Binary Oxide Ceramics (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3) for Solar Cell Applications: A Comparative and Bibliometric Analysis
Abstract
1. Introduction
Oxide Material | Band Gap (Eg, eV) | Conductivity Type | Electron Mobility (cm2·V−1·s−1) | Dielectric Constant (εr) | Electron Affinity (χ, eV) | Ref |
---|---|---|---|---|---|---|
TiO2 (anatase/rutile) | 2.9–3.4 (direct/indirect) | n-type (O-vacancy, donor-doped) | ~0.1–1 (up to 15 in crystals) | 25–1000 † | 3.9–4.3 | [113,114,115,116] |
ZnO (wurtzite) | 3.1–3.4 | n-type (intrinsic/doped) | 10–300 | 7–12 (up to ~25 for Co/Mn-doped) | 4.2–4.5 | [117,118,119] |
Al2O3 (sapphire) | 8.5–9.5 | Insulator | ~ (≤10−9 S cm−1) | 6–12 | 1.0–2.6 | [120,121,122] |
SiO2 (quartz, glass) | 8.0–9.2 | Insulator | — | 3.7–4.3 | 0.8–1.1 | [123,124,125] |
CeO2 (ceria) | 2.8–3.5 | n-type (Ce3+, O-vacancies) | 10−4–1 (small-polaron hopping) | 16–35 | 3.3–3.7 | [126,127,128,129] |
Fe2O3 (hematite) | 1.9–2.3 | n-type (poor σ) | 10−4–0.1 | 5–120 | 4.3–5.0 | [130,131,132,133] |
WO3 (monoclinic) | 2.4–3.2 | n-type (O-deficient) | 0.1–30 | 10–105 ‡ | 3.2–3.6 | [134,135,136] |
2. Methodology
2.1. Bibliometric Analysis
2.1.1. Database Selection and Search Strategy
2.1.2. Data Analysis
2.2. Statistical Analysis
2.3. Functional Literature Analysis
- The physical, chemical, and optoelectronic properties of TiO2, ZnO, SiO2, Al2O3, CeO2, Fe2O3, and WO3;
- Their specific functions in crystalline silicon (c-Si), perovskite (PSC), dye-sensitized (DSSC), thin-film chalcogenide (CIGS, CdTe, CZTS), organic (OSC), and quantum dot (QD) solar cells;
- Comparative advantages, limitations, and integration challenges of each oxide in these technologies.
- A functional role matrix mapping the oxide materials to device architectures and layer functionalities (ETL, HTL, TCO, passivation, buffer, optical interlayer);
- A synthesis of key advantages and limitations drawn from experimental studies and review articles;
- Cross-verification of usage trends with bibliometric co-occurrence data (e.g., TiO2 + passivation; ZnO + buffer layer).
3. Results
3.1. Evolution of Scientific Interest in Oxide Ceramics for Solar Energy: Results of the Bibliometric Analysis
3.2. Publication Trends and Statistical Analysis of Binary Oxide Ceramics
3.3. Interdisciplinary Distribution of Research on Oxide Ceramics
3.4. Comparative Analysis of the Most Cited Publications on Binary Oxide Ceramics
3.5. Global Trends and International Collaboration in Research on Binary Oxides for Solar Energy Applications
3.5.1. Titanium Dioxide
3.5.2. Zinc Oxide
3.5.3. Silicon Dioxide
3.5.4. Aluminum Oxide
3.5.5. Cerium Dioxide
3.5.6. Iron Oxide
3.5.7. Tungsten Trioxide
4. Comparative Analysis of Oxide Ceramics in Different Types of Solar Cells
4.1. Silicon-Based Solar Cells
4.2. Perovskite Solar Cells (PSC)
4.3. Dye-Sensitized Solar Cells (DSSC)
4.4. Thin-Film Chalcogenide and Inorganic Solar Cells
4.5. Organic and Emerging Types of Solar Cells
4.6. Application Matrix of Oxide Ceramics in Solar Cells: Analytical Summary
4.7. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergmann, R. Crystalline Si thin-film solar cells: A review. Appl. Phys. A 1999, 69, 187–194. [Google Scholar] [CrossRef]
- Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon solar cells: Toward the efficiency limits. Adv. Phys. X 2018, 4, 1548305. [Google Scholar] [CrossRef]
- Green, M.A. Silicon solar cells: State of the art. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20110413. [Google Scholar] [CrossRef]
- Ferekides, C.; Balasubramanian, U.; Mamazza, R.; Viswanathan, V.; Zhao, H.; Morel, D. CdTe thin film solar cells: Device and technology issues. Sol. Energy 2004, 77, 823–830. [Google Scholar] [CrossRef]
- Ali, M.; Khan, Q.; Din, M.F.U.; Kasi, J.K.; Kasi, A.K.; Ali, A.; Ullah, S. Simulation-based optimization of CdS/CdTe solar cells incorporating MXene-enhanced SnO2 buffer layer: Insights from experimentally validated material properties. Sol. Energy 2025, 294, 113510. [Google Scholar] [CrossRef]
- Barbato, M.; Artegiani, E.; Bertoncello, M.; Meneghini, M.; Trivellin, N.; Mantoan, E.; Romeo, A.; Mura, G.; Ortolani, L.; Zanoni, E.; et al. CdTe solar cells: Technology, operation and reliability. J. Phys. D Appl. Phys. 2021, 54, 333002. [Google Scholar] [CrossRef]
- Mufti, N.; Amrillah, T.; Taufiq, A.; Diantoro, M.; Nur, H. Review of CIGS-based solar cells manufacturing by structural engineering. Sol. Energy 2020, 207, 1146–1157. [Google Scholar] [CrossRef]
- Suchikova, Y.; Bohdanov, I.; Kovachov, S.; Popov, A.I. Thin CIGS Films Obtained by Spray Pyrolysis. In Nanomaterials and Nanocomposites, Nanostructures, and Their Applications. NANO 2023; Fesenko, O., Yatsenko, L., Eds.; Springer Proceedings in Physics; Springer: Cham, Switzerland, 2024; Volume 253. [Google Scholar] [CrossRef]
- Lin, L.; Ravindra, N.M. Temperature dependence of CIGS and perovskite solar cell performance: An overview. SN Appl. Sci. 2020, 2, 1361. [Google Scholar] [CrossRef]
- Lu, S.; Chen, C.; Tang, J. Possible top cells for next-generation Si-based tandem solar cells. Front. Optoelectron. 2020, 13, 246–255. [Google Scholar] [CrossRef]
- Panigrahi, J.; Komarala, V.K. Progress on the intrinsic a-Si:H films for interface passivation of silicon heterojunction solar cells: A review. J. Non-Cryst. Solids 2021, 574, 121166. [Google Scholar] [CrossRef]
- Zhou, J.; Su, X.; Huang, Q.; Zhang, B.; Yang, J.; Zhao, Y.; Hou, G. Recent advancements in poly-Si/SiOxpassivating contacts for high-efficiency silicon solar cells: Technology review and perspectives. J. Mater. Chem. A 2022, 10, 20147–20173. [Google Scholar] [CrossRef]
- Raza, E.; Ahmad, Z. Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives. Energy Rep. 2022, 8, 5820–5851. [Google Scholar] [CrossRef]
- Jiang, L.; Cui, S.; Sun, P.; Wang, Y.; Yang, C. Comparison of Monocrystalline and Polycrystalline Solar Modules. In Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020; pp. 341–344. [Google Scholar] [CrossRef]
- Enaganti, P.K.; Dwivedi, P.K.; Srivastava, A.K.; Goel, S. Study of solar irradiance and performance analysis of submerged monocrystalline and polycrystalline solar cells. Prog. Photovolt. Res. Appl. 2020, 28, 725–735. [Google Scholar] [CrossRef]
- Suchikova, Y. Provision of environmental safety through the use of porous semiconductors for solar energy sector. East.-Eur. J. Enterp. Technol. 2016, 6, 26–33. [Google Scholar] [CrossRef][Green Version]
- Santos, I.M.D.L.; Courel, M.; Moreno-Oliva, V.I.; Dueñas-Reyes, E.; Díaz-Cruz, E.B.; Ojeda-Martínez, M.; Pérez, L.M.; Laroze, D. The study of inorganic absorber layers in perovskite solar cells: The influence of CdTe and CIGS incorporation. Sci. Rep. 2025, 15, 10353. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Colvin, D.J.; Schneller, E.J.; Sakthivel, T.S.; Ristau, R.; Huey, B.D.; Yu, B.X.; Jaubert, J.-N.; Curran, A.J.; Wang, M.; et al. Characterization of front contact degradation in monocrystalline and multicrystalline silicon photovoltaic modules following damp heat exposure. Sol. Energy Mater. Sol. Cells 2022, 235, 111468. [Google Scholar] [CrossRef]
- Wijewardane, S.; Kazmerski, L.L. Inventions, innovations, and new technologies: Flexible and lightweight thin-film solar PV based on CIGS, CdTe, and a-Si:H. Sol. Compass 2023, 7, 100053. [Google Scholar] [CrossRef]
- Gao, B.; Shao, Y.; Liu, W.; Xiang, H.; Yu, Y.; Liu, Z. Out-door reliability and degradation of HIT, CIGS, n-type multi-busbar, PERC, and CdTe modules in Shanghai, China. Sol. Energy Mater. Sol. Cells 2022, 236, 111490. [Google Scholar] [CrossRef]
- Bosio, A.; Pasini, S.; Romeo, N. The History of Photovoltaics with Emphasis on CdTe Solar Cells and Modules. Coatings 2020, 10, 344. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, X.C.; Wu, H.C.; Zhao, C.Z. Achievements and Challenges of CdS/CdTe Solar Cells. Int. J. Photoenergy 2011, 2011, 297350. [Google Scholar] [CrossRef]
- Khrypunov, G.; Vambol, S.; Deyneko, N.; Sychikova, Y. Increasing the efficiency of film solar cells based on cadmium telluride. East.-Eur. J. Enterp. Technol. 2016, 6, 12–18. [Google Scholar] [CrossRef]
- Romeo, A.; Artegiani, E.; Menossi, D. Low substrate temperature CdTe solar cells: A review. Sol. Energy 2018, 175, 9–15. [Google Scholar] [CrossRef]
- Balakhayeva, R.; Akilbekov, A.; Baimukhanov, Z.; Usseinov, A.; Giniyatova, S.; Zdorovets, M.; Vlasukova, L.; Popov, A.I.; Dauletbekova, A. CdTe Nanocrystal Synthesis in SiO2/Si Ion-Track Template: The Study of Electronic and Structural Properties. Phys. Status Solidi (A) 2020, 218, 2000231. [Google Scholar] [CrossRef]
- Zghaibeh, M.; Okonkwo, P.C.; Emori, W.; Ahmed, T.; Mohamed, A.; Aliyu, M.; Ogunleye, G.J. CdTe solar cells fabrication and examination techniques: A focused review. Int. J. Green Energy 2022, 20, 555–570. [Google Scholar] [CrossRef]
- Fthenakis, V.; Athias, C.; Blumenthal, A.; Kulur, A.; Magliozzo, J.; Ng, D. Sustainability evaluation of CdTe PV: An update. Renew. Sustain. Energy Rev. 2020, 123, 109776. [Google Scholar] [CrossRef]
- Curtin, A.; Vail, C.; Buckley, H. CdTe in thin film photovoltaic cells: Interventions to protect drinking water in production and end-of-life. Water-Energy Nexus 2020, 3, 15–28. [Google Scholar] [CrossRef]
- Lin, L.; Ravindra, N.M. CIGS and perovskite solar cells—An overview. Emerg. Mater. Res. 2020, 9, 812–824. [Google Scholar] [CrossRef]
- Ramanujam, J.; Singh, U.P. Copper indium gallium selenide based solar cells—A review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Ong, K.H.; Agileswari, R.; Maniscalco, B.; Arnou, P.; Kumar, C.C.; Bowers, J.W.; Marsadek, M.B. Review on Substrate and Molybdenum Back Contact in CIGS Thin Film Solar Cell. Int. J. Photoenergy 2018, 2018, 9106269. [Google Scholar] [CrossRef]
- Romanyuk, Y.E.; Hagendorfer, H.; Stücheli, P.; Fuchs, P.; Uhl, A.R.; Sutter-Fella, C.M.; Werner, M.; Haass, S.; Stückelberger, J.; Broussillou, C.; et al. All Solution-Processed Chalcogenide Solar Cells—From Single Functional Layers Towards a 13.8% Efficient CIGS Device. Adv. Funct. Mater. 2014, 25, 12–27. [Google Scholar] [CrossRef]
- Feurer, T.; Reinhard, P.; Avancini, E.; Bissig, B.; Löckinger, J.; Fuchs, P.; Carron, R.; Weiss, T.P.; Perrenoud, J.; Stutterheim, S.; et al. Progress in thin film CIGS photovoltaics—Research and development, manufacturing, and applications. Prog. Photovolt. Res. Appl. 2016, 25, 645–667. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, S.; Tang, W.; Yuan, X.; Zhou, H.; Qi, T.; Zheng, X.; Ning, D.; Ma, M.; Zhu, J.; et al. Advances in CIGS thin film solar cells with emphasis on the alkali element post-deposition treatment. Mater. Rep. Energy 2023, 3, 100214. [Google Scholar] [CrossRef]
- Kim, S.; Van Quy, H.; Bark, C.W. Photovoltaic technologies for flexible solar cells: Beyond silicon. Mater. Today Energy 2021, 19, 100583. [Google Scholar] [CrossRef]
- Dhere, N.G. Toward GW/year of CIGS production within the next decade. Sol. Energy Mater. Sol. Cells 2007, 91, 1376–1382. [Google Scholar] [CrossRef]
- Singh, B.P.; Goyal, S.K.; Kumar, P. Solar PV cell materials and technologies: Analyzing the recent developments. Mater. Today Proc. 2021, 43, 2843–2849. [Google Scholar] [CrossRef]
- Wang, M.; Obene, P.; Questianx, M.; Harris, M.; Singh, R.; Choy, K.L. Electrostatic InkJet printed silver grids for non-vacuum processed CIGS solar cells. Sci. Rep. 2025, 15, 11048. [Google Scholar] [CrossRef]
- Tong, Y.; Xiao, Z.; Du, X.; Zuo, C.; Li, Y.; Lv, M.; Yuan, Y.; Yi, C.; Hao, F.; Hua, Y.; et al. Progress of the key materials for organic solar cells. Sci. China Chem. 2020, 63, 758–765. [Google Scholar] [CrossRef]
- Li, X.; Li, P.; Wu, Z.; Luo, D.; Yu, H.-Y.; Lu, Z.-H. Review and perspective of materials for flexible solar cells. Mater. Rep. Energy 2021, 1, 100001. [Google Scholar] [CrossRef]
- Suchikova, Y.; Bogdanov, I.; Kovachov, S.; Kamensky, D.; Myroshnychenko, V.; Panova, N. Optimal ranges determination of morphological parameters of nanopatterned semiconductors quality for solar cells. Arch. Mater. Sci. Eng. 2020, 1, 15–24. [Google Scholar] [CrossRef]
- Li, J.; Aierken, A.; Liu, Y.; Zhuang, Y.; Yang, X.; Mo, J.H.; Fan, R.K.; Chen, Q.Y.; Zhang, S.Y.; Huang, Y.M.; et al. A Brief Review of High Efficiency III-V Solar Cells for Space Application. Front. Phys. 2021, 8, 631925. [Google Scholar] [CrossRef]
- Yao, H.; Wang, J.; Xu, Y.; Zhang, S.; Hou, J. Recent Progress in Chlorinated Organic Photovoltaic Materials. Acc. Chem. Res. 2020, 53, 822–832. [Google Scholar] [CrossRef]
- Fan, B.; Lin, F.; Wu, X.; Zhu, Z.; Jen, A.K.-Y. Selenium-Containing Organic Photovoltaic Materials. Acc. Chem. Res. 2021, 54, 3906–3916. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, J.-W.; Jung, H.S.; Shin, H.; Park, N.-G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.S.; Naidu, K.C.B. A review on perovskite solar cells (PSCs), materials and applications. J. Mater. 2021, 7, 940–956. [Google Scholar] [CrossRef]
- Liu, L.; Najar, A.; Wang, K.; Du, M.; Liu, S. Perovskite Quantum Dots in Solar Cells. Adv. Sci. 2022, 9, 2104577. [Google Scholar] [CrossRef]
- Albaladejo-Siguan, M.; Baird, E.C.; Becker-Koch, D.; Li, Y.; Rogach, A.L.; Vaynzof, Y. Stability of Quantum Dot Solar Cells: A Matter of (Life)Time. Adv. Energy Mater. 2021, 11, 2003457. [Google Scholar] [CrossRef]
- Duan, L.; Hu, L.; Guan, X.; Lin, C.; Chu, D.; Huang, S.; Liu, X.; Yuan, J.; Wu, T. Quantum Dots for Photovoltaics: A Tale of Two Materials. Adv. Energy Mater. 2021, 11, 2100354. [Google Scholar] [CrossRef]
- Schileo, G.; Grancini, G. Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. J. Mater. Chem. C 2021, 9, 67–76. [Google Scholar] [CrossRef]
- Huang, Z.; Beard, M.C. Dye-Sensitized Multiple Exciton Generation in Lead Sulfide Quantum Dots. J. Am. Chem. Soc. 2022, 144, 15855–15861. [Google Scholar] [CrossRef]
- Sahu, A.; Garg, A.; Dixit, A. A review on quantum dot sensitized solar cells: Past, present and future towards carrier multiplication with a possibility for higher efficiency. Sol. Energy 2020, 203, 210–239. [Google Scholar] [CrossRef]
- Rakshit, S.; Piatkowski, P.; Mora-Seró, I.; Douhal, A. Combining Perovskites and Quantum Dots: Synthesis, Characterization, and Applications in Solar Cells, LEDs, and Photodetectors. Adv. Opt. Mater. 2022, 10, 2102566. [Google Scholar] [CrossRef]
- Kim, T.; Lim, S.; Yun, S.; Jeong, S.; Park, T.; Choi, J. Design Strategy of Quantum Dot Thin-Film Solar Cells. Small 2020, 16, e2002460. [Google Scholar] [CrossRef]
- Zhang, G.; Lin, F.R.; Qi, F.; Heumüller, T.; Distler, A.; Egelhaaf, H.-J.; Li, N.; Chow, P.C.Y.; Brabec, C.J.; Jen, A.K.-Y.; et al. Renewed Prospects for Organic Photovoltaics. Chem. Rev. 2022, 122, 14180–14274. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Sheriff, H.K.M.; Forrest, S.R. Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nat. Rev. Mater. 2022, 8, 186–201. [Google Scholar] [CrossRef]
- Akinoglu, B.G.; Tuncel, B.; Badescu, V. Beyond 3rd generation solar cells and the full spectrum project. Recent advances and new emerging solar cells. Sustain. Energy Technol. Assess. 2021, 46, 101287. [Google Scholar] [CrossRef]
- Cramer, C.L.; Ionescu, E.; Graczyk-Zajac, M.; Nelson, A.T.; Katoh, Y.; Haslam, J.J.; Wondraczek, L.; Aguirre, T.G.; LeBlanc, S.; Wang, H.; et al. Additive manufacturing of ceramic materials for energy applications: Road map and opportunities. J. Eur. Ceram. Soc. 2022, 42, 3049–3088. [Google Scholar] [CrossRef]
- Suchikova, Y.; Lazarenko, A.; Kovachov, S.; Usseinov, A.; Karipbaev, Z.; Popov, A.I. Formation of porous Ga2O3/GaAs layers for electronic devices. In Proceedings of the 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 22–26 February 2022. [Google Scholar] [CrossRef]
- Kadyrzhanov, K.K.; Kozlovskiy, A.A.; Konuhova, M.; Popov, A.I.; Shlimas, D.D.; Borgekov, D.B. Determination of gamma radiation shielding efficiency by radiation-resistant composite ZrO2–Al2O3—TiO2–WO3—Nb2O5 ceramics. Opt. Mater. 2024, 154, 115752. [Google Scholar] [CrossRef]
- Usseinov, A.; Koishybayeva, Z.; Platonenko, A.; Akilbekov, A.; Purans, J.; Pankratov, V.; Suchikova, Y.; Popov, A.I. Ab-Initio Calculations of Oxygen Vacancy in Ga2O3 Crystals. Latv. J. Phys. Tech. Sci. 2021, 58, 3–10. [Google Scholar] [CrossRef]
- Suchikova, Y.; Nazarovets, S.; Popov, A.I. Ga2O3 solar-blind photodetectors: From civilian applications to missile detection and research agenda. Opt. Mater. 2024, 157, 116397. [Google Scholar] [CrossRef]
- Zhou, S.; Pu, Y.; Zhang, X.; Shi, Y.; Gao, Z.; Feng, Y.; Shen, G.; Wang, X.; Wang, D. High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide. Chem. Eng. J. 2022, 427, 131684. [Google Scholar] [CrossRef]
- Usseinov, A.; Koishybayeva, Z.; Platonenko, A.; Pankratov, V.; Suchikova, Y.; Akilbekov, A.; Zdorovets, M.; Purans, J.; Popov, A.I. Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure. Materials 2021, 14, 7384. [Google Scholar] [CrossRef]
- Jiao, Y.; Dai, J.; Fan, Z.; Cheng, J.; Zheng, G.; Grema, L.; Zhong, J.; Li, H.-F.; Wang, D. Overview of high-entropy oxide ceramics. Mater. Today 2024, 77, 92–117. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, R.; Huo, Y.; Li, H.; Wang, L. Formation, Detection, and Function of Oxygen Vacancy in Metal Oxides for Solar Energy Conversion. Adv. Funct. Mater. 2021, 32, 2109503. [Google Scholar] [CrossRef]
- Ming, W.; Jiang, Z.; Luo, G.; Xu, Y.; He, W.; Xie, Z.; Shen, D.; Li, L. Progress in Transparent Nano-Ceramics and Their Potential Applications. Nanomaterials 2022, 12, 1491. [Google Scholar] [CrossRef] [PubMed]
- Bondarchuk, A.N.; Corrales-Mendoza, I.; Aguilar-Martínez, J.A.; Tomás, S.A.; Gómez-Caiceros, D.A.; Hernández-Méndez, A.; Marken, F. A BiVO4 photoanode grown on porous and conductive SnO2 ceramics for water splitting driven by solar energy. Ceram. Int. 2020, 46, 9040–9049. [Google Scholar] [CrossRef]
- Freitas, A.L.M.; Muche, D.N.F.; Leite, E.R.; Souza, F.L. Interface engineering of nanoceramic hematite photoelectrode for solar energy conversion. J. Am. Ceram. Soc. 2020, 103, 6833–6846. [Google Scholar] [CrossRef]
- Ahmad, W.; Tahir, S.; Ali, A.; Mahmood, K. A novel approach to reduce both front and rear side power losses in PERC solar cells using different combinations of transparent metal oxides. Ceram. Int. 2022, 49, 2821–2828. [Google Scholar] [CrossRef]
- Möllmann, A.; Bialuschewski, D.; Fischer, T.; Tachibana, Y.; Mathur, S. Functional metal oxide ceramics as electron transport medium in photovoltaics and photo-electrocatalysis. In Advanced Ceramics for Energy Conversion and Storage; Elsevier: Amsterdam, The Netherlands, 2020; pp. 207–273. [Google Scholar] [CrossRef]
- Almakayeel, N.; Kaliyannan, G.V.; Gunasekaran, R. Enhancing power conversion efficiency of polycrystalline silicon photovoltaic cells using yttrium oxide anti-reflective coating via electro-spraying method. Ceram. Int. 2024, 50, 42392–42403. [Google Scholar] [CrossRef]
- Maqsood, S.; Ali, Z.; Ali, K.; Ishaq, M.; Sajid, M.; Farhan, A.; Rahdar, A.; Pandey, S. Assessment of different optimized anti-reflection coatings for ZnO/Si heterojunction solar cells. Ceram. Int. 2023, 49, 37118–37126. [Google Scholar] [CrossRef]
- Sadiq, I.; Ali, S.A.; Ahmad, T. Advanced Hybrid Ceramics for Nuclear and Hydrogen Energy Applications. ChemistrySelect 2023, 8, e202300837. [Google Scholar] [CrossRef]
- Alizadeh, A.; Roudgar-Amoli, M.; Bonyad-Shekalgourabi, S.-M.; Shariatinia, Z.; Mahmoudi, M.; Saadat, F. Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review. Renew. Sustain. Energy Rev. 2022, 157, 112047. [Google Scholar] [CrossRef]
- Kusuma, J.; Balakrishna, R.G. Ceramic grains: Highly promising hole transport material for solid state QDSSC. Sol. Energy Mater. Sol. Cells 2020, 209, 110445. [Google Scholar] [CrossRef]
- Mozafari, H.; Hamidinezhad, H. Effect of electrospun bilayer titanium oxide–tin oxide nanofibers on the performance of dye-sensitized solar cells. Opt. Mater. 2023, 144, 114297. [Google Scholar] [CrossRef]
- Szindler, M.; Szindler, M.; Drygała, A.; Lukaszkowicz, K.; Kaim, P.; Pietruszka, R. Dye-Sensitized Solar Cell for Building-Integrated Photovoltaic (BIPV) Applications. Materials 2021, 14, 3743. [Google Scholar] [CrossRef]
- Exeler, J.; Jüstel, T. Advances in Functional Ceramics for Water Splitting: A Comprehensive Review. Photochem 2024, 4, 271–284. [Google Scholar] [CrossRef]
- Hassan, N.S.; Jalil, A.A.; Khusnun, N.F.; Ahmad, A.; Abdullah, T.A.T.; Kasmani, R.M.; Norazahar, N.; Kamaroddin, M.F.A.; Vo, D.V.N. Photoelectrochemical water splitting using post-transition metal oxides for hydrogen production: A review. Environ. Chem. Lett. 2021, 20, 311–333. [Google Scholar] [CrossRef]
- Halfadji, A.; Bennabi, L.; Giannakis, S.; Marrani, A.G.; Bellucci, S. Sono-synthesis and characterization of next-generation antimicrobial ZnO/TiO2 and Fe3O4/TiO2 bi-nanocomposites, for antibacterial and antifungal applications. Ceram. Int. 2024, 50, 39097–39108. [Google Scholar] [CrossRef]
- Kaler, V.; Pandel, U.; Duchaniya, R. Development of TiO2/PVA nanocomposites for application in solar cells. Mater. Today Proc. 2018, 5, 6279–6287. [Google Scholar] [CrossRef]
- Serga, V.; Burve, R.; Krumina, A.; Pankratova, V.; Popov, A.I.; Pankratov, V. Study of phase composition, photocatalytic activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method. J. Mater. Res. Technol. 2021, 13, 2350–2360. [Google Scholar] [CrossRef]
- Rakhman, K.A.; Budhyantoro, A.; Aprilita, N.H.; Kartini, I. One-pot synthesis of hollow sphere TiO2/Ag nanoparticles co-sensitized with peonidin: Pelargonidin for dye-sensitized solar cells applications. J. Mater. Sci. Mater. Electron. 2024, 35, 1926. [Google Scholar] [CrossRef]
- Khan, M.; Ali, S.; Alwadai, N.; Haq, I.U.; Irfan, M.; Albalawi, H.; Almuqrin, A.H.; Almoneef, M.M.; Iqbal, M. Structural, electrical and optical properties of hetrostructured MoS2/ZnO thin films for potential perovskite solar cells application. J. Mater. Res. Technol. 2022, 20, 1616–1623. [Google Scholar] [CrossRef]
- Wibowo, A.; Marsudi, M.A.; Amal, M.I.; Ananda, M.B.; Stephanie, R.; Ardy, H.; Diguna, L.J. ZnO nanostructured materials for emerging solar cell applications. RSC Adv. 2020, 10, 42838–42859. [Google Scholar] [CrossRef]
- Hajji, M.; Ajili, M.; Jebbari, N.; Loreiro, A.G.; Kamoun, N.T. Photocatalytic performance and solar cell applications of coupled semiconductor CuO– ZnO sprayed thin films: Coupling effect between oxides. Opt. Mater. 2023, 140, 113798. [Google Scholar] [CrossRef]
- Alsmadi, A.K.M.; Salameh, B.; Alshammari, O.; Bumajdad, A.; Madkour, M. Synthesis, photocatalytic, and photoelectric performance of mesoporous Au/TiO2 and Au/TiO2/MWCNT nanocomposites. J. Phys. Chem. Solids 2025, 207, 112874. [Google Scholar] [CrossRef]
- Tyagi, J.; Gupta, H.; Purohit, L. Mesoporous ZnO/TiO2 photoanodes for quantum dot sensitized solar cell. Opt. Mater. 2021, 115, 111014. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, D.P.; Mahajan, A. Plasmonic Engineering of TiO2 Photoanodes for Dye-Sensitized Solar Cells: A Review. J. Electron. Mater. 2022, 51, 4188–4206. [Google Scholar] [CrossRef]
- Lana, G.M.; Bello, I.T.; Adedokun, O.M.; Adenigba, V.O.; Jubu, P.R.; Adedokun, O.; Sanusi, Y.K.; Dhlamini, M.S.; Awodugba, A.O. One-Dimensional TiO2 Nanocomposite-based Photoanode for Dye-Sensitized solar Cells: A review. Sol. Energy 2024, 279, 112850. [Google Scholar] [CrossRef]
- Sha, S.; Lu, H.; Yang, S.; Li, T.; Wu, J.; Ma, J.; Wang, K.; Hou, C.; Sheng, Z.; Li, Y. One-step electrodeposition of ZnO/graphene composite film as photoanode for dye-sensitised solar cells. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127491. [Google Scholar] [CrossRef]
- Almakayeel, N.; Kaliyannan, G.V.; Gunasekaran, R.; Rathanasamy, R. Enhanced photovoltaic efficiency through 3D-Printed COC/Al2O3 anti-reflective coversheets. J. Mater. Res. Technol. 2024, 33, 3093–3105. [Google Scholar] [CrossRef]
- Shablonin, E.; Popov, A.; Prieditis, G.; Vasil’CHenko, E.; Lushchik, A. Thermal annealing and transformation of dimer F centers in neutron-irradiated Al2O3 single crystals. J. Nucl. Mater. 2021, 543, 152600. [Google Scholar] [CrossRef]
- Yuliantini, L.; Nursam, N.M.; Pranoto, L.M.; Hidayat, J.; Sova, R.R.; Rahayu, E.S.; Djamal, M.; Yasaka, P.; Boonin, K.; Kaewkhao, J. Photon up-conversion in Er3+ ion-doped ZnO-Al2O3-BaO-B2O3 glass for enhancing the performance of dye-sensitized solar cells. J. Alloys Compd. 2023, 954, 170163. [Google Scholar] [CrossRef]
- Verma, M.; Mishra, G.P. High Electric Field Sensing in Ultrathin SiO2 and Tunnel Region to Enhance GaInP/Si Dual Junction Solar Cell Performance. IEEE Sens. J. 2021, 22, 1273–1279. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Liu, Q.; Luo, G.; Lu, J.; Xie, Y.; Zhao, X.; Tian, S. Superhydrophilic antireflection films with excellent optical and mechanical performance for perovskite solar cells. Inorg. Chem. Commun. 2024, 168, 112876. [Google Scholar] [CrossRef]
- Molina-Lozano, A.E.; Lanza, M.R.V.; Ortiz, P.; Cortés, M.T. Photoelectrochemical and Structural Insights of Electrodeposited CeO2 Photoanodes. Surfaces 2024, 7, 898–919. [Google Scholar] [CrossRef]
- Ravi, G.; Thyagarajan, K. CoFe2O4/NiFe2O4/CeO2 nanocomposites: Structural, FTIR, XPS, BET, and magnetic properties. Appl. Phys. A 2024, 130, 726. [Google Scholar] [CrossRef]
- Kumar, P.; Ratan, J.K.; Divya, N.; Mummaneni, K.; Rawat, G. Investigation of CeO2/rGO Nanocomposites as Diesel Additives to Enhance Engine Performance and Reduce Exhaust Emissions. In Proceedings of the 2023 9th International Conference on Signal Processing and Communication (ICSC), Noida, India, 21–23 December 2023; pp. 714–719. [Google Scholar] [CrossRef]
- Nien, Y.-H.; Zhuang, S.-W.; Chou, J.-C.; Yang, P.-H.; Lai, C.-H.; Kuo, P.-Y.; Ho, C.-S.; Wu, Y.-T.; Syu, R.-H.; Chen, P.-F. Photovoltaic Measurement Under Different Illumination of the Dye-Sensitized Solar Cell With the Photoanode Modified by Fe2O3/g-C3N4/TiO2 Heterogeneous Nanofibers Prepared by Electrospinning With Dual Jets. IEEE Trans. Semicond. Manuf. 2023, 36, 291–297. [Google Scholar] [CrossRef]
- Wu, S.; Cheng, C.-H.; Hsiao, Y.-J.; Juang, R.-C.; Wen, W.-F. Fe2O3 films on stainless steel for solar absorbers. Renew. Sustain. Energy Rev. 2016, 58, 574–580. [Google Scholar] [CrossRef]
- Kamil, A.F.; Abdullah, H.I.; Rheima, A.M.; Mohammed, S.H. UV-Irradiation synthesized α-Fe2O3 nanoparticles based dye-sensitized solar cells. Mater. Today Proc. 2022, 61, 820–825. [Google Scholar] [CrossRef]
- Shinde, S.S.; Bansode, R.A.; Bhosale, C.H.; Rajpure, K.Y. Physical properties of hematite α-Fe2O3thin films: Application to photoelectrochemical solar cells. J. Semicond. 2011, 32, 013001. [Google Scholar] [CrossRef]
- Chen, L.; Wu, S.; Ma, D.; Shang, A.; Li, X. Optoelectronic modeling of the Si/α-Fe2O3 heterojunction photoanode. Nano Energy 2018, 43, 177–183. [Google Scholar] [CrossRef]
- Dadkhah, M.; Nine, J.; Purasinhala, K.; Sandhu, G.S.; Losic, D. Nanostructure-dependent colouration efficiency of electrochromic coatings using 0D, 1D, and 2D WO3 for smart windows. Nano Mater. Sci. 2024. [Google Scholar] [CrossRef]
- Wang, L.; Zhai, Z.; Li, L. Rapid Fabrication of Tungsten Oxide-Based Electrochromic Devices through Femtosecond Laser Processing. Micromachines 2024, 15, 785. [Google Scholar] [CrossRef] [PubMed]
- Aldirham, S.H.; Helal, A.; Shkir, M.; Sayed, M.A.; Ali, A.M. Enhancement Study of the Photoactivity of TiO2 Photocatalysts during the Increase of the WO3 Ratio in the Presence of Ag Metal. Catalysts 2024, 14, 633. [Google Scholar] [CrossRef]
- Matalkeh, M.; Nasrallah, G.K.; Shurrab, F.M.; Al-Absi, E.S.; Mohammed, W.; Elzatahry, A.; Saoud, K.M. Visible Light Photocatalytic Activity of Ag/WO3 Nanoparticles and its Antibacterial Activity Under Ambient Light and in The Dark. Results Eng. 2022, 13, 100313. [Google Scholar] [CrossRef]
- Ghattavi, S.; Nezamzadeh-Ejhieh, A. Nanoscale AgI-WO3 binary photocatalyst: Synthesis, brief characterization, and investigation of its photocatalytic activity. Mater. Res. Bull. 2022, 158, 112085. [Google Scholar] [CrossRef]
- Hedayati, M.; Fouladvand, M.; Rouhollahi, A. Fabrication of WO3/Co3O4 nanorods as a p-n heterojunction photoanode for efficient photoelectrochemical oxygen evolution. Int. J. Hydrogen Energy 2024, 84, 288–295. [Google Scholar] [CrossRef]
- Lee, D.; Chae, M.; Ahmad, I.; Kim, J.-R.; Kim, H.-D. Influence of WO3-Based Antireflection Coatings on Current Density in Silicon Heterojunction Solar Cells. Nanomaterials 2023, 13, 1550. [Google Scholar] [CrossRef] [PubMed]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Imanishi, A.; Tsuji, E.; Nakato, Y. Dependence of the Work Function of TiO2 (Rutile) on Crystal Faces, Studied by a Scanning Auger Microprobe. J. Phys. Chem. C 2007, 111, 2128–2132. [Google Scholar] [CrossRef]
- Kadoshima, M.; Hiratani, M.; Shimamoto, Y.; Torii, K.; Miki, H.; Kimura, S.; Nabatame, T. Rutile-type TiO2 thin film for high-k gate insulator. Thin Solid Film. 2003, 424, 224–228. [Google Scholar] [CrossRef]
- Dewasi, A.; Mitra, A. Effect of variation of thickness of TiO2 on the photovoltaic performance of n-TiO2/p-Si heterostructure. J. Mater. Sci. Mater. Electron. 2017, 28, 18075–18084. [Google Scholar] [CrossRef]
- Falson, J.; Kozuka, Y.; Uchida, M.; Smet, J.H.; Arima, T.-H.; Tsukazaki, A.; Kawasaki, M. MgZnO/ZnO heterostructures with electron mobility exceeding 1 × 106 cm2/Vs. Sci. Rep. 2016, 6, 26598. [Google Scholar] [CrossRef]
- Ozgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Look, D. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 2001, 80, 383–387. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, S.W.; Hwang, C.S.; Min, Y.-S.; Won, J.Y.; Jeong, J. Low Temperature (<100 °C) Deposition of Aluminum Oxide Thin Films by ALD with O3 as Oxidant. J. Electrochem. Soc. 2006, 153, F69–F76. [Google Scholar] [CrossRef]
- Liu, D.; Robertson, J. Oxygen vacancy levels and interfaces of Al2O3. Microelectron. Eng. 2009, 86, 1668–1671. [Google Scholar] [CrossRef]
- Costina, I.; Franchy, R. Band gap of amorphous and well-ordered Al2O3 on Ni3Al(100). Appl. Phys. Lett. 2001, 78, 4139–4141. [Google Scholar] [CrossRef]
- Guerreiro, A.N.; Costa, I.B.; Vale, A.B.; Braga, M.H. Distinctive Electric Properties of Group 14 Oxides: SiO2, SiO, and SnO2. Int. J. Mol. Sci. 2023, 24, 15985. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Z.; Tian, J.; Wu, G.; He, Y.; Yu, B.; Zhan, F.; Wang, Y.; Sun, M.; Yang, W.; et al. Efficient and Dense Electron Emission from a SiO2 Tunneling Diode with Low Poisoning Sensitivity. Nano Lett. 2022, 22, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Oh, C.; Park, S.H.; Lee, J.W.; Lee, S.I.; Kim, B.S. Electrical properties of low-temperature SiO2 thin films prepared by plasma-enhanced atomic layer deposition with different plasma times. AIP Adv. 2021, 11, 115126. [Google Scholar] [CrossRef]
- Kusmierek, E. A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. Catalysts 2020, 10, 1435. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, B.; Yun, S.; Zhang, W.; Xia, C.; Afzal, M.; Cai, Y.; Liu, Y.; Wang, Y.; Wang, H. Fast ionic conduction in semiconductor CeO2-δ electrolyte fuel cells. NPG Asia Mater. 2019, 11, 51. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, G.; Chong, S.; Zhao, H.; Huang, T.; Zhu, J. Ultrasonic impregnation of MnO2/CeO2 and its application in catalytic sono-degradation of methyl orange. J. Environ. Manag. 2018, 205, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Avellaneda, C.O.; Berton, M.A.; Bulhões, L.O. Optical and electrochemical properties of CeO2 thin film prepared by an alkoxide route. Sol. Energy Mater. Sol. Cells 2008, 92, 240–244. [Google Scholar] [CrossRef]
- Erlebach, A.; Kurland, H.-D.; Grabow, J.; Müller, F.A.; Sierka, M. Structure evolution of nanoparticulate Fe2O3. Nanoscale 2014, 7, 2960–2969. [Google Scholar] [CrossRef]
- Cong-Zhou, L.; Wei-Pin, C. High dielectric constants of hematite (α-Fe2O3) and its anomalous characteristics. Ferroelectrics 1981, 38, 926. [Google Scholar] [CrossRef]
- Shaheen, W.; Hong, K. Thermal characterization and physicochemical properties of Fe2O3–Mn2O3/Al2O3 system. Thermochim. Acta 2002, 381, 153–164. [Google Scholar] [CrossRef]
- Mahmoud, H.R.; El-Molla, S.A.; Saif, M. Improvement of physicochemical properties of Fe2O3/MgO nanomaterials by hydrothermal treatment for dye removal from industrial wastewater. Powder Technol. 2013, 249, 225–233. [Google Scholar] [CrossRef]
- Walter, C.W.; Hertzler, C.F.; Devynck, P.; Smith, G.P.; Peterson, J.R. Photodetachment of WO−3: The electron affinity of WO3. J. Chem. Phys. 1991, 95, 824–827. [Google Scholar] [CrossRef]
- Vuong, N.M.; Hieu, H.N.; Kim, D. An edge-contacted pn-heterojunction of a p-SWCNT/n-WO3 thin film. J. Mater. Chem. C 2013, 1, 5153–5160. [Google Scholar] [CrossRef]
- Sanchez, F.; Marot, L.; Dmitriev, A.; Antunes, R.; Steiner, R.; Meyer, E. WO3 work function enhancement induced by filamentous films deposited by resistive heating evaporation technique. J. Alloys Compd. 2023, 968, 171888. [Google Scholar] [CrossRef]
- Passas, I. Bibliometric Analysis: The Main Steps. Encyclopedia 2024, 4, 1014–1025. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef]
- Suchikova, Y.; Nazarovets, S.; Popov, A.I. Electrochemical Etching vs. Electrochemical Deposition: A Comparative Bibliometric Analysis. Electrochem 2025, 6, 18. [Google Scholar] [CrossRef]
- Menéndez-Manjón, A.; Moldenhauer, K.; Wagener, P.; Barcikowski, S. Nano-energy research trends: Bibliometrical analysis of nanotechnology research in the energy sector. J. Nanoparticle Res. 2011, 13, 3911–3922. [Google Scholar] [CrossRef]
- Sales, M.B.; Neto, J.G.L.; Braz, A.K.D.S.; Junior, P.G.D.S.; Melo, R.L.F.; Valério, R.B.R.; Serpa, J.d.F.; Lima, A.M.D.S.; De Lima, R.K.C.; Guimarães, A.P.; et al. Trends and Opportunities in Enzyme Biosensors Coupled to Metal-Organic Frameworks (MOFs): An Advanced Bibliometric Analysis. Electrochem 2023, 4, 181–211. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, W.; Deng, Z.; Huang, J. A bibliometric and visualization analysis of electrochemical biosensors for early diagnosis of eye diseases. Front. Med. 2025, 11, 1487981. [Google Scholar] [CrossRef]
- Dong, B.; Xu, G.; Luo, X.; Cai, Y.; Gao, W. A bibliometric analysis of solar power research from 1991 to 2010. Scientometrics 2012, 93, 1101–1117. [Google Scholar] [CrossRef]
- Obaideen, K.; Olabi, A.G.; Al Swailmeen, Y.; Shehata, N.; Abdelkareem, M.A.; Alami, A.H.; Rodriguez, C.; Sayed, E.T. Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs). Sustainability 2023, 15, 1418. [Google Scholar] [CrossRef]
- Fauzi, M.A.; Abidin, N.H.Z.; Suki, N.M.; Budiea, A.M.A. Residential rooftop solar panel adoption behavior: Bibliometric analysis of the past and future trends. Renew. Energy Focus 2023, 45, 1–9. [Google Scholar] [CrossRef]
- Yousef, B.A.; Obaideen, K.; AlMallahi, M.N.; Alajmi, N.; Radwan, A.; Al-Shihabi, S.; Elgendi, M. On the contribution of concentrated solar power (CSP) to the sustainable development goals (SDGs): A bibliometric analysis. Energy Strat. Rev. 2024, 52, 101356. [Google Scholar] [CrossRef]
- David, T.M.; Rizol, P.M.S.R.; Machado, M.A.G.; Buccieri, G.P. Future research tendencies for solar energy management using a bibliometric analysis, 2000–2019. Heliyon 2020, 6, e04452. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Li, N.; Brown, M.A.; Peng, Y.; Shuai, Y. A bibliographic analysis of recent solar energy literatures: The expansion and evolution of a research field. Renew. Energy 2014, 66, 696–706. [Google Scholar] [CrossRef]
- Zwane, N.; Tazvinga, H.; Botai, C.; Murambadoro, M.; Botai, J.; de Wit, J.; Mabasa, B.; Daniel, S.; Mabhaudhi, T. A Bibliometric Analysis of Solar Energy Forecasting Studies in Africa. Energies 2022, 15, 5520. [Google Scholar] [CrossRef]
- Saikia, K.; Vallès, M.; Fabregat, A.; Saez, R.; Boer, D. A bibliometric analysis of trends in solar cooling technology. Sol. Energy 2020, 199, 100–114. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Archambault, É.; Campbell, D.; Gingras, Y.; Larivière, V. Comparing bibliometric statistics obtained from the Web of Science and Scopus. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1320–1326. [Google Scholar] [CrossRef]
- Franceschet, M. A comparison of bibliometric indicators for computer science scholars and journals on Web of Science and Google Scholar. Scientometrics 2009, 83, 243–258. [Google Scholar] [CrossRef]
- Arruda, H.; Silva, E.R.; Lessa, M.; Domício Proença, J.; Bartholo, R. VOSviewer and Bibliometrix. J. Med. Libr. Assoc. 2022, 110, 392–395. [Google Scholar] [CrossRef]
- Wong, D. VOSviewer. Tech. Serv. Q. 2018, 35, 219–220. [Google Scholar] [CrossRef]
- Bukar, U.A.; Sayeed, S.; Razak, S.F.A.; Yogarayan, S.; Amodu, O.A.; Mahmood, R.A.R. A method for analyzing text using VOSviewer. MethodsX 2023, 11, 102339. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M. The Sankey Diagram in Energy and Material Flow Management. J. Ind. Ecol. 2008, 12, 82–94. [Google Scholar] [CrossRef]
- Lupton, R.; Allwood, J. Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use. Resour. Conserv. Recycl. 2017, 124, 141–151. [Google Scholar] [CrossRef]
- Daniel, D.; West-Mitchell, K. The Sankey diagram: An exploratory application of a data visualization tool. Transfusion 2024, 64, 967–968. [Google Scholar] [CrossRef]
- Muruganandham, M.; Zhang, Y.; Suri, R.; Lee, G.-J.; Chen, P.-K.; Hsieh, S.-H.; Sillanpyää, M.; Wu, J.J. Environmental Applications of ZnO Materials. J. Nanosci. Nanotechnol. 2015, 15, 6900–6913. [Google Scholar] [CrossRef]
- Gonçalves, R.A.; Toledo, R.P.; Joshi, N.; Berengue, O.M. Green Synthesis and Applications of ZnO and TiO2 Nanostructures. Molecules 2021, 26, 2236. [Google Scholar] [CrossRef] [PubMed]
- Šebesta, M.; Kolenčík, M.; Sunil, B.R.; Illa, R.; Mosnáček, J.; Ingle, A.P.; Urík, M. Field Application of ZnO and TiO2 Nanoparticles on Agricultural Plants. Agronomy 2021, 11, 2281. [Google Scholar] [CrossRef]
- Navidpour, A.H.; Hosseinzadeh, A.; Zhou, J.L.; Huang, Z. Progress in the application of surface engineering methods in immobilizing TiO2 and ZnO coatings for environmental photocatalysis. Catal. Rev. 2021, 65, 822–873. [Google Scholar] [CrossRef]
- Najaf, Z.; Nguyen, D.L.T.; Chae, S.Y.; Joo, O.-S.; Shah, A.U.H.A.; Vo, D.-V.N.; Nguyen, V.-H.; Van Le, Q.; Rahman, G. Recent trends in development of hematite (α-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting. Int. J. Hydrogen Energy 2021, 46, 23334–23357. [Google Scholar] [CrossRef]
- Tahir, A.A.; Wijayantha, K.G.U.; Saremi-Yarahmadi, S.; Mazhar, M.; McKee, V. Nanostructured α-Fe2O3Thin Films for Photoelectrochemical Hydrogen Generation. Chem. Mater. 2009, 21, 3763–3772. [Google Scholar] [CrossRef]
- Emin, S.; de Respinis, M.; Mavrič, T.; Dam, B.; Valant, M.; Smith, W. Photoelectrochemical water splitting with porous α-Fe2O3 thin films prepared from Fe/Fe-oxide nanoparticles. Appl. Catal. A Gen. 2016, 523, 130–138. [Google Scholar] [CrossRef]
- Kalantarian, K.; Sheibani, S. Ag and carbon quantum dot-modified Fe2O3/g-C3N4 nanocomposites for efficient photocatalytic degradation of organic pollutants and hydrogen production. Int. J. Hydrogen Energy 2025, 140, 343–361. [Google Scholar] [CrossRef]
- Mohamed, H.O.; Obaid, M.; Poo, K.-M.; Abdelkareem, M.A.; Talas, S.A.; Fadali, O.A.; Kim, H.Y.; Chae, K.-J. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chem. Eng. J. 2018, 349, 800–807. [Google Scholar] [CrossRef]
- Ashraf, M.; Khan, I.; Usman, M.; Khan, A.; Shah, S.S.; Khan, A.Z.; Saeed, K.; Yaseen, M.; Ehsan, M.F.; Tahir, M.N.; et al. Hematite and Magnetite Nanostructures for Green and Sustainable Energy Harnessing and Environmental Pollution Control: A Review. Chem. Res. Toxicol. 2019, 33, 1292–1311. [Google Scholar] [CrossRef]
- Suchea, M.P.; Tudose, I.V.; Romanitan, C.; Pachiu, C.; Popescu, M.; Mouratis, K.; Manica, M.; Antohe, S.; Couris, S.; Zisopol, D.G.; et al. Study of evolution for 3D structured surface with nano-balls and walls-like features with thickness variation for WO3 thin films made by spray deposition. Sci. Rep. 2025, 15, 4275. [Google Scholar] [CrossRef]
- Phogat, P.; Rawat, S.; Thakur, J.; Jha, R.; Singh, S. Influence of metal ion doping on the photo-electrochemical detection performance of WO3. Sens. Actuators A Phys. 2024, 382, 116150. [Google Scholar] [CrossRef]
- Yao, Y.; Sang, D.; Zou, L.; Wang, Q.; Liu, C. A Review on the Properties and Applications of WO3 Nanostructure−Based Optical and Electronic Devices. Nanomaterials 2021, 11, 2136. [Google Scholar] [CrossRef]
- Buch, V.R.; Chawla, A.K.; Rawal, S.K. Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today Proc. 2016, 3, 1429–1437. [Google Scholar] [CrossRef]
- Vezzoli, G.; Chen, M.; Caslavsky, J. New high dielectric constant materials: Micro/nanocomposites of suspended Au clusters in SiO2/SiO2, Al2O3, Li2O gels and relevant theory for high capacitance applications. Nanostruct. Mater. 1994, 4, 985–1009. [Google Scholar] [CrossRef]
- Na Kim, R.; Yun, H.W.; Lee, J.; Kim, W.-B. Dipole Formation and Electrical Properties According to SiO2 Layer Thickness at an Al2O3/SiO2 Interface. J. Phys. Chem. C 2021, 125, 14486–14492. [Google Scholar] [CrossRef]
- Kim, D.; Choi, J.; Ryu, S.W.; Kim, W. Improved Interface and Electrical Properties by Inserting an Ultrathin SiO2 Buffer Layer in the Al2O3/Si Heterojunction. Adv. Funct. Mater. 2019, 29, 1807271. [Google Scholar] [CrossRef]
- Kim, A.S.; Serko, N.A.; Khakuashev, P.E.; Kolky, A.N.; Yurchuck, S.Y. Application of Al2O3 Film for Stabilization of the Charge Properties of the SiO2/p-Si Interface. Russ. Microelectron. 2023, 52, 835–841. [Google Scholar] [CrossRef]
- Sen, M.T.S.K.A.; Bronsveld, P.; Weeber, A. Thermally stable MoOx hole selective contact with Al2O3 interlayer for industrial size silicon solar cells. Sol. Energy Mater. Sol. Cells 2021, 230, 111139. [Google Scholar] [CrossRef]
- Bullock, J.; Yan, D.; Cuevas, A. Passivation of aluminium–n+ silicon contacts for solar cells by ultrathin Al2O3 and SiO2 dielectric layers. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2013, 7, 946–949. [Google Scholar] [CrossRef]
- Yang, Y.; He, J.; Wu, G.; Hu, J. “Thermal Stabilization Effect” of Al2O3 nano-dopants improves the high-temperature dielectric performance of polyimide. Sci. Rep. 2015, 5, 16986. [Google Scholar] [CrossRef] [PubMed]
- Bartzsch, H.; Glöß, D.; Böcher, B.; Frach, P.; Goedicke, K. Properties of SiO2 and Al2O3 films for electrical insulation applications deposited by reactive pulse magnetron sputtering. Surf. Coat. Technol. 2003, 174–175, 774–778. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, B.; Zhong, Z.; Ye, J.; Zhang, J.; Fang, Z.; Ye, F. Reusable, high specific surface areas, and excellent thermal stability Al2O3–SiO2 aerogel composites as high-temperature thermal insulators for radome applications. J. Alloys Compd. 2024, 984, 173990. [Google Scholar] [CrossRef]
- Gayathri, P.; Akila, T.; Sibu, G.A.; Selvaraj, M.; Assiri, M.A.; Matheswaran, P.; Balasubramani, V. Enhancing photovoltaic applications through precipitating agents in ITO/CIS/CeO2/Al heterojunction solar cell. Inorg. Chem. Commun. 2024, 168, 112866. [Google Scholar] [CrossRef]
- Aklalouch, M.; Calleja, A.; Granados, X.; Ricart, S.; Boffa, V.; Ricci, F.; Puig, T.; Obradors, X. Hybrid sol–gel layers containing CeO2 nanoparticles as UV-protection of plastic lenses for concentrated photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 120, 175–182. [Google Scholar] [CrossRef]
- Li, Z.; Tong, L.; Ma, Y.; Zhao, L. Fabrication of CeO2/CaO nanocomposite as ultraviolet screening agent and its application in sunscreen. Ceram. Int. 2024, 50, 20431–20440. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, Z.; Lv, C.; Zhao, H.; Li, J.; Lv, Y. Synthesis and applications of polymorphic CeO2 and AgI/CeO2 nanocomposites. J. Mater. Sci. Mater. Eng. 2025, 20, 56. [Google Scholar] [CrossRef]
- Saha, S.; Keerthi, C.J.; Roy, S.; Sahatiya, P.; Dan, S.S.; Pal, S. Engineering Oxygen Vacancies in CeO2 for High-Performance UV-Vis Photodetector. IEEE Photon-Technol. Lett. 2023, 35, 1207–1210. [Google Scholar] [CrossRef]
- Semwal, N.; Mahar, D.; Arya, M.C. Response surface methodology-driven optimization of dye-sensitized Fe-doped CeO2 photocatalysts for efficient phenol degradation. J. Mol. Struct. 2025, 1341, 142639. [Google Scholar] [CrossRef]
- Qiu, G.; Yang, X.; Zhang, Y.; Zhao, J.; Liu, Q. Highly dispersed MoC quantum dots assist CeO2 for photocatalytic hydrogen production under visible light. Int. J. Hydrogen Energy 2025, 106, 423–431. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115, 6382–6390. [Google Scholar] [CrossRef]
- Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Liu, D.; Kelly, T.L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2013, 8, 133–138. [Google Scholar] [CrossRef]
- Liu, B.; Aydil, E.S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2009, 131, 3985–3990. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.; Cesar, I.; Grätzel, M. New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films. J. Am. Chem. Soc. 2006, 128, 15714–15721. [Google Scholar] [CrossRef]
- Cushing, S.K.; Li, J.; Meng, F.; Senty, T.R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A.D.; Wu, N. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041. [Google Scholar] [CrossRef] [PubMed]
- Palomares, E.; Clifford, J.N.; Haque, S.A.; Lutz, T.; Durrant, J.R. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. J. Am. Chem. Soc. 2002, 125, 475–482. [Google Scholar] [CrossRef]
- Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; et al. Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450. [Google Scholar] [CrossRef]
- Aberle, A.G. Surface passivation of crystalline silicon solar cells: A review. Prog. Photovolt. Res. Appl. 2000, 8, 473–487. [Google Scholar] [CrossRef]
- Mor, G.K.; Varghese, O.K.; Paulose, M.; Shankar, K.; Grimes, C.A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075. [Google Scholar] [CrossRef]
- Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Metal-Assisted Chemical Etching of Silicon: A Review. Adv. Mater. 2010, 23, 285–308. [Google Scholar] [CrossRef]
- Malinkiewicz, O.; Yella, A.; Lee, Y.H.; Espallargas, G.M.; Graetzel, M.; Nazeeruddin, M.K.; Bolink, H.J. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 2013, 8, 128–132. [Google Scholar] [CrossRef]
- Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2013, 2, 705–710. [Google Scholar] [CrossRef]
- Sivula, K.; Le Formal, F.; Grätzel, M. Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem 2011, 4, 432–449. [Google Scholar] [CrossRef] [PubMed]
- Osterloh, F.E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2012, 42, 2294–2320. [Google Scholar] [CrossRef] [PubMed]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, S.; Bard, A.J. Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Lett. 2005, 6, 24–28. [Google Scholar] [CrossRef]
- Wang, C.-C.; Li, J.-R.; Lv, X.-L.; Zhang, Y.-Q.; Guo, G. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci. 2014, 7, 2831–2867. [Google Scholar] [CrossRef]
- Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C.C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 2002, 27, 991–1022. [Google Scholar] [CrossRef]
- Granqvist, C. Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 2000, 60, 201–262. [Google Scholar] [CrossRef]
- Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications. Adv. Mater. 2012, 24, 5408–5427. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105. [Google Scholar] [CrossRef]
- Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z. Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 2016, 10, 402–434. [Google Scholar] [CrossRef]
- Corma, A.; Atienzar, P.; García, H.; Chane-Ching, J.-Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004, 3, 394–397. [Google Scholar] [CrossRef]
- Ou, G.; Xu, Y.; Wen, B.; Lin, R.; Ge, B.; Tang, Y.; Liang, Y.; Yang, C.; Huang, K.; Zu, D.; et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302. [Google Scholar] [CrossRef]
- Abanades, S.; Flamant, G. Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol. Energy 2006, 80, 1611–1623. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Sun, H.; Liu, J.; Pareek, V.K.; Wang, S. A review on photocatalysis for air treatment: From catalyst development to reactor design. Chem. Eng. J. 2017, 310, 537–559. [Google Scholar] [CrossRef]
- Talebi, H.; Rad, R.R.; Emami, F. Synergistic effects of SiO2 and Au nanostructures for enhanced broadband light absorption in perovskite solar cells. Sci. Rep. 2025, 15, 11548. [Google Scholar] [CrossRef]
- Dkhili, M.; Khalifa, M.; Aouida, S.; Ezzaouia, H.; Brown, T.M. Unveiling interface dynamics in perovskite solar cells with CeO2/SnO2 bilayer: Insights from electrochemical impedance spectroscopy. Mater. Today Commun. 2025, 46, 112786. [Google Scholar] [CrossRef]
- Haque, M.M.; Mahjabin, S.; Islam, M.A.; Selvanathan, V.; Putthisigamany, Y.; Abdullah, H.B.; Arith, F.; Akhtaruzzaman, M.; Ibrahim, M.A.; Chelvanathan, P. Modulation of optoelectronic properties of WO3 thin film via Cr doping through RF co-sputtering. Inorg. Chem. Commun. 2025, 177, 114300. [Google Scholar] [CrossRef]
- Liu, H.; Du, Y.; Yin, X.; Bai, M.; Liu, W. Micro/Nanostructures for Light Trapping in Monocrystalline Silicon Solar Cells. J. Nanomater. 2022, 2022, 8139174. [Google Scholar] [CrossRef]
- Saga, T. Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2010, 2, 96–102. [Google Scholar] [CrossRef]
- Green, M.A. Crystalline and thin-film silicon solar cells: State of the art and future potential. Sol. Energy 2003, 74, 181–192. [Google Scholar] [CrossRef]
- Rath, J. Low temperature polycrystalline silicon: A review on deposition, physical properties and solar cell applications. Sol. Energy Mater. Sol. Cells 2003, 76, 431–487. [Google Scholar] [CrossRef]
- Schropp, R.E.; Carius, R.; Beaucarne, G. Amorphous Silicon, Microcrystalline Silicon, and Thin-Film Polycrystalline Silicon Solar Cells. MRS Bull. 2007, 32, 219–224. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Chen, X.; Zhang, Y. Research progress of compound-based dopant-free asymmetric heterogeneous contact silicon solar cell. Nano Energy 2025, 136, 110715. [Google Scholar] [CrossRef]
- Liang, B.; Chen, X.; Wang, X.; Yuan, H.; Sun, A.; Wang, Z.; Hu, L.; Hou, G.; Zhao, Y.; Zhang, X. Progress in crystalline silicon heterojunction solar cells. J. Mater. Chem. A 2024, 13, 2441–2477. [Google Scholar] [CrossRef]
- Kirchartz, T.; Yan, G.; Yuan, Y.; Patel, B.K.; Cahen, D.; Nayak, P.K. The state of the art in photovoltaic materials and device research. Nat. Rev. Mater. 2025, 10, 335–354. [Google Scholar] [CrossRef]
- Melskens, J.; Theeuwes, R.J.; Black, L.E.; Berghuis, W.-J.H.; Macco, B.; Bronsveld, P.C.P.; Kessels, W.M.M. Excellent Passivation of n-Type Silicon Surfaces Enabled by Pulsed-Flow Plasma-Enhanced Chemical Vapor Deposition of Phosphorus Oxide Capped by Aluminum Oxide. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2020, 15, 2000399. [Google Scholar] [CrossRef]
- Banerjee, S.; Das, M.K. A review of Al2O3 as surface passivation material with relevant process technologies on c-Si solar cell. Opt. Quantum Electron. 2021, 53, 60. [Google Scholar] [CrossRef]
- Madani, K.; Rohatgi, A.; Min, K.H.; Song, H.-E.; Huang, Y.-Y.; Upadhyaya, A.D.; Upadhyaya, V.; Rounsaville, B.; Ok, Y.-W. Comparison of passivation properties of plasma-assisted ALD and APCVD deposited Al2O3 with SiNx capping. Sol. Energy Mater. Sol. Cells 2020, 218, 110718. [Google Scholar] [CrossRef]
- Grant, N.; Pain, S.; Khorani, E.; Jefferies, R.; Wratten, A.; McNab, S.; Walker, D.; Han, Y.; Beanland, R.; Bonilla, R.; et al. Activation of Al2O3 surface passivation of silicon: Separating bulk and surface effects. Appl. Surf. Sci. 2023, 645, 158786. [Google Scholar] [CrossRef]
- Berghuis, W.J.H.-J.; Melskens, J.; Macco, B.; Theeuwes, R.J.; Black, L.E.; Verheijen, M.A.; Kessels, W.M.M. Excellent surface passivation of germanium by a-Si:H/Al2O3 stacks. J. Appl. Phys. 2021, 130, 135303. [Google Scholar] [CrossRef]
- Ramos-Carrazco, A.; Berman-Mendoza, D.; Ramirez-Espinoza, R.; Gutierrez, R.G.; Vazquez-Arce, J.L.; Rangel, R.; Melendrez-Amavizca, R.; Bartolo-Pérez, P. Al2O3/Si NPs multilayered antireflective coating to enhance the photovoltaic performance of solar cells. J. Mater. Sci. Mater. Electron. 2023, 34, 2328. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Chuang, R.W. Study on Annealing Process of Aluminum Oxide Passivation Layer for PERC Solar Cells. Coatings 2021, 11, 1052. [Google Scholar] [CrossRef]
- Uzum, A.; Kanmaz, I. Passivation properties of HfO2-SiO2 mixed metal oxide thin films with low reflectivity on silicon substrates for semiconductor devices. Thin Solid Film. 2021, 738, 138965. [Google Scholar] [CrossRef]
- Prishya, A.A.; Chopra, L. Comprehensive review on uses of silicon dioxide in solar cell. Mater. Today Proc. 2022, 72, 1471–1478. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, D.; Li, D.; Zhao, T.; Zhang, W.; Qiao, W.; Liang, Y.; Yang, Y. Research on the Evolution of Defects Initiation and the Diffusion of Dopant on the Si/SiO2 Interface. Adv. Mater. Interfaces 2024, 12, 2400751. [Google Scholar] [CrossRef]
- van de Loo, B.; Knoops, H.; Dingemans, G.; Janssen, G.; Lamers, M.; Romijn, I.; Weeber, A.; Kessels, W. “Zero-charge” SiO2/Al2O3 stacks for the simultaneous passivation of n+ and p+ doped silicon surfaces by atomic layer deposition. Sol. Energy Mater. Sol. Cells 2015, 143, 450–456. [Google Scholar] [CrossRef]
- Hoex, B.; Schmidt, J.; Bock, R.; Altermatt, P.P.; van de Sanden, M.C.M.; Kessels, W.M.M. Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3. Appl. Phys. Lett. 2007, 91, 112107. [Google Scholar] [CrossRef]
- Smirnov, M.; Roginskii, E.; Savin, A.; Mazhenov, N.; Pankin, D. Density-Functional Study of the Si/SiO2 Interfaces in Short-Period Superlattices: Structures and Energies. Coatings 2023, 13, 1231. [Google Scholar] [CrossRef]
- Glunz, S.W.; Steinhauser, B.; Polzin, J.; Luderer, C.; Grübel, B.; Niewelt, T.; Okasha, A.M.O.M.; Bories, M.; Nagel, H.; Krieg, K.; et al. Silicon-based passivating contacts: The TOPCon route. Prog. Photovolt. Res. Appl. 2021, 31, 341–359. [Google Scholar] [CrossRef]
- Yousuf, H.; Khokhar, M.Q.; Zahid, M.A.; Rabelo, M.; Kim, S.; Pham, D.P.; Kim, Y.; Yi, J. Tunnel Oxide Deposition Techniques and Their Parametric Influence on Nano-Scaled SiOx Layer of TOPCon Solar Cell: A Review. Energies 2022, 15, 5753. [Google Scholar] [CrossRef]
- Rahman, R.U.; Khokhar, M.Q.; Hussain, S.Q.; Mehmood, H.; Yousuf, H.; Jony, J.A.; Park, S.; Yi, J. Progress in TOPCon solar cell technology: Investigating hafnium oxide through simulation. Curr. Appl. Phys. 2024, 63, 96–104. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Zhu, T.; Wang, Y.; He, J.; Yang, G.; Sun, P.; Li, H.; Liu, H.; Jiang, N. Effects of the thermal treatments on the optical properties of SiO2 anti-reflective coatings on sapphire windows. Infrared Phys. Technol. 2024, 137, 105151. [Google Scholar] [CrossRef]
- Jimenéz-Vivanco, M.R.; García, G.; Carrillo, J.; Agarwal, V.; Díaz-Becerril, T.; Doti, R.; Faubert, J.; Lugo, J.E. Porous Si-SiO2 based UV Microcavities. Sci. Rep. 2020, 10, 2220. [Google Scholar] [CrossRef]
- Pliskin, W.A.; Esch, R.P. Refractive Index of SiO2 Films Grown on Silicon. J. Appl. Phys. 1965, 36, 2011–2013. [Google Scholar] [CrossRef]
- Ali, K.; Khan, S.A.; Jafri, M.M. Effect of Double Layer (SiO2/TiO2) Anti-reflective Coating on Silicon Solar Cells. Int. J. Electrochem. Sci. 2014, 9, 7865–7874. [Google Scholar] [CrossRef]
- Rad, A.S.; Afshar, A.; Azadeh, M. Anti-reflection and self-cleaning meso-porous TiO2 coatings as solar systems protective layer: Investigation of effect of porosity and roughness. Opt. Mater. 2020, 107, 110027. [Google Scholar] [CrossRef]
- Richards, B.S. Comparison of TiO2and other dielectric coatings for buried-contact solar cells: A review. Prog. Photovolt. Res. Appl. 2004, 12, 253–281. [Google Scholar] [CrossRef]
- Elrashidi, A.; Elleithy, K. High-Efficiency Crystalline Silicon-Based Solar Cells Using Textured TiO2 Layer and Plasmonic Nanoparticles. Nanomaterials 2022, 12, 1589. [Google Scholar] [CrossRef]
- Richards, B.S.; Cotter, J.E.; Honsberg, C.B. Enhancing the surface passivation of TiO2 coated silicon wafers. Appl. Phys. Lett. 2002, 80, 1123–1125. [Google Scholar] [CrossRef]
- Yadav, C.; Kumar, S. Numerical Simulation for Optimization of Ultra-thin n-type AZO and TiO2 Based Textured p-type c-Si Heterojunction Solar Cells. Silicon 2021, 14, 4291–4299. [Google Scholar] [CrossRef]
- Lettieri, S.; Pavone, M.; Fioravanti, A.; Amato, L.S.; Maddalena, P. Charge Carrier Processes and Optical Properties in TiO2 and TiO2-Based Heterojunction Photocatalysts: A Review. Materials 2021, 14, 1645. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Singh, D.; Mishra, V.; Singh, V.; Singh, S.; Dev, R.; Singh, D. Efficiency and environmental stability of TiO2 based solar cells for green electricity production. Int. J. Chem. React. Eng. 2023, 22, 69–77. [Google Scholar] [CrossRef]
- Park, G.S.; Lee, S.; Kim, D.; Park, S.Y.; Koh, J.H.; Won, D.H.; Lee, P.; Do, Y.R.; Min, B.K. Amorphous TiO2 Passivating Contacts for Cu(In,Ga)(S,Se)2 Ultrathin Solar Cells: Defect-State-Mediated Hole Conduction. Adv. Energy Mater. 2023, 13, 2203183. [Google Scholar] [CrossRef]
- Khir, H.; Pandey, A.; Saidur, R.; Ahmad, M.S.; Rahim, N.A.; Dewika, M.; Samykano, M. Recent advancements and challenges in flexible low temperature dye sensitised solar cells. Sustain. Energy Technol. Assess. 2022, 53, 102745. [Google Scholar] [CrossRef]
- Shukla, G.; Angappane, S. Dimensional constraints favour high temperature anatase phase stability in TiO2 nanorods. Appl. Surf. Sci. 2022, 577, 151874. [Google Scholar] [CrossRef]
- Cui, W.; Chen, F.; Li, Y.; Su, X.; Sun, B. Status and perspectives of transparent conductive oxide films for silicon heterojunction solar cells. Mater. Today Nano 2023, 22, 100329. [Google Scholar] [CrossRef]
- Dong, G.; Li, J.; Zhao, Y.; Ran, X.; Peng, C.; He, D.; Jin, C.; Wang, Q.; Jiang, H.; Zhang, Y.; et al. Highly efficient silicon heterojunction solar cells with ZnO:Al transparent electrode and transition metal doped indium oxide interfacial layer. Prog. Photovolt. Res. Appl. 2023, 31, 931–938. [Google Scholar] [CrossRef]
- Wang, J.; Meng, C.; Liu, H.; Hu, Y.; Zhao, L.; Wang, W.; Xu, X.; Zhang, Y.; Yan, H. Application of Indium Tin Oxide/Aluminum-Doped Zinc Oxide Transparent Conductive Oxide Stack Films in Silicon Heterojunction Solar Cells. ACS Appl. Energy Mater. 2021, 4, 13586–13592. [Google Scholar] [CrossRef]
- Kumari, P.; Srivastava, A.; Sharma, R.K.; Sharma, D.; Srivastava, S.K. Zinc Oxide: A Fascinating Material for Photovoltaic Applications. In Materials Horizons from Nature to Nanomaterials; Springer Nature: Singapore, 2022; pp. 173–241. [Google Scholar] [CrossRef]
- Üzar, N.; Abdulaziz, U. Investigation of the effects of coating numbers of thin films and metal contact type on physical properties of undoped ZnO, Fe-doped ZnO, and Fe–B co-doped ZnO thin films. J. Mater. Sci. Mater. Electron. 2024, 35, 1136. [Google Scholar] [CrossRef]
- Aberle, A.G. Overview on SiN surface passivation of crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 2001, 65, 239–248. [Google Scholar] [CrossRef]
- Tepner, S.; Lorenz, A. Printing technologies for silicon solar cell metallization: A comprehensive review. Prog. Photovolt. Res. Appl. 2023, 31, 557–590. [Google Scholar] [CrossRef]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Karipbayev, Z.T.; Zhydachevskyy, Y.; Lysak, A.; Pankratov, V.; Popov, A.I. Advanced Synthesis and Characterization of CdO/CdS/ZnO Heterostructures for Solar Energy Applications. Materials 2024, 17, 1566. [Google Scholar] [CrossRef]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Karipbaev, Z.T.; Pankratov, V.; Popov, A.I. Study of the structural and morphological characteristics of the CdxTeyOz nanocomposite obtained on the surface of the CdS/ZnO heterostructure by the SILAR method. Appl. Phys. A 2023, 129, 116625. [Google Scholar] [CrossRef]
- Balasubramani, V.; Akila, T.; Suresh, R.; Alodhay, A.N.; Muthuramamoorthy, M.; Sasikumar, K. Optimizing Oxygen Vacancy Concentrations in CeO2 Thin Films for Enhanced Photodetector Sensitivity. Opt. Mater. 2025, 159, 116625. [Google Scholar] [CrossRef]
- Ali, Z.; Ali, K. Modeling of improved efficiency and spectral response of a Si-based heterojunction solar cell by using CeO2 as a buffer layer. J. Comput. Electron. 2022, 21, 1320–1328. [Google Scholar] [CrossRef]
- Kanneboina, V. The simulated performance of c-Si/a-Si:H heterojunction solar cells with nc-Si:H, µc-Si:H, a-SiC:H, and a-SiGe:H emitter layers. J. Comput. Electron. 2020, 20, 344–352. [Google Scholar] [CrossRef]
- Vikhrov, S.P.; Vishnyakov, N.V.; Gudzev, V.V.; Ermachikhin, A.V.; Shilina, D.V.; Litvinov, V.G.; Maslov, A.D.; Mishustin, V.G.; Terukov, E.I.; Titov, A.S. Study of Deep Levels in a HIT Solar Cell. Semiconductors 2018, 52, 926–930. [Google Scholar] [CrossRef]
- Crovetto, A.; Yan, C.; Iandolo, B.; Zhou, F.; Stride, J.; Schou, J.; Hao, X.; Hansen, O. Lattice-matched Cu2ZnSnS4/CeO2 solar cell with open circuit voltage boost. Appl. Phys. Lett. 2016, 109, 233904. [Google Scholar] [CrossRef]
- Maniglia, R.; Reed, K.J.; Texter, J. Reactive CeO2 nanofluids for UV protective films. J. Colloid Interface Sci. 2017, 506, 346–354. [Google Scholar] [CrossRef]
- Caputo, F.; De Nicola, M.; Sienkiewicz, A.; Giovanetti, A.; Bejarano, I.; Licoccia, S.; Traversa, E.; Ghibelli, L. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale 2015, 7, 15643–15656. [Google Scholar] [CrossRef]
- Han, J.; Park, K.; Tan, S.; Vaynzof, Y.; Xue, J.; Diau, E.W.-G.; Bawendi, M.G.; Lee, J.-W.; Jeon, I. Perovskite solar cells. Nat. Rev. Methods Prim. 2025, 5, 3. [Google Scholar] [CrossRef]
- Prince, K.J.; Mirletz, H.M.; Gaulding, E.A.; Wheeler, L.M.; Kerner, R.A.; Zheng, X.; Schelhas, L.T.; Tracy, P.; Wolden, C.A.; Berry, J.J.; et al. Sustainability pathways for perovskite photovoltaics. Nat. Mater. 2024, 24, 22–33. [Google Scholar] [CrossRef]
- Elangovan, N.K.; Kannadasan, R.; Beenarani, B.; Alsharif, M.H.; Kim, M.-K.; Inamul, Z.H. Recent developments in perovskite materials, fabrication techniques, band gap engineering, and the stability of perovskite solar cells. Energy Rep. 2024, 11, 1171–1190. [Google Scholar] [CrossRef]
- Sewela, T.; Ocaya, R.O.; Malevu, T.D. Recent insights into the transformative role of Graphene-based/TiO2 electron transport layers for perovskite solar cells. Energy Sci. Eng. 2024, 13, 4–26. [Google Scholar] [CrossRef]
- Liao, Y.-H.; Chang, Y.-H.; Lin, T.-H.; Lee, K.-M.; Wu, M.-C. Recent Advances in Metal Oxide Electron Transport Layers for Enhancing the Performance of Perovskite Solar Cells. Materials 2024, 17, 2722. [Google Scholar] [CrossRef]
- Chen, X.; Yue, Z.; Yang, H.; Xu, B.; Cheng, Y. N-Type Self-Assembled Monolayers (SAMs): The Next Star Materials in the Perovskite Photovoltaic Field. Small 2025, 21, e2411312. [Google Scholar] [CrossRef] [PubMed]
- Samantaray, M.R.; Wang, Z.; Hu, D.; Yuan, M.; Song, H.; Li, F.; Jia, G.; Ji, L.; Zou, X.; Shen, H.; et al. Scalable Fabrication Methods of Large-Area (n-i-p) Perovskite Solar Panels. Sol. RRL 2024, 8, 2400235. [Google Scholar] [CrossRef]
- Kothandaraman, R.K.; Jiang, Y.; Feurer, T.; Tiwari, A.N.; Fu, F. Near-Infrared-Transparent Perovskite Solar Cells and Perovskite-Based Tandem Photovoltaics. Small Methods 2020, 4, 2000395. [Google Scholar] [CrossRef]
- Lin, L.; Jones, T.W.; Yang, T.C.; Duffy, N.W.; Li, J.; Zhao, L.; Chi, B.; Wang, X.; Wilson, G.J. Inorganic Electron Transport Materials in Perovskite Solar Cells. Adv. Funct. Mater. 2020, 31, 2008300. [Google Scholar] [CrossRef]
- Arora, I.; Chawla, H.; Chandra, A.; Sagadevan, S.; Garg, S. Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorg. Chem. Commun. 2022, 143, 109700. [Google Scholar] [CrossRef]
- Gopinath, V.M.; Arulvel, S. A review on the steels, alloys/high entropy alloys, composites and coatings used in high temperature wear applications. Mater. Today Proc. 2021, 43, 817–823. [Google Scholar] [CrossRef]
- Manabeng, M.; Mwankemwa, B.S.; Ocaya, R.O.; Motaung, T.E.; Malevu, T.D. A Review of the Impact of Zinc Oxide Nanostructure Morphology on Perovskite Solar Cell Performance. Processes 2022, 10, 1803. [Google Scholar] [CrossRef]
- Abidin, N.A.Z.; Arith, F.; Noorasid, N.S.; Sarkawi, H.; Mustafa, A.N.; Safie, N.E.; Shah, A.S.M.; Azam, M.A.; Chelvanathan, P.; Amin, N. Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells. RSC Adv. 2023, 13, 33797–33819. [Google Scholar] [CrossRef]
- Apergi, S.; Brocks, G.; Tao, S.; Olthof, S. Probing the Reactivity of ZnO with Perovskite Precursors. ACS Appl. Mater. Interfaces 2024, 16, 14984–14994. [Google Scholar] [CrossRef] [PubMed]
- Znaidi, L. Sol–gel-deposited ZnO thin films: A review. Mater. Sci. Eng. B 2010, 174, 18–30. [Google Scholar] [CrossRef]
- Han, Y.; Guo, J.; Luo, Q.; Ma, C.-Q. Solution-Processable Zinc Oxide for Printed Photovoltaics: Progress, Challenges, and Prospect. Adv. Energy Sustain. Res. 2023, 4, 2200179. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Y.; Zhang, Q. Progress in perovskite solar cells based on ZnO nanostructures. Sol. Energy 2018, 163, 289–306. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, Y.; Song, J.; Wang, W.; Li, Z. Efficient Planar Perovskite Solar Cells with ZnO Electron Transport Layer. Coatings 2022, 12, 1981. [Google Scholar] [CrossRef]
- Otalora, C.; Botero, M.A.; Ordoñez, G. ZnO compact layers used in third-generation photovoltaic devices: A review. J. Mater. Sci. 2021, 56, 15538–15571. [Google Scholar] [CrossRef]
- Kim, S.Y.; Cho, S.J.; Byeon, S.E.; He, X.; Yoon, H.J. Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 2002606. [Google Scholar] [CrossRef]
- Sekar, K.; Doineau, R.; Mayarambakam, S.; Schmaltz, B.; Poulin-Vittrant, G. Control of ZnO nanowires growth in flexible perovskite solar cells: A mini-review. Heliyon 2024, 10, e24706. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, X.; You, J. SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells. Small 2018, 14, e1801154. [Google Scholar] [CrossRef]
- Deng, K.; Chen, Q.; Li, L. Modification Engineering in SnO2 Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. Adv. Funct. Mater. 2020, 30, 2004209. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, Q.; Zhang, L.; Han, C.; Gao, H.; Zhang, Y.; Yan, H. SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. J. Energy Chem. 2019, 35, 144–167. [Google Scholar] [CrossRef]
- Ahmmed, S.; He, Y.; Kayesh, E.; Karim, A.; Matsuishi, K.; Islam, A. Ce-Doped SnO2 Electron Transport Layer for Minimizing Open Circuit Voltage Loss in Lead Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2024, 16, 32282–32290. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef]
- Noh, M.F.M.; Teh, C.H.; Daik, R.; Lim, E.L.; Yap, C.C.; Ibrahim, M.A.; Ludin, N.A.; Yusoff, A.R.b.M.; Jang, J.; Teridi, M.A.M. The architecture of the electron transport layer for a perovskite solar cell. J. Mater. Chem. C 2017, 6, 682–712. [Google Scholar] [CrossRef]
- Al-Shujaa, S.; Zhao, P.; He, D.; Al-Anesi, B.; Feng, Y.; Xia, J.; Zhang, B.; Zhang, Y. Improving the Efficiency and Stability of Perovskite Solar Cells by Refining the Perovskite-Electron Transport Layer Interface and Shielding the Absorber from UV Effects. ACS Appl. Mater. Interfaces 2024, 16, 28493–28504. [Google Scholar] [CrossRef]
- Bhattarai, S.; Borah, D.; Rout, J.; Pandey, R.; Madan, J.; Hossain, I.; Handique, P.; Ansari, M.Z.; Hossain, M.K.; Rahman, F. Designing an efficient lead-free perovskite solar cell with green-synthesized CuCrO2 and CeO2 as carrier transport materials. RSC Adv. 2023, 13, 34693–34702. [Google Scholar] [CrossRef]
- Hu, T.; Xiao, S.; Yang, H.; Chen, L.; Chen, Y. Cerium oxide as an efficient electron extraction layer for p–i–n structured perovskite solar cells. Chem. Commun. 2017, 54, 471–474. [Google Scholar] [CrossRef]
- Chen, W.; Luo, Q.; Zhang, C.; Shi, J.; Deng, X.; Yue, L.; Wang, Z.; Chen, X.; Huang, S. Effects of down-conversion CeO2:Eu3+ nanophosphors in perovskite solar cells. J. Mater. Sci. Mater. Electron. 2017, 28, 11346–11357. [Google Scholar] [CrossRef]
- Abdulrahman, A.; Basem, A.; Algarni, Z.; Soliman, N.F.; Amari, A.; Saydullaev, B.; Abduvokhidov, A.; Khudoynazarov, E.; Mahariq, I. Sustainable Synthesis of a Novel α-Fe2O3/ZIF-8/PANI Composite Electrodes for High-Energy Hybrid Supercapacitors. J. Alloys Compd. 2025, 1040, 183422. [Google Scholar] [CrossRef]
- Dissanayake, D.M.S.N.; Mantilaka, M.M.M.G.P.G.; Palihawadana, T.C.; Chandrakumara, G.T.D.; De Silva, R.T.; Pitawala, H.M.T.G.A.; de Silva, K.M.N.; Amaratunga, G.A.J. Facile and low-cost synthesis of pure hematite (α-Fe2O3) nanoparticles from naturally occurring laterites and their superior adsorption capability towards acid-dyes. RSC Adv. 2019, 9, 21249–21257. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.A.; Javed, S.; Akram, M.A.; Schmidt-Mende, L.; Fakharuddin, A. Solvent-Assisted Crystallization of an α-Fe2O3 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells Featuring Negligible Hysteresis. ACS Omega 2023, 8, 18106–18115. [Google Scholar] [CrossRef] [PubMed]
- Piccinin, S. The band structure and optical absorption of hematite (α-Fe2O3): A first-principles GW-BSE study. Phys. Chem. Chem. Phys. 2019, 21, 2957–2967. [Google Scholar] [CrossRef]
- Fan, X.; Zhu, F.; Wang, Z.; Wang, X.; Zou, Y.; Gao, B.; Song, L.; He, J.; Wang, T. Preparation of p-type Fe2O3 nanoarray and its performance as photocathode for photoelectrochemical water splitting. Front. Chem. 2025, 13, 1526745. [Google Scholar] [CrossRef]
- Rahman, A.U.; El Astal-Quirós, A.; Susanna, G.; Javanbakht, H.; Calabrò, E.; Polino, G.; Paci, B.; Generosi, A.; Riva, F.R.; Brunetti, F.; et al. Scaling-Up of Solution-Processable Tungsten Trioxide (WO3) Nanoparticles as a Hole Transport Layer in Inverted Organic Photovoltaics. Energies 2024, 17, 814. [Google Scholar] [CrossRef]
- Ávila-López, A.; Cruz, J.C.; Díaz-Real, J.A.; García-Uitz, K.; Cante-Góngora, D.; Rodríguez-May, G. A Review of Perovskite-Based Solar Cells over the Last Decade: The Evolution of the Hole Transport Layer and the Use of WO3 as an Electron Transport Layer. Coatings 2025, 15, 132. [Google Scholar] [CrossRef]
- Haque, M.M.; Mahjabin, S.; Abdullah, H.B.; Akhtaruzzaman, M.; Almohamadi, H.; Islam, M.A.; Hossain, M.I.; Ibrahim, M.A.; Chelvanathan, P. Exploring the Theoretical Potential of Tungsten Oxide (WOx) as a Universal Electron Transport Layer (ETL) for Various Perovskite Solar Cells through Interfacial Energy Band Alignment Modulation. J. Phys. Chem. Solids 2024, 196, 112324. [Google Scholar] [CrossRef]
- Roy, A.; Bhandari, S.; Ghosh, A.; Sundaram, S.; Mallick, T.K. Incorporating Solution-Processed Mesoporous WO3 as an Interfacial Cathode Buffer Layer for Photovoltaic Applications. J. Phys. Chem. A 2020, 124, 5709–5719. [Google Scholar] [CrossRef]
- Sengupta, D.; Das, P.; Mondal, B.; Mukherjee, K. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application—A review. Renew. Sustain. Energy Rev. 2016, 60, 356–376. [Google Scholar] [CrossRef]
- Grätzel, M. Mesoporous oxide junctions and nanostructured solar cells. Curr. Opin. Colloid Interface Sci. 1999, 4, 314–321. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Peng, X.; Liu, L.; Dong, S.; Lin, L.; Chen, S.; Meng, S.; Feng, Y. Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material. Nano Res. 2015, 8, 3830–3841. [Google Scholar] [CrossRef]
- Di Carlo, G.; Calogero, G.; Brucale, M.; Caschera, D.; de Caro, T.; Di Marco, G.; Ingo, G.M. Insights into meso-structured photoanodes based on titanium oxide thin film with high dye adsorption ability. J. Alloys Compd. 2014, 609, 116–124. [Google Scholar] [CrossRef]
- Agarwala, S.; Kevin, M.; Wong, A.S.W.; Peh, C.K.N.; Thavasi, V.; Ho, G.W. Mesophase Ordering of TiO2 Film with High Surface Area and Strong Light Harvesting for Dye-Sensitized Solar Cell. ACS Appl. Mater. Interfaces 2010, 2, 1844–1850. [Google Scholar] [CrossRef]
- Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D. Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 47, 8203–8237. [Google Scholar] [CrossRef] [PubMed]
- Korir, B.K.; Kibet, J.K.; Ngari, S.M. A review on the current status of dye-sensitized solar cells: Toward sustainable energy. Energy Sci. Eng. 2024, 12, 3188–3226. [Google Scholar] [CrossRef]
- Kumar, D. A short review on the advancement in the development of TiO2 and ZnO based photo-anodes for the application of Dye-Sensitized Solar Cells (DSSCs). Eng. Res. Express 2021, 3, 042004. [Google Scholar] [CrossRef]
- Clarke, B.; Ghandi, K. The Interplay of Growth Mechanism and Properties of ZnO Nanostructures for Different Applications. Small 2023, 19, e2302864. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Bibi, S.; Jatoi, W.B.; Tuzen, M.; Jakhrani, M.A.; Feng, X.; Saleh, T.A. Green synthesized zinc oxide nanostructures and their applications in dye-sensitized solar cells and photocatalysis: A review. Mater. Today Commun. 2023, 36, 106840. [Google Scholar] [CrossRef]
- Vittal, R.; Ho, K.-C. Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 70, 920–935. [Google Scholar] [CrossRef]
- Boro, B.; Gogoi, B.; Rajbongshi, B.; Ramchiary, A. Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renew. Sustain. Energy Rev. 2018, 81, 2264–2270. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, G.; Nalwa, H.S.; Kumar, A.; Akhtar, M.S. Zinc oxide nanostructure-based dye-sensitized solar cells. J. Mater. Sci. 2017, 52, 4743–4795. [Google Scholar] [CrossRef]
- Abdellah, I.M. Molecular engineering and electrolyte optimization strategies for enhanced performance of Ru(ii) polypyridyl-sensitized DSSCs. RSC Adv. 2025, 15, 9763–9786. [Google Scholar] [CrossRef]
- Bouclé, J.; Ackermann, J. Solid-state dye-sensitized and bulk heterojunction solar cells using TiO2 and ZnO nanostructures: Recent progress and new concepts at the borderline. Polym. Int. 2011, 61, 355–373. [Google Scholar] [CrossRef]
- Prabavathy, N.; Shalini, S.; Balasundaraprabhu, R.; Velauthapillai, D.; Prasanna, S.; Muthukumarasamy, N. Enhancement in the photostability of natural dyes for dye-sensitized solar cell (DSSC) applications: A review. Int. J. Energy Res. 2017, 41, 1372–1396. [Google Scholar] [CrossRef]
- Zheng, H.; Tachibana, Y.; Kalantar-Zadeh, K. Dye-Sensitized Solar Cells Based on WO3. Langmuir 2010, 26, 19148–19152. [Google Scholar] [CrossRef]
- Chen, W.; Qiu, Y.; Zhong, Y.; Wong, K.S.; Yang, S. High-Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanodes of SnO2 Nanoparticles/ZnO Nanotetrapods. J. Phys. Chem. A 2010, 114, 3127–3138. [Google Scholar] [CrossRef]
- Memar, A.; Phan, C.M.; Tade, M.O. Photocatalytic activity of WO3/Fe2O3 nanocomposite photoanode. Int. J. Hydrogen Energy 2015, 40, 8642–8649. [Google Scholar] [CrossRef]
- Younas, M.; Gondal, M.; Dastageer, M.; Baig, U. Fabrication of cost effective and efficient dye sensitized solar cells with WO3-TiO2 nanocomposites as photoanode and MWCNT as Pt-free counter electrode. Ceram. Int. 2019, 45, 936–947. [Google Scholar] [CrossRef]
- Kim, M.-H.; Kwon, Y.-U. Semiconducting Divalent Metal Oxides as Blocking Layer Material for SnO2-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2011, 115, 23120–23125. [Google Scholar] [CrossRef]
- Shahpari, M.; Behjat, A.; Khajaminian, M.; Torabi, N. The influence of morphology of hematite (α-Fe2O3) counter electrodes on the efficiency of dye-sensitized solar cells. Sol. Energy 2015, 119, 45–53. [Google Scholar] [CrossRef]
- Suh, D. Status of Al2O3/TiO2-Based Antireflection and Surface Passivation for Silicon Solar Cells. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2021, 15, 2100236. [Google Scholar] [CrossRef]
- Lee, M.-J.; Park, J.-Y.; Kim, C.-S.; Okuyama, K.; Lee, S.-E.; Kim, T.-O. Improvement of light scattering capacity in dye-sensitized solar cells by doping with SiO2 nanoparticles. J. Power Sources 2016, 327, 96–103. [Google Scholar] [CrossRef]
- Ramanujam, J.; Bishop, D.M.; Todorov, T.K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Prog. Mater. Sci. 2020, 110, 100619. [Google Scholar] [CrossRef]
- Luque, A.; Hegedus, S. (Eds.) Handbook of Photovoltaic Science and Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Vijayan, K.; Vijayachamundeeswari, S.; Sivaperuman, K.; Ahsan, N.; Logu, T.; Okada, Y. A review on advancements, challenges, and prospective of copper and non-copper based thin-film solar cells using facile spray pyrolysis technique. Sol. Energy 2022, 234, 81–102. [Google Scholar] [CrossRef]
- Ishizuka, S.; Sakurai, K.; Yamada, A.; Matsubara, K.; Fons, P.; Iwata, K.; Nakamura, S.; Kimura, Y.; Baba, T.; Nakanishi, H.; et al. Fabrication of wide-gap Cu(In1−xGax)Se2 thin film solar cells: A study on the correlation of cell performance with highly resistive i-ZnO layer thickness. Sol. Energy Mater. Sol. Cells 2005, 87, 541–548. [Google Scholar] [CrossRef]
- Efaz, E.T.; Rhaman, M.; Al Imam, S.; Bashar, K.L.; Kabir, F.; Mourtaza, E.; Sakib, S.N.; Mozahid, F.A. A review of major technologies of thin-film solar cells. Eng. Res. Express 2021, 3, 032001. [Google Scholar] [CrossRef]
- Romeo, A.; Artegiani, E. CdTe-Based Thin Film Solar Cells: Past, Present and Future. Energies 2021, 14, 1684. [Google Scholar] [CrossRef]
- Salhi, B. The Photovoltaic Cell Based on CIGS: Principles and Technologies. Materials 2022, 15, 1908. [Google Scholar] [CrossRef]
- Rahman, M.A. Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL. Sol. Energy 2021, 215, 64–76. [Google Scholar] [CrossRef]
- Qin, D.; Yang, P.; Pan, Y.; Wang, Y.; Pan, Y.; Weng, G.; Hu, X.; Tao, J.; Chu, J.; Akiyama, H.; et al. Non-Cadmium TiO2/Sb2(Se, S)3 Heterojunction Solar Cells with Improved Efficiency by NaCl-Treated Interface Engineering. ACS Appl. Mater. Interfaces 2025, 17, 22050–22059. [Google Scholar] [CrossRef] [PubMed]
- Werner, F.; Veith-Wolf, B.; Spindler, C.; Barget, M.R.; Babbe, F.; Guillot, J.; Schmidt, J.; Siebentritt, S. Oxidation as Key Mechanism for Efficient Interface Passivation in Cu(In,Ga)Se2 Thin-Film Solar Cells. Phys. Rev. Appl. 2020, 13, 054004. [Google Scholar] [CrossRef]
- Cunha, J.M.V.; Fernandes, P.A.; Hultqvist, A.; Teixeira, J.P.; Bose, S.; Vermang, B.; Garud, S.; Buldu, D.; Gaspar, J.; Edoff, M.; et al. Insulator Materials for Interface Passivation of Cu(In,Ga)Se2Thin Films. IEEE J. Photovolt. 2018, 8, 1313–1319. [Google Scholar] [CrossRef]
- Abbas, K.J.; Bahrami, A. Investigating the potential of WO3 and WS2 as Cd-free buffer layers in Sb2Se3-Based thin-film solar cells: A numerical study with SCAPS-1D software. Sol. Energy Mater. Sol. Cells 2024, 272, 112891. [Google Scholar] [CrossRef]
- Ouyang, D.; Huang, Z.; Choy, W.C.H. Solution-Processed Metal Oxide Nanocrystals as Carrier Transport Layers in Organic and Perovskite Solar Cells. Adv. Funct. Mater. 2018, 29, 1804660. [Google Scholar] [CrossRef]
- Concina, I.; Vomiero, A. Metal Oxide Semiconductors for Dye- and Quantum-Dot-Sensitized Solar Cells. Small 2014, 11, 1744–1774. [Google Scholar] [CrossRef]
- Pandi, K.; Kumar, T.R.N.; Lakhera, S.K.; Neppolian, B. Simultaneous Passivation of Surface Vacancies and Enhancement in Charge Transfer Property of ZnO Electron Transport Layer for Inverted Organic Solar Cells. Energy Technol. 2020, 8, 2000481. [Google Scholar] [CrossRef]
- Chaudhary, D.K.; Dhawan, P.K.; Patel, S.P.; Bhasker, H. Large area semitransparent inverted organic solar cells with enhanced operational stability using TiO2 electron transport layer for building integrated photovoltaic devices. Mater. Lett. 2021, 283, 128725. [Google Scholar] [CrossRef]
- Bivour, M.; Temmler, J.; Steinkemper, H.; Hermle, M. Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 2015, 142, 34–41. [Google Scholar] [CrossRef]
- Tan, Z.; Li, L.; Cui, C.; Ding, Y.; Xu, Q.; Li, S.; Qian, D.; Li, Y. Solution-Processed Tungsten Oxide as an Effective Anode Buffer Layer for High-Performance Polymer Solar Cells. J. Phys. Chem. C 2012, 116, 18626–18632. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement; UNFCCC: Bonn, Germany, 2015; Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 5 September 2025).
- European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Pro-motion of the Use of Energy from Renewable Sources (Recast). Official Journal of the European Union L 328 (21 December 2018), 82–209. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32018L2001 (accessed on 5 September 2025).
- International Energy Agency (IEA). Solar PV Feed-in Tariff (China)—IEA Policies Database, 2011 (Notice No. 1594). Available online: https://www.iea.org/policies/5100-solar-pv-feed-in-tariff (accessed on 5 September 2025).
- U.S. Department of Energy (DOE). Recovery Act (American Recovery and Reinvestment Act of 2009). Available online: https://www.energy.gov/recovery-act (accessed on 5 September 2025).
- Alternative Fuels Data Center (AFDC). American Recovery and Reinvestment Act of 2009 (Public Law 111-5)—Energy-Related Provisions. Available online: https://afdc.energy.gov/laws/arra.html (accessed on 5 September 2025).
- International Energy Agency (IEA). Solar PV—Analysis (Overview of Global Trends and Market Dynamics). IEA: Paris, France, 2024–2025 (Living Page). Available online: https://www.iea.org/energy-system/renewables/solar-pv (accessed on 5 September 2025).
- IEA Photovoltaic Power Systems Programme (IEA-PVPS). A Snapshot of Global PV—1992–2016, 5th ed.; IEA-PVPS: Paris, France, 2017; Available online: https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2016__1_.pdf (accessed on 5 September 2025).
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Konuhova, M.; Zhydachevskyy, Y.; Kumarbekov, K.; Pankratov, V.; Popov, A.I. Wet Chemical Synthesis of AlxGa1−xAs Nanostructures: Investigation of Properties and Growth Mechanisms. Crystals 2024, 14, 633. [Google Scholar] [CrossRef]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Popova, E.; Moskina, A.; Popov, A. Characterization of CdxTeyOz/CdS/ZnO Heterostructures Synthesized by the SILAR Method. Coatings 2023, 13, 639. [Google Scholar] [CrossRef]
- Kovachov, S.; Bohdanov, I.; Karipbayev, Z.; Suchikova, Y.; Tsebriienko, T.; Popov, A.I. Layer-by-Layer Synthesis and Analysis of the the Phase Composition of Cdx TeyOz/CdS/por-ZnO/ZnO Heterostructure. In Proceedings of the 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 3–7 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, P.; Wang, H.; Ren, L.; Tu, B.; Wang, W.; Fu, Z. Theoretical study on composition-dependent properties of ZnO·nAl2O3 spinels. Part I: Optical and dielectric. J. Am. Ceram. Soc. 2021, 104, 5099–5109. [Google Scholar] [CrossRef]
- Aryal, S.; Rulis, P.; Ching, W.; Green, D.J. Mechanical Properties and Electronic Structure of Mullite Phases Using First-Principles Modeling. J. Am. Ceram. Soc. 2012, 95, 2075–2088. [Google Scholar] [CrossRef]
- Edan, T.S.; Haider, A.J.; Sultan, F.I. Core–Shell Nanostructures in Self-Cleaning Surface Technology: A Mini Review. Plasmonics 2025, 1–20. [Google Scholar] [CrossRef]
- Arulkumar, E.; Manivannan, R.K.; Dhamodaran, G.; Krishnan, R. CuO@α-Fe2O3 nanocomposite via one-pot synthesis for multifunctional photocatalytic, optoelectronic and antimicrobial applications. J. Sol-Gel Sci. Technol. 2025, 1–33. [Google Scholar] [CrossRef]
- de Freitas Mendes, M.V.; Pedroti, L.G.; de Carvalho, J.M.F.; Ferreira, F.A.; Mendes, B.C.; Xavier, L.M.; Fernandes, W.E.H.; Oliveira, N.M.A. Characterization of Yellow and Red Clays and Bauxite Residue: Analysis of Properties and Potential for Ceramic Products. In Characterization of Minerals, Metals, and Materials 2025; Peng, Z., Xie, K.Y., Zhang, M., Li, J., Li, B., Monteiro, S.N., Soman, R., Hwang, J.-Y., Kalay, Y.E., Escobedo-Diaz, J.P., et al., Eds.; TMS 2025. The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- European Chemicals Agency (ECHA). Hazardous to the Aquatic Environment (Long-Term). ECHA Registration Dossier; ECHA: Helsinki, Finland, [Online]. Available online: https://echa.europa.eu/registration-dossier/-/registered-dossier/16139/2/1 (accessed on 7 September 2025).
- RMIS (Raw Materials Information System—Tungsten): European Commission, Joint Research Centre (JRC). RMIS—Raw Materials Information System: Tungsten. European Commission: Brussels, Belgium, [Online]. Available online: https://rmis.jrc.ec.europa.eu/rmp/Tungsten (accessed on 7 September 2025).
- European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (DG GROW). Critical Raw Materials. European Commission: Brussels, Belgium, [Online]. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (accessed on 7 September 2025).
- Jungbluth, N. Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database. Prog. Photovolt. Res. Appl. 2005, 13, 429–446. [Google Scholar] [CrossRef]
Statistical Indicator | Description |
---|---|
Median | The central value of an ordered dataset, less affected by outliers. |
Mean | The arithmetic average, indicating the overall level of research activity. |
Standard Deviation | A measure of data variability relative to the mean. |
Coefficient of Variation (CV) | The standard deviation, expressed as a percentage of the mean, reflecting relative variability. |
Maximum Value | The highest recorded number of publications. |
First Quartile (Q1) | The value below which 25% of the data fall, representing the lower range of activity. |
Third Quartile (Q3) | The value below which 75% of the data fall, representing the upper range of activity. |
Interquartile Range (IQR) | The range containing the central 50% of the data, enabling assessment of variability without outliers. |
Materials | Results from WoS CC |
---|---|
TiO2 (titanium dioxide) | 22,898 |
ZnO (zinc oxide) | 19,092 |
SiO2 (silicon dioxide) | 4140 |
Al2O3 (aluminum oxide) | 3268 |
Fe2O3 (iron oxide) | 2633 |
WO3 (tungsten trioxide) | 2062 |
CeO2 (cerium dioxide) | 491 |
Material | Median | Standard Deviation | Coefficient of Variation (%) | Mean | Maximum | 1st Quartile (Q1) | 3rd Quartile (Q3) | Interquartile Range (IQR) |
---|---|---|---|---|---|---|---|---|
TiO2 | 119.0 | 652.44 | 125.37 | 520.41 | 1665 | 13.75 | 1180.0 | 1166.25 |
ZnO | 126.5 | 529.57 | 116.50 | 454.57 | 1422 | 15.75 | 977.25 | 961.5 |
SiO2 | 25.0 | 110.43 | 117.33 | 94.11 | 299 | 5.5 | 231.5 | 226.0 |
Al2O3 | 20.0 | 100.99 | 108.16 | 93.37 | 262 | 6.5 | 213.5 | 207.0 |
Fe2O3 | 9.0 | 98.82 | 131.36 | 75.23 | 271 | 2.5 | 147.0 | 144.5 |
WO3 | 16.0 | 71.78 | 118.36 | 60.65 | 192 | 4.25 | 119.5 | 115.25 |
CeO2 | 5.0 | 19.42 | 114.72 | 16.93 | 63 | 2.0 | 33.0 | 31.0 |
TiO2 (Titanium Dioxide) | Citations |
---|---|
O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740. https://doi.org/10.1038/353737a0 [191] | 25,829 |
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r [192] | 18,169 |
Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338–344. https://doi.org/10.1038/35104607 [193] | 11,772 |
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., et al. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1), 591. https://doi.org/10.1038/srep00591 [194] | 7149 |
Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., et al. (1993). Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 115(14), 6382–6390. https://doi.org/10.1021/ja00067a063 [195] | 5854 |
ZnO (zinc oxide) | Citations |
Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338–344. https://doi.org/10.1038/35104607 [193] | 11,772 |
Law, M., Greene, L. E., Johnson, J. C., Saykally, R., & Yang, P. (2005). Nanowire dye-sensitized solar cells. Nature Materials, 4(6), 455–459. https://doi.org/10.1038/nmat1387 [196] | 5135 |
Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145–153. https://doi.org/10.1016/S1389-5567(03)00026-1 [197] | 4640 |
Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8(2), 133–138. https://doi.org/10.1038/nphoton.2013.342 [198] | 2383 |
Liu, B., & Aydil, E. S. (2009). Growth of Oriented Single-Crystalline Rutile TiO 2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 131(11), 3985–3990. https://doi.org/10.1021/ja8078972 [199] | 2215 |
SiO2 (silicon dioxide) | Citations |
Kay, A., Cesar, I., & Grätzel, M. (2006). New Benchmark for Water Photooxidation by Nanostructured α-Fe 2 O 3 Films. Journal of the American Chemical Society, 128(49), 15714–15721. https://doi.org/10.1021/ja064380l [200] | 1437 |
Cushing, S. K., Li, J., Meng, F., Senty, T. R., Suri, S., Zhi, M., et al. (2012). Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. Journal of the American Chemical Society, 134(36), 15033–15041. https://doi.org/10.1021/ja305603t [201] | 1032 |
Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., & Durrant, J. R. (2003). Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. Journal of the American Chemical Society, 125(2), 475–482. https://doi.org/10.1021/ja027945w [202] | 1029 |
Zou, S., Liu, Y., Li, J., Liu, C., Feng, R., Jiang, F., et al. (2017). Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. Journal of the American Chemical Society, 139(33), 11443–11450. https://doi.org/10.1021/jacs.7b04000 [203] | 728 |
Aberle, A. G. (2000). Surface passivation of crystalline silicon solar cells: a review. Progress in Photovoltaics: Research and Applications, 8(5), 473–487. https://doi.org/10.1002/1099-159X(200009/10)8:5%3C473::AID-PIP337%3E3.0.CO;2-D [204] | 625 |
Al2O3 (aluminum oxide) | Citations |
Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., & Durrant, J. R. (2003). Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. Journal of the American Chemical Society, 125(2), 475–482. https://doi.org/10.1021/ja027945w [202] | 1886 |
Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K., & Grimes, C. A. (2006). A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells, 90(14), 2011–2075. https://doi.org/10.1016/j.solmat.2006.04.007 [205] | 1605 |
Huang, Z., Geyer, N., Werner, P., de Boor, J., & Gösele, U. (2011). Metal-Assisted Chemical Etching of Silicon: A Review. Advanced Materials, 23(2), 285–308. https://doi.org/10.1002/adma.201001784 [206] | 1285 |
Malinkiewicz, O., Yella, A., Lee, Y. H., Espallargas, G. M., Graetzel, M., Nazeeruddin, M. K., & Bolink, H. J. (2014). Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 8(2), 128–132. https://doi.org/10.1038/nphoton.2013.341 [207] | 1029 |
Niu, G., Li, W., Meng, F., Wang, L., Dong, H., & Qiu, Y. (2014). Study on the stability of CH 3 NH 3 PbI 3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A, 2(3), 705–710. https://doi.org/10.1039/C3TA13606J [208] | 955 |
Fe2O3 (iron oxide) | Citations |
Sivula, K., Le Formal, F., & Grätzel, M. (2011). Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem, 4(4), 432–449. https://doi.org/10.1002/cssc.201000416 [209] | 2332 |
Osterloh, F. E. (2013). Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev., 42(6), 2294–2320. https://doi.org/10.1039/C2CS35266D [210] | 1776 |
Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., & Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 38(8), 1232–1261. https://doi.org/10.1016/j.progpolymsci.2013.02.003 [211] | 1685 |
Park, J. H., Kim, S., & Bard, A. J. (2006). Novel Carbon-Doped TiO 2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24–28. https://doi.org/10.1021/nl051807y [212] | 1647 |
Wang, C.-C., Li, J.-R., Lv, X.-L., Zhang, Y.-Q., & Guo, G. (2014). Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci., 7(9), 2831–2867. https://doi.org/10.1039/C4EE01299B [213] | 1444 |
WO3 (tungsten trioxide) | Citations |
Park, J. H., Kim, S., & Bard, A. J. (2006). Novel Carbon-Doped TiO 2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24–28. https://doi.org/10.1021/nl051807y [212] | 1647 |
Bak, T., Nowotny, J., Rekas, M., & Sorrell, C. (2002). Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy, 27(10), 991–1022. https://doi.org/10.1016/S0360-3199(02)00022-8 [214] | 1346 |
Granqvist, C. (2000). Electrochromic tungsten oxide films: Review of progress 1993–1998. Solar Energy Materials and Solar Cells, 60(3), 201–262. https://doi.org/10.1016/S0927-0248(99)00088-4 [215] | 1324 |
Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., & Kahn, A. (2012). Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications. Advanced Materials, 24(40), 5408–5427. https://doi.org/10.1002/adma.201201630 [216] | 1049 |
Baetens, R., Jelle, B. P., & Gustavsen, A. (2010). Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells, 94(2), 87–105. https://doi.org/10.1016/j.solmat.2009.08.021 [217] | 1047 |
CeO2 (cerium dioxide) | Citations |
Liu, X., Iocozzia, J., Wang, Y., Cui, X., Chen, Y., Zhao, S., et al. (2017). Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy & Environmental Science, 10(2), 402–434. https://doi.org/10.1039/C6EE02265K [218] | 832 |
Corma, A., Atienzar, P., García, H., & Chane-Ching, J.-Y. (2004). Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nature Materials, 3(6), 394–397. https://doi.org/10.1038/nmat1129 [219] | 728 |
Ou, G., Xu, Y., Wen, B., Lin, R., Ge, B., Tang, Y., et al. (2018). Tuning defects in oxides at room temperature by lithium reduction. Nature Communications, 9(1), 1302. https://doi.org/10.1038/s41467-018-03765-0 [220] | 502 |
Abanades, S., & Flamant, G. (2006). Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Solar Energy, 80(12), 1611–1623. https://doi.org/10.1016/j.solener.2005.12.005 [221] | 491 |
Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K., & Wang, S. (2017). A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal, 310(2, SI), 537–559. https://doi.org/10.1016/j.cej.2016.06.090 [222] | 435 |
Year | TiO2 | ZnO | SiO2 | Al2O3 | Fe2O3 | WO3 | CeO2 |
---|---|---|---|---|---|---|---|
1991 | O’Regan, B., & Grätzel, M. [191] (25,829) | – | – | – | – | – | – |
1993 | Nazeeruddin et al. [195] (5854) | – | – | – | – | – | – |
2000 | - | - | Aberle [204] (2000) | - | - | Granqvist [215] (1324) | - |
2001 | Grätzel [193] (11,772) | Grätzel [193] (11,772) | – | – | – | – | – |
2002 | - | - | - | - | - | Bak et al. [214] (1346) | - |
2003 | Grätzel [197] (4640) | Palomares et al. [202] (1029) | Palomares et al. [202] (1886) | – | – | – | |
2004 | - | - | - | - | - | - | Corma et al. [219] (728) |
2005 | – | Law et al. [196] (5135) | – | – | – | – | – |
2006 | – | – | Kay et al. [200] (1437) | Mor et al. [205] (1605) | Park et al. [212] (1647) | Park et al. [212] (1647) | Abanades et al. [221] (491) |
2009 | Kojima et al. [192] (18,169) | Liu, & Aydil, [199] (2215) | – | – | – | – | – |
2010 | - | - | - | - | - | Baetens et al. [217] (1047) | |
2011 | – | – | – | Huang et al. [206] (1285) | Sivula et al. [209] (2332) | – | |
2012 | Kim et al. [194] (7149) | – | Cushing et al. [201] (1032) | – | – | Meyer et al. [216] (1049) | – |
2013 | – | – | – | – | Osterloh [210] (1776), Kango [211] (1685) | – | – |
2014 | – | Liu & Kelly [198] (2383) | – | Malinkiewicz [207] (1029), Niu et al. [208] (955) | Wang et al. [213] (1444) | – | – |
2017 | – | – | Zou et al. [203] (728) | – | – | – | Liu et al. [218] (832), Boyjoo et al. [222] (435) |
2018 | – | – | – | – | – | – | Ou et al. [220] (502) |
Oxide Material | Main Functions in c-Si Cells | Advantages | Disadvantages and Limitations |
---|---|---|---|
Al2O3 | Surface passivation, insulation | Excellent chemical passivation, negative charge (effective field-effect passivation), high thermal stability, chemical inertness | Does not conduct electrons (only a passivation layer), often requires an additional protective layer (e.g., SiNx) |
SiO2 | Surface passivation, antireflection coatings, tunneling layer | Exceptional chemical passivation, very stable interface with Si, excellent antireflection properties (low refractive index, ~1.45) | Lack of effective field-effect passivation (neutral/weakly positive charge), primarily used as a passive layer |
TiO2 | Antireflection coatings, surface passivation of n-Si | High transparency, high refractive index (2.0–2.5), good chemical stability, low cost | Unintended shunting due to n-type conductivity, photocatalytic activity under UV, requires precise film quality control |
ZnO | Transparent conductive oxide (TCO), buffer layer in heterojunctions | High transparency, high conductivity when doped (e.g., AZO), low cost, application flexibility | Lower chemical stability, sensitive to humidity and acidic environments, requires additional passivation |
CeO2 | Experimental window layer, UV filter, potential passivation layer | Good chemical stability, UV absorption capability (Si protection), promising CeO2/n-Si heterojunction | Low electron mobility, further research needed for deposition optimization |
Oxide Material | Layer Type | Main Advantages and Functions | Drawbacks and Technological Features |
---|---|---|---|
TiO2 | ETL | High transparency; favorable band alignment with perovskite; thermal stability; efficiency > 20% | Photocatalytic activity (UV-induced perovskite degradation); requires high-temperature processing (>450 °C) |
ZnO | ETL | High electron mobility; low-temperature deposition; compatible with solution-based methods | Chemical instability in contact with MA+-based perovskites; requires interfacial protection or surface modification |
CeO2 | ETL | UV absorption; chemical inertness; interface passivation; potential for enhanced stability | Lower electron mobility; difficulty in forming high-quality films without thermal treatment |
Fe2O3 | ETL, also studied as experimental absorber | Low cost; environmental friendliness; high resistance to UV and moisture | Low electron mobility; high charge recombination; partial visible light absorption; lower efficiency (~13%) |
WO3 | HTL/ETL | High work function (HTL); resistance to moisture and temperature; solution-processable; UV protection | Suboptimal band alignment when used as ETL; property variation depending on stoichiometry level |
Oxide Material | Role in DSSC | Advantages | Limitations |
---|---|---|---|
TiO2 | Photoanode | Ideal energy alignment with dyes; high chemical stability; large surface area for dye adsorption | Slow electron transport; recombination with oxidized electrolyte species |
ZnO | Photoanode | High electron mobility; easy nanostructuring (nanorods, nanoparticles); low-temperature deposition | Chemical instability in the presence of some dyes (especially acidic); risk of defect formation |
WO3 | Photoanode/Additive | UV absorption; chemical stability; electron conductivity | Less favorable energy alignment; high recombination; low efficiency |
Fe2O3 (Hematite) | Experimental Photoanode | Visible light absorption; non-toxicity; UV stability | Very short hole diffusion length (~2–4 nm); intense recombination; low photovoltage |
Al2O3 | Passivating Barrier | Defect passivation; reduced recombination; increased V_OC | Insulator—does not conduct electrons; requires precise thickness control |
SiO2 | Optical Additive/Barrier | Enhanced light scattering; structural stabilization; chemical inertness | Non-conductive; indirect effect via morphology and optics |
Oxide Material | Role in the Device | Advantages | Limitations or Application Conditions |
---|---|---|---|
ZnO | Transparent contact, buffer, textured layer | High transparency, good conductivity when doped, texturing capability | May require protection during deposition, vulnerable to acids |
TiO2 | Buffer layer, grain boundary passivation | Cd-free replacement for CdS, visible-range transparency, thermal stability | Requires interface control due to risk of recombination |
Al2O3 | Passivating layer, dielectric barrier | Reduces recombination, improves V_OC, used in nanopatterned structures | Insulator—does not conduct charge, precise thickness critical |
SiO2 | Dielectric layer, diffusion barrier | Optical transparency, thermal stability, interlayer diffusion barrier | Does not contribute to charge transport, auxiliary function |
WO3 | Back contact buffer (CdTe, CIGS) | High work function, transparency, improved hole extraction | Requires thin deposition (a few nm), critical energy level alignment |
CeO2 | Experimental buffer/window layer between absorber; surface passivation; UV barrier | Wide band gap, high transparency; chemical inertness; Cd-free; UV absorption and surface recombination reduction | Low electron mobility increases series resistance; electrical properties sensitive to oxygen vacancies; requires optimized deposition methods (ALD, solution processes) and post-treatment; efficiency demonstrated only on lab-scale samples |
Oxide Material | Role in the Device | Advantages | Limitations or Application Conditions |
---|---|---|---|
ZnO | ETL (OSC, QD) | High transparency; solution-processable; high electron mobility; chemical stability | Generates reactive radicals under UV; requires surface modification or encapsulation |
TiO2 | ETL (OSC, QD); contact in Cu2O cells | Wide band gap; stability; solution-processable | Low electron mobility; interface quality is critical |
WO3 | HTL (OSC); rear contact (QD) | High work function; transparency; thermal stability; UV protection | Lower work function than MoO3; sensitive to stoichiometry and thickness |
Fe2O3 | Absorber (experimental) | Low cost; non-toxic; stable | Requires cascade/tandem architecture; limited spectral absorption; low carrier mobility; low efficiency |
CeO2 | ETL or protective interlayer/UV filter in all-oxide cells | UV absorption prevents degradation of the active layer; chemically inert; compatible with low-temperature deposition | Low electron mobility; properties sensitive to oxygen vacancies; large-scale solution processing not yet optimized |
Al2O3 | Inert encapsulation, passivating/optical spacer | Reduces surface recombination; stabilizes morphology; chemically/thermally inert; may enhance V_OC | Does not conduct charge; thickness must be <3 nm to avoid adding series resistance |
SiO2 | Anti-reflective front (AR) coating or dielectric stabilizing barrier | Low refractive index (~1.45) reduces reflection; barrier to oxygen/moisture diffusion; low-T compatible | Not charge-selective; effect is purely optical/encapsulation-related, requiring careful integration with ETL/HTL |
Oxide Material | c-Si | PSC | DSSC | Thin-Film (CIGS, CdTe, CZTS, a-Si:H) | OSC, QD, All-Oxide |
---|---|---|---|---|---|
TiO2 | Passivation, anti-reflection | ETL, barrier, mesoporous scaffold | Photoanode (ETL) | Buffer, grain boundary passivation | ETL, contact with Cu2O |
ZnO | TCO, buffer | ETL | Photoanode (ETL) | TCO, buffer, textured layer | ETL, all-oxide component |
Al2O3 | Passivation, dielectric | Passivation, inert insulator | Barrier, passivation of TiO2 | Passivation, dielectric barrier | Optical spacer, inert interlayer |
SiO2 | Anti-reflective, tunnel layer | Anti-reflective, optical layer | Optical additive, light scatterer | Diffusion barrier, optical stabilization | Dielectric, optical substrate |
CeO2 | UV protection, passivation | ETL, UV filter, stabilization | – | Potential passivation, buffer (experimental) | ETL, absorber, protective layer |
Fe2O3 | – | Absorber (experimental) | Photoanode (low efficiency) | – | Absorber in all-oxide architectures |
WO3 | – | HTL, ETL (investigated) | Photoanode/additive | Rear buffer contact (HTL) | HTL, absorber, rear contact |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchikova, Y.; Nazarovets, S.; Konuhova, M.; Popov, A.I. Binary Oxide Ceramics (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3) for Solar Cell Applications: A Comparative and Bibliometric Analysis. Ceramics 2025, 8, 119. https://doi.org/10.3390/ceramics8040119
Suchikova Y, Nazarovets S, Konuhova M, Popov AI. Binary Oxide Ceramics (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3) for Solar Cell Applications: A Comparative and Bibliometric Analysis. Ceramics. 2025; 8(4):119. https://doi.org/10.3390/ceramics8040119
Chicago/Turabian StyleSuchikova, Yana, Serhii Nazarovets, Marina Konuhova, and Anatoli I. Popov. 2025. "Binary Oxide Ceramics (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3) for Solar Cell Applications: A Comparative and Bibliometric Analysis" Ceramics 8, no. 4: 119. https://doi.org/10.3390/ceramics8040119
APA StyleSuchikova, Y., Nazarovets, S., Konuhova, M., & Popov, A. I. (2025). Binary Oxide Ceramics (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3) for Solar Cell Applications: A Comparative and Bibliometric Analysis. Ceramics, 8(4), 119. https://doi.org/10.3390/ceramics8040119