Assessing the Relationship between Forest Structure and Fire Severity on the North Rim of the Grand Canyon
Abstract
:1. Introduction
- What is the variability in forest structure on the North Rim of the GRCA?
- What are the most significant variables in a high performing structure model?
- How do structure variables explain variation in previous fire severity?
- What other landscape parameters explain variation in the relationship between severity and structure?
2. Materials and Methods
2.1. Study Area
2.2. Monitoring Trends in Burn Severity
2.3. Airborne Laser Scanning
2.4. Forest Structure Classification
2.5. Additional ALS and Secondary Variables
3. Results
3.1. Tabulating Forest Structure
3.2. Maps of Severity and Structure
3.3. Random Forests: Gini and Partial Dependence Plots
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Franklin, J.F.; Spies, T.A.; Van Pelt, R.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Lindenmayer, D.B. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 2002, 155, 399–423. [Google Scholar] [CrossRef]
- Heinselman, M.L. Fire and succession in the conifer forests of northern North America. In Forest Succession; Springer: New York, NY, USA, 1981; pp. 374–405. [Google Scholar]
- Kilgore, B.M. Fire in ecosystem distribution and structure: Western forests and scrublands. In Proceedings of the Conference: Fire Regimes and Ecosystem Properties; Mooney, H.A., Bonnicksen, T.M., Christensen, N.L., Eds.; USDA Forest Service, General Technical Report WO-GTR-26; USDA Forest Service: Washington, DC, USA, 1981; pp. 58–89. [Google Scholar]
- Borman, F.H.; Likens, G.E. Pattern and Process in a Forested Ecosystem; Springer: New York, NY, USA, 1979; p. 253. ISBN 978-1-4612-6232-9. [Google Scholar]
- Rollins, M.G. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J. Wildl. Fire 2009, 18, 235–249. [Google Scholar] [CrossRef]
- Hutto, R.L.; Keane, R.E.; Sherriff, R.L.; Rota, C.T.; Eby, L.A.; Saab, V.A. Toward a more ecologically informed view of severe forest fires. Ecosphere 2016, 7, e01255. [Google Scholar] [CrossRef]
- Agee, J.K. The landscape ecology of western forest fire regimes. Northwest Sci. 1998, 72, 24–34. [Google Scholar]
- Covington, W.W.; Moore, M.M. Southwestern ponderosa forest structure: Changes since Euro-American settlement. J. For. 1994, 92, 39–47. [Google Scholar]
- Covington, W.W.; Moore, M.M. Postsettlement changes in natural fire regimes and forest structure: Ecological restoration of old-growth ponderosa pine forests. J. Sustain. For. 1994, 2, 153–181. [Google Scholar] [CrossRef]
- Agee, J.K. Fire ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Stephens, S.L.; Fry, D.L.; Franco-Vizcaíno, E. Wildfire and spatial patterns in forests in northwestern Mexico: The United States wishes it had similar fire problems. Ecol. Soc. 2008, 13. [Google Scholar] [CrossRef]
- Johnson, E.A.; Cochrane, M.A. Disturbance regime interactions. Adv. Appl. Biodivers. Sci. 2003, 4, 39–44. [Google Scholar]
- Falk, D.A.; Miller, C.; McKenzie, D.; Black, A.E. Cross-scale analysis of fire regimes. Ecosystems 2007, 10, 809–823. [Google Scholar] [CrossRef]
- McKenzie, D.; Miller, C.; Falk, D.A. Chapter 1: Toward a theory of landscape fire. In The Landscape Ecology of Fire: Ecological Studies—Analysis and Synthesis; McKenzie, D., Miller, C., Falk, D.A., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 3–23. [Google Scholar]
- Spies, T.A.; Hemstrom, M.A.; Youngblood, A.; Hummel, S. Conserving old-growth forest diversity in disturbance-prone landscapes. Conserv. Biol. 2006, 20, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.A.; Moody, T.J.; Krawchuk, M.A.; Hughes, M.; Hall, A. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Perry, D.A.; Hessburg, P.F.; Skinner, C.N.; Spies, T.A.; Stephens, S.L.; Taylor, A.H.; Franklin, J.F.; McComb, B.; Riegel, G. The ecology of mixed severity fire regimes in Washington, Oregon, and northern California. For. Ecol. Manag. 2011, 262, 703–717. [Google Scholar] [CrossRef]
- Heyerdahl, E.K.; Brubaker, L.B.; Agee, J.K. Annual and decadal climate forcing of historical fire regimes in the interior Pacific Northwest, USA. Holocene 2002, 12, 597–604. [Google Scholar] [CrossRef]
- Marks, C.; National Park Service, Deputy Fire Management Officer, Grand Canyon National Park, AZ, USA. Personal communication, 2015.
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildl. Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. The Normalized Burn Ratio (NBR): A Landsat TM Radiometric Measure of Burn Severity; United States Geological Survey, Northern Rocky Mountain Science Center: Bozeman, MT, USA, 1999.
- Bond, M.L.; Derek, E.L.; Rodney, B.S.; Ward, J.P., Jr. Habitat use and selection by California spotted owls in a postfire landscape. J. Wildl. Manag. 2009, 73, 1116–1124. [Google Scholar] [CrossRef]
- Squires, J.R.; Reynolds, T. Northern goshawk (Accipiter gentilis). In The Birds of North America; Poole, A., Gill, F., Eds.; No. 298; The Birds of North America, In.: Philadelphia, PA, USA, 1997; pp. 1–31. [Google Scholar]
- Rowell, E.; Seielstad, C.; Vierling, L.; Queen, L.; Shepperd, W. Using laser altimetry-based segmentation to refine automated tree identification in managed forests of the Black Hills, South Dakota. Photogramm. Eng. Remote Sens. 2006, 72, 1379–1388. [Google Scholar] [CrossRef]
- Kane, V.R.; McGaughey, R.J.; Bakker, J.D.; Gersonde, R.F.; Lutz, J.A.; Franklin, J.F. Comparisons between field-and LiDAR-based measures of stand structural complexity. Can. J. For. Res. 2010, 40, 761–773. [Google Scholar] [CrossRef]
- O’Hara, K.L.; Latham, P.A.; Hessburg, P.; Smith, B.G. A structural classification for inland northwest forest vegetation. West. J. Appl. For. 1996, 11, 97–102. [Google Scholar]
- Ohmann, J.L.; Matthew, J.G. Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, USA. Can. J. For. Res. 2002, 32, 725–741. [Google Scholar] [CrossRef]
- Kane, V.R.; North, M.P.; Lutz, J.A.; Churchill, D.J.; Roberts, S.L.; Smith, D.F.; McGaughey, R.J.; Kane, J.T.; Brooks, M.L. Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park. Remote Sens. Environ. 2014, 151, 89–101. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Holopainen, M.; Vastaranta, M. Comparison of area-based and individual tree-based methods for predicting plot-level forest attributes. Remote Sens. 2010, 2, 1481–1495. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Hudak, A.T.; Morsdorf, F.; Nelson, R.; Newnham, G.; Vastaranta, M. Status and prospects for LiDAR remote sensing of forested ecosystems. Can. J. Remote Sens. 2013, 39, S1–S5. [Google Scholar] [CrossRef] [Green Version]
- Riano, D.; Chuvieco, E.; Condés, S.; González-Matesanz, J.; Ustin, S.L. Generation of crown bulk density for Pinus sylvestris L. from LiDAR. Remote Sens. Environ. 2004, 92, 345–352. [Google Scholar] [CrossRef]
- Andersen, H.E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens. Environ. 2005, 94, 441–449. [Google Scholar] [CrossRef]
- Silva, C.A.; Klauberg, C.; Hudak, A.T.; Vierling, L.A.; Liesenberg, V.; Carvalho, S.; Rodriguez, L. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data. Forestry 2016, 89, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Falkowski, M.J.; Smith, A.M.S.; Gessler, P.E.; Morgan, P. Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return LiDAR and multispectral satellite data. Can. J. Remote Sens. 2006, 32, 126–138. [Google Scholar] [CrossRef]
- Hopkinson, C.; Chasmer, L. Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sens. Environ. 2009, 113, 275–288. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Acker, S.A.; Parker, G.G.; Spies, T.A.; Harding, D. LiDAR remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sens. Environ. 1999, 70, 339–361. [Google Scholar] [CrossRef]
- Lim, K.; Treitz, P.; Wulder, M.; St-Onge, B.; Flood, M. LiDAR remote sensing of forest structure. Prog. Phys. Geogr. 2003, 27, 88–106. [Google Scholar] [CrossRef]
- Zimble, D.A.; Evans, D.L.; Carlson, G.C.; Parker, R.C.; Grado, S.C.; Gerard, P.D. Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens. Environ. 2003, 87, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Coops, N.C.; Hilker, T.; Wulder, M.A.; St-Onge, B.; Newnham, G.; Siggins, A.; Trofymow, T. Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees 2007, 21, 295. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Evans, J.S.; Martinuzzi, S.; Gessler, P.E.; Hudak, A.T. Characterizing forest succession with LiDAR data: An evaluation for the Inland Northwest, USA. Remote Sens. Environ. 2009, 113, 946–956. [Google Scholar] [CrossRef]
- Halvorson, W.L. Environmental influence on the pattern of plant communities along the North Rim of Grand Canyon. Am. Midl. Nat. 1972, 87, 222–235. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Heinlein, T.A.; Covington, W.W.; Moore, M.M. Assessing fire regimes on Grand Canyon landscapes with fire-scar and fire-record data. Int. J. Wildl. Fire 2003, 12, 129–145. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Crouse, J.E.; Heinlein, T.A.; Moore, M.M.; Covington, W.W.; Verkamp, G. Mixed-severity fire regime in a high-elevation forest of Grand Canyon, Arizona, USA. Landsc. Ecol. 2003, 18, 465–486. [Google Scholar] [CrossRef]
- Grand Canyon National Park. Fire Management Plan; US Department of Interior, National Park Service: Grand Canyon, AZ, USA, 2012.
- Hoff, V.; Teske, C.C.; Riddering, J.P.; Queen, L.P.; Gdula, E.G.; Bunn, W.A. Changes in severity distribution after subsequent fires on the North Rim of Grand Canyon National Park, Arizona, USA. Fire Ecol. 2014, 10, 48–63. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Hazell, B. Kaibab National Forest LiDAR Data Report; WSI Applied Remote Sensing and Analysis, On file at Grand Canyon National Park, WSI: Corvallis, OR, USA, 2012. [Google Scholar]
- Hazell, B. Kaibab National Forest Technical Data Report—LiDAR Delivery 2; WSI Applied Remote Sensing and Analysis, On file at Grand Canyon National Park, WSI: Corvallis, OR, USA, 2012. [Google Scholar]
- Isenburg, M. LAStools—Efficient Tools for LiDAR Processing. 2015 Version 150701. Available online: http://lastools.org (accessed on 2 September 2015).
- Moran, C.; Rowell, E.; Seielstad, C. A data-driven framework to identify and compare forest structure classes using LiDAR. Remote Sens. Environ. 2018, 211, 154–166. [Google Scholar] [CrossRef]
- Cansler, C.A.; McKenzie, D.; Halpern, C.B. Fire enhances the complexity of forest structure in alpine treeline ecotones. Ecosphere 2018, 9, e02091. [Google Scholar] [CrossRef] [Green Version]
- Hardiman, B.; Elizabeth, A.; LaRue, J.; Atkins, W.; Fahey, R.T.; Wagner, F.W.; Gough, C.M. Spatial Variation in Canopy Structure across Forest Landscapes. Forests 2018, 9, 474. [Google Scholar] [CrossRef]
- Seielstad, C.A.; Queen, L.P. Using airborne laser altimetry to determine fuel models for estimating fire behavior. J. For. 2003, 101, 10–15. [Google Scholar]
- Rowell, E.M.; Seielstad, C.A.; Ottmar, R.D. Development and validation of fuel height models for terrestrial LiDAR—RxCADRE 2012. Int. J. Wildl. Fire 2016, 25, 38–47. [Google Scholar] [CrossRef]
- Field Data for the Vegetation Mapping Inventory Project of Grand Canyon National Park and Parashant National Monument. 2009–2012. Available online: https://www.nps.gov/im/vmi-grca-para.html (accessed on 7 September 2015).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2010; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 17 August 2015).
- Jain, T.; Graham, R. Is forest structure related to fire severity? Yes, no, and maybe: Methods and insights in quantifying the answer. In Proceedings of the Silviculture in Special Places: Proceedings of the 2003 National Silviculture Workshop, Granby, CO, USA, 8–11 September 2003; Shepperd, W.D., Eskew, L.G., Eds.; USDA Forest Service Proceedings RMRS-P-34; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2003; pp. 217–234. [Google Scholar]
- Higgins, A.M.; Waring, K.M.; Thode, A.E. The effects of burn entry and burn severity on ponderosa pine and mixed conifer forests in Grand Canyon National Park. Int. J. Wildl. Fire 2015, 24, 495–506. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelich, L.E.; Harvey, B.J.; Higuera, B.E.; Mack, M.C.; Meentemeyer, R.K.; Metz, M.R.; Perry, G.L.W.; et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Collins, B.M.; Lyderson, J.M.; Everett, R.G.; Fry, D.L.; Stephens, D.L. Novel characterization of landscape-level variability in historical vegetation structure. Ecol. Appl. 2015, 25, 1167–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Class Code | Canopy Cover (%) | Vertical Connectivity | Surface Roughness |
---|---|---|---|
St Dev of Height >2 m | St Dev of Height <2 m | ||
111 | <35 | <4.5 | <0.25 |
112 | <35 | <4.5 | 0.25–0.50 |
113 | <35 | <4.5 | >0.50 |
121 | <35 | ≥4.5 | <0.25 |
122 | <35 | ≥4.5 | 0.25–0.50 |
123 | <35 | ≥4.5 | >0.50 |
211 | 35–65 | <4.5 | <0.25 |
212 | 35–65 | <4.5 | 0.25–0.50 |
213 | 35–65 | <4.5 | >0.50 |
221 | 35–65 | ≥4.5 | <0.25 |
222 | 35–65 | ≥4.5 | 0.25–0.50 |
223 | 35–65 | ≥4.5 | >0.50 |
311 | >65 | <4.5 | <0.25 |
312 | >65 | <4.5 | 0.25–0.50 |
313 | >65 | <4.5 | >0.50 |
321 | >65 | ≥4.5 | <0.25 |
322 | >65 | ≥4.5 | 0.25–0.50 |
323 | >65 | ≥4.5 | >0.50 |
Class Code | Structure Class Description | Study Area (%) | Area Burned (%) |
---|---|---|---|
111 | Open Grassland scattered trees | 2.0 | 2.0 |
112 | Open Moderate Shrub/Regeneration | 2.2 | 3.0 |
113 | Open High Shrub/Regeneration | 0.9 | 1.3 |
121 | Low Canopy Cover Grassland | 0.6 | 0.9 |
122 | Low Canopy Cover Moderate Shrub/Regeneration | 0.9 | 1.3 |
123 | Low Canopy Cover High Shrub/Regeneration | 0.1 | 0.1 |
211 | Moderate Even-aged Overstory Low Regeneration | 0.1 | 0.1 |
212 | Moderate Even-aged Overstory Moderate Regeneration | 0.8 | 0.9 |
213 | Moderate Even-aged Overstory High Regeneration | 4.3 | 5.8 |
221 | Moderate Multi-aged Overstory Low Regeneration | 2.8 | 3.6 |
222 | Moderate Multi-aged Overstory Moderate Regeneration | 10.5 | 9.6 |
223 | Moderate Multi-aged Overstory High Regeneration | 7.4 | 6.9 |
311 | Dense Even-aged Overstory Low Regeneration | 0.0 | 0.0 |
312 | Dense Even-aged Overstory Moderate Regeneration | 0.3 | 0.3 |
313 | Dense Even-aged Overstory High Regeneration | 2.7 | 3.5 |
321 | Dense Multi-stage Overstory Low Regeneration | 13.9 | 18.8 |
322 | Dense Multi-stage Overstory Moderate Regeneration | 30.6 | 28.8 |
323 | Dense Multi-stage Overstory High Regeneration | 19.9 | 13.2 |
Alliance | Unburned (%) | Low (%) | Mod/Low (%) | Mod/High (%) | High (%) | Total (%) |
---|---|---|---|---|---|---|
Pinus ponderosa/Carex Woodland Alliance | 3.5 | 31.8 | 8.5 | 1.2 | 0.3 | 45.3 |
Pinus ponderosa/Amelanchier—Quercus Woodland Alliance | 0.7 | 5.2 | 1.7 | 0.4 | 0.1 | 8.1 |
Abies concolor—Pseudotsuga menziesii Dry Forest Alliance | 1.8 | 11.0 | 5.3 | 1.3 | 0.1 | 19.5 |
Abies lasiocarpa—Picea engelmannii Southern Rocky Mountain Dry Forest Alliance | 0.3 | 0.9 | 0.4 | 0.2 | 0.0 | 1.8 |
Populus tremuloides Dry Forest Alliance (Shrubland) | 0.1 | 1.1 | 2.3 | 5.7 | 4.5 | 13.8 |
Picea pungens Moist Forest Alliance | 0.5 | 1.6 | 0.6 | 0.2 | 0.0 | 3.0 |
Other alliances | 1.0 | 3.3 | 2.0 | 1.6 | 0.7 | 8.7 |
Total | 7.9 | 54.9 | 20.9 | 10.6 | 5.7 | 100.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoff, V.; Rowell, E.; Teske, C.; Queen, L.; Wallace, T. Assessing the Relationship between Forest Structure and Fire Severity on the North Rim of the Grand Canyon. Fire 2019, 2, 10. https://doi.org/10.3390/fire2010010
Hoff V, Rowell E, Teske C, Queen L, Wallace T. Assessing the Relationship between Forest Structure and Fire Severity on the North Rim of the Grand Canyon. Fire. 2019; 2(1):10. https://doi.org/10.3390/fire2010010
Chicago/Turabian StyleHoff, Valentijn, Eric Rowell, Casey Teske, LLoyd Queen, and Tim Wallace. 2019. "Assessing the Relationship between Forest Structure and Fire Severity on the North Rim of the Grand Canyon" Fire 2, no. 1: 10. https://doi.org/10.3390/fire2010010
APA StyleHoff, V., Rowell, E., Teske, C., Queen, L., & Wallace, T. (2019). Assessing the Relationship between Forest Structure and Fire Severity on the North Rim of the Grand Canyon. Fire, 2(1), 10. https://doi.org/10.3390/fire2010010