, D.; Parisien, M.-A. Stand Age Influence on Potential Wildfire Ignition and Spread in the Boreal Forest of Northeastern Canada. Ecosystems 2018, 21, 1471–1486. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Prichard, S.J.; Strand, E.K.; Morgan, P. Prior wildfires influence burn severity of subsequent large fires. Can. J. For. Res. 2016, 46, 1375–1385. [Google Scholar] [CrossRef] [Green Version]
- Parks, S.A.; Parisien, M.-A.; Miller, C.; Holsinger, L.M.; Baggett, L.S. Fine-scale spatial climate variation and drought mediate the likelihood of reburning. Ecol. Appl. 2018, 28, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Beverly, J.L. Time since prior wildfire affects subsequent fire containment in black spruce. Int. J. Wildland Fire 2017, 26, 919–929. [Google Scholar] [CrossRef]
- Thompson, M.P.; Freeborn, P.; Rieck, J.D.; Calkin, D.E.; Gilbertson-Day, J.W.; Cochrane, M.A.; Hand, M.S. Quantifying the influence of previously burned areas on suppression effectiveness and avoided exposure: A case study of the Las Conchas Fire. Int. J. Wildland Fire 2016, 25, 167–181. [Google Scholar] [CrossRef]
- Houtman, R.M.; Montgomery, C.A.; Gagnon, A.R.; Calkin, D.E.; Dietterich, T.G.; McGregor, S.; Crowley, M. Allowing a wildfire to burn: Estimating the effect on future fire suppression costs. Int. J. Wildland Fire 2013, 22, 871–882. [Google Scholar] [CrossRef]
- Doane, D.L.; O’Laughlin, J.; Morgan, P.; Miller, C. Barriers to wildland fire use: A preliminary problem analysis. Int. J. Wilderness 2006, 121, 36–38. [Google Scholar]
- Kahneman, D.; Lovallo, D. Timid Choices and Bold Forecasts: A Cognitive Perspective on Risk Taking. Manag. Sci. 1993, 39, 17–31. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science 1974, 185, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.P.; MacGregor, D.G.; Dunn, C.J.; Calkin, D.E.; Phipps, J. Rethinking the Wildland Fire Management System. J. For. 2018, 116, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Miller, C. The hidden consequences of fire suppression. Park Sci. 2012, 28, 76–80. [Google Scholar]
Response Time (min) | Human Ignitions Contained (%) | Lightning Ignitions Contained (%) |
---|---|---|
15 | 96 | 95 |
30 | 92 | 91 |
60 | 86 | 85 |
120 | 81 | 79 |
Results by Fuel Type | |||||
Fuel Type | Description | Number of Ignitions | BPf (×10−4) | Suppression Effect (%) | POC (%) |
C-1 | Spruce-Lichen Woodland | 5760 | 15 | 76 | 80 |
C-2 | Boreal Spruce | 24,645 | 24 | 73 | 59 |
C-3 | Mature Jack Pine | 8429 | 23 | 78 | 73 |
C-4 | Immature Jack Pine | 5641 | 59 | 75 | 61 |
C-5 | Red and White Pine | 806 | - | - | 92 |
C-7 | Ponderosa Pine and Douglas Fir | 1565 | 30 | 80 | 84 |
M-1/M-2 | Boreal Mixed Wood | 1260 | 8 | 75 | 69 |
D-1 | Leafless Aspen | 26 | - | - | 93 |
O-1a | Grass—Matted | 828 | 11 | 67 | 88 |
O-1b | Grass—Standing | 14,036 | 18 | 77 | 76 |
O-1b (Early Succession) | Burned 2003 | 48,091 | 23 | 86 | 82 |
Results by Management Zone | |||||
Management Strategy | Zone | Area (ha) | BPf (×10−4) | Suppression Effect (%) | POC (%) |
Intensive | Bow Corridor | 3751 | 26 | 72 | 63 |
Intermediate | Ottertail | 5557 | 16 | 73 | 63 |
Rockwall | 14,755 | 14 | 72 | 64 | |
Kootenay East | 5283 | 23 | 77 | 68 | |
Extensive | Vermilion | 38,630 | 27 | 84 | 79 |
Verdant | 7216 | 15 | 74 | 61 | |
Total | 22 | 79 | 74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reimer, J.; Thompson, D.K.; Povak, N. Measuring Initial Attack Suppression Effectiveness through Burn Probability. Fire 2019, 2, 60. https://doi.org/10.3390/fire2040060
Reimer J, Thompson DK, Povak N. Measuring Initial Attack Suppression Effectiveness through Burn Probability. Fire. 2019; 2(4):60. https://doi.org/10.3390/fire2040060
Chicago/Turabian StyleReimer, Jonathan, Dan K. Thompson, and Nicholas Povak. 2019. "Measuring Initial Attack Suppression Effectiveness through Burn Probability" Fire 2, no. 4: 60. https://doi.org/10.3390/fire2040060
APA StyleReimer, J., Thompson, D. K., & Povak, N. (2019). Measuring Initial Attack Suppression Effectiveness through Burn Probability. Fire, 2(4), 60. https://doi.org/10.3390/fire2040060