Alkali Activation of Glass for Sustainable Upcycling: An Overview
Abstract
1. Introduction
Differences Between Waste Glass and Waste-Derived Glass
2. ‘Up-Cycling’ of Glass: Current Applications
2.1. Stoneware
2.2. Glass Wool Fibres
2.3. Glass Foams
2.4. Glass-Ceramics
2.5. Geopolymers
3. Alkali Activation: Definitions, Mechanisms, and the Role of Waste Glass
4. Weak Alkali Activation of Pharmaceutical Glass: Reaction Mechanism
5. Perspective of Glass Mild Alkali Activation
5.1. Alkali Activation of Glass as Building Materials
5.2. Alkali Activation of Glass as Sorbent for Dyes
5.3. Alkali Activation of Glass as Sorbent for Heavy Metals
5.4. Alkali Activation of Glass for Nuclear Waste Immobilisation
5.5. Alkali Activation of Glass and Microwaved-Assisted Process
6. Conclusions
- Glass has the potential to serve as the sole raw material for alkaline activation, functioning independently of its chemical composition and the molarity of the alkaline solution. This suggests that the molecular mechanism of mild alkali-activated glasses is similar to glass corrosion. Due to the limited molarity, the alkaline solution does not allow for the complete dissolution of the glass used as raw material, but only affects the surface of the glass particles. Moreover, the OH− ions from the alkaline source led to the cleavage of strong bonds, such as siloxane bonds, resulting in the formation of a hydrated surface layer (–OH). During the hardening phase, there is the rearrangement of Si–O–Si, Si–O–Al, and Si–O–B between the particles. The other constituents in the solution reorganise into a secondary phase that may involve the formation of various compounds, such as carbonates, gel, and potential crystalline phases. The secondary phase does not contribute significantly to the stability of the final product.
- In contrast to their conventional application as substitutes for cements and concrete, alkali materials may be considered for environmental uses. Alkali-activated materials are used as membranes for dye adsorption, such as methylene blue. Moreover, the removal of heavy metals can be performed with an alkali-activated sorbent.
- Alkali-activated glass presents a promising avenue for the immobilisation of simulated nuclear waste, particularly in regard to cesium hydroxide (CsOH). The samples fired at 700 °C exhibited only trace levels of cesium release during leaching tests.
- The microwave-assisted process significantly contributes to reducing the hardening time of materials. Microwave techniques can also provide deeper insights into the molecular mechanism during the hardening process of alkali-activated glass. In fact, the formation of a less depolymerised gel, and consequently a more stable structure, is favoured by a more efficient allocation of potassium ions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Lima, C.J.; Veer, F.; Zhang, H.; Filho, F.F.D.M.; Çopuroglu, O.; Nijsse, R. Thermal, optical and mechanical properties of new glass compositions containing fly ash. Glass Technol.-Eur. J. Glass Sci. Technol. Part A 2021, 62, 96–108. [Google Scholar] [CrossRef]
- Martin, G.; MacFarlane, A. The Glass Bathyscaphe: How Glass Changed the World; Profile Books: London, UK, 2011. [Google Scholar]
- Jiang, Y.; Ling, T.-C.; Mo, K.-H.; Shi, C. A critical review of waste glass powder—Multiple roles of utilization in cement-based materials and construction products. J. Environ. Manag. 2019, 242, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.X.; Zhan, B.J.; Duan, Z.H.; Poon, C.S. Using glass powder to improve the durability of architectural mortar prepared with glass aggregates. Mater. Des. 2017, 135, 102–111. [Google Scholar] [CrossRef]
- Cantini, A.; Leoni, L.; Ferraro, S.; De Carlo, F.; Martini, C.; Martini, F.; Salvio, M. Technological energy efficiency improvement in glass- production industries and their future perspectives in Italy. Processes 2022, 10, 2653. [Google Scholar] [CrossRef]
- Colangelo, S. Reducing the environmental footprint of glass manufacturing. Int. J. Appl. Glass Sci. 2024, 15, 350–366. [Google Scholar] [CrossRef]
- Vinci, G.; D’Ascenzo, F.; Esposito, A.; Musarra, M.; Rapa, M.; Rocchi, A. A sustainable innovation in the Italian glass production: LCA and Eco-Care matrix evaluation. J. Clean. Prod. 2019, 223, 587–595. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Ahmad, S.; Butt, S.I. Environmental impact assessment of the manufacturing of glass packaging solutions: Comparative scenarios in a developing country. Environ. Impact Assess. Rev. 2023, 102, 107195. [Google Scholar] [CrossRef]
- Westbroek, C.D.; Bitting, J.; Craglia, M.; Azevedo, J.M.C.; Cullen, J.M. Global material flow analysis of glass: From raw materials to end of life. J. Ind. Ecol. 2021, 25, 333–343. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, J.; Song, Q.; Xu, Z. Integrated assessment of economic benefits and environmental impact in waste glass closed-loop recycling for promoting glass circularity. J. Clean. Prod. 2024, 444, 141155. [Google Scholar] [CrossRef]
- Wilkinson, C. Glass and a carbon-free United States: What is glass’s role in the upcoming green revolution? J. Am. Ceram. Soc. 2024, 107, 1533–1542. [Google Scholar] [CrossRef]
- Atzori, D.; Tiozzo, S.; Vellini, M.; Gambini, M.; Mazzoni, S. Industrial Technologies for CO2 Reduction Applicable to Glass Furnaces. Thermo 2023, 3, 682–710. [Google Scholar] [CrossRef]
- Hu, P.; Li, Y.; Zhang, X.; Guo, Z.; Zhang, P. CO2 emission from container glass in China, and emission reduction strategy analysis. Carbon. Manag. 2018, 9, 303–310. [Google Scholar] [CrossRef]
- Caudle, B.; Taniguchi, S.; Nguyen, T.T.H.; Katoaka, S. Integrating carbon capture and utilization into the glass industry: Economic analysis of emissions reduction through CO2 mineralization. J. Clean. Prod. 2023, 416, 137846. [Google Scholar] [CrossRef]
- Golub, O.V.; Sanzharovskii, A.Y.; Mikhailidi, D.K.; Vartanyan, M.A. Carbon Footprint of the Life Cycle of Glass Containers. Glass Ceram. 2022, 79, 306–311. [Google Scholar] [CrossRef]
- Zier, M.; Stenzel, P.; Kotzur, L.; Stolten, D. A review of decarbonization options for the glass industry. Energy Convers. Manag. X 2021, 10, 100083. [Google Scholar] [CrossRef]
- Harrison, E.; Berenjian, A.; Seifan, M. Recycling of waste glass as aggregate in cement-based materials. ESE 2020, 257, 100064. [Google Scholar] [CrossRef]
- Guo, P.; Meng, W.; Nassif, H.; Guo, H.; Bao, Y. New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Const. Build. Mater. 2020, 257, 119579. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Siddique, R.; Mendis, P.; Zhuge, Y.; Wong, H.S.; Lokuge, W.; Aravinthan, T.; Schubel, P. Recycling of landfill wastes (tyres, plastics and glass) in construction—A review on global waste generation, performance, application and future opportunities. Resour. Conserv. Recycl. 2021, 173, 105745. [Google Scholar] [CrossRef]
- Sena Sağlam, B.B.; Aydın, N. Investigation of waste characteristics and recycling behaviour at educational institutes. Waste Manag. 2024, 180, 115–124. [Google Scholar] [CrossRef]
- Rashad, A.M. Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Const. Build. Mater. 2014, 72, 340–357. [Google Scholar] [CrossRef]
- Lessard, J.-M.; Habert, G.; Tagnit-Hamou, A.; Amor, B. Tracking the Environmental Consequences of Circular Economy over Space and Time: The Case of Close: The Open-Loop Recovery of Postconsumer Glass. EST 2021, 55, 11521–11532. [Google Scholar] [CrossRef]
- Scalet, B.M.; Garcia Muñoz, M.A.; Sissa, Q.; Roudier, S.; Delgado Sancho, L. Best Available Techniques (BAT) Reference Document for the Manufacture of Glass; Joint Research Centre of the European Commission (JRC): Sevilla, Spain, 2013. [Google Scholar]
- Bristogianni, T.; Oikonomopoulou, F. Glass up-casting: A review in the current challenges in glass recycling and novel approach for recycling “as-is” glass waste into volumetric glass components. Glass Struct. Eng. 2023, 8, 255–302. [Google Scholar] [CrossRef]
- Tameni, G. Upcycling of Glass Waste in Sustainable Construction Materials. Ph.D. Thesis, Università di Padova, Padova, Italy, 2025. [Google Scholar]
- Ingrao, C.; Saja, C.; Primerano, P. Application of Life Cycle Assessment to chemical recycling of post-use glass containers on the laboratory scale towards circular economy implementation. J. Clean. Prod. 2021, 307, 127319. [Google Scholar] [CrossRef]
- Flood, M.; Fennessy, L.; Lockrey, S.; Avendano, A.; Glover, J.; Kandare, E.; Bhat, T. Glass Fines: A review of cleaning and up-cycling possibilities. J. Clean. Prod. 2020, 267, 121875. [Google Scholar] [CrossRef]
- Dilan, R.; Edwin, B.; Sujeeva, S. A new technology of transforming recycled glass waste to construction components. Const. Build. Mater. 2021, 313, 125539. [Google Scholar] [CrossRef]
- Federico, L.M.; Chidiac, S.E. Waste glass as a supplementary cementitious material in concrete—Critical review of treatment methods. Cem. Concr. Compos. 2009, 31, 606–610. [Google Scholar] [CrossRef]
- SCHOTT Launches Pilot Projects on Glass-Ceramics and Specialty Glass for a More Circular Economy. Available online: https://www.schott.com/en-gb/news-and-media/media-releases/2024/schott-launches-pilot-projects-on-glass-ceramics-and-specialty-glass-for-a-more-circular-economy (accessed on 28 November 2024).
- Kim, Y.; Han, Y.; Kim, S.; Jeon, H.-S. Green extraction of lithium from waste lithium aluminosilicate glass-ceramics using a water leaching process. PSEP 2021, 148, 765–774. [Google Scholar] [CrossRef]
- Musgraves, J.D.; Hu, J.; Calvez, L. Springer Handbook of Glass. In Springer, Handbooks; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Lebullenger, R.; Mear, F.O. Glass recycling. In Springer Handbook of Glass; Musgraves, J.D., Hu, J., Calvez, L., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 1353–1375. [Google Scholar] [CrossRef]
- Daigo, I.; Kiyohara, S.; Okada, T.; Okamoto, D.; Goto, Y. Element-based optimizing of waste ceramics material and glasses recycling. Resour. Conserv. Recycl. 2018, 133, 375–384. [Google Scholar] [CrossRef]
- Bernardo, E.; Scarinci, G.; Colombo, P. Vitrification of Waste and Reuse of Waste-Derived Glass. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Mahmoud, M.; Kraxner, J.; Mehta, A.; Elsayed, H.; Galusek, D.; Bernardo, E. Upcycling waste derived glass into high-performance photocatalytic scaffolds by alkali activation and direct ink writing. Heliyon 2024, 10, e24737. [Google Scholar] [CrossRef]
- Scarinci, G.; Brusatin, G.; Barbieri, L.; Corradi, A.; Lancellotti, I.; Colombo, P.; Hreglich, S.; Dall’Igna, R. Vitrification of industrial and natural wastes with production of glass fibres. J. Eur. Ceram. Soc. 2000, 20, 2485–2490. [Google Scholar] [CrossRef]
- Rincón, A.; Marangoni, M.; Cetin, S.; Bernardo, E. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications. J. Chem. Technol. Biotechnol. 2016, 91, 1946–1961. [Google Scholar] [CrossRef]
- Ma, Q.; Ding, L.; Wang, Q.; Yu, Y.; Lida, L.; Hong, L. Preparation and characterization of continuous fly ash derived glass fibers with improved tensile strength. Mater. Lett. 2018, 231, 119–121. [Google Scholar] [CrossRef]
- Ponsot, I.; Detsch, R.; Boccaccini, A.R.; Bernardo, E. Waste derived glass ceramic composites prepared by low temperature sintering/sinter-crystallisation. Adv. Appl. Ceram. 2015, 114, 17–25. [Google Scholar] [CrossRef]
- Hujova, M.; Rabelo Monich, P.; Kankova, H.; Lucas, H.; Xakalashe, B.; Friedrich, B.; Kraxner, J.; Galusek, D.; Bernardo, E. New glass-based binders from engineered mixtures of inorganic waste. Inter. J. Appl. Glass Sci. 2021, 12, 570–580. [Google Scholar] [CrossRef]
- Mehta, A.; Colusso, E.; Kraxner, J.; Galusek, D.; Bernardo, E. Waste-derived glass as a precursor for inorganic polymers: From foams to photocatalytic destructors for dye removal. Ceram. Int. 2022, 48 Pt A, 27631–27636. [Google Scholar] [CrossRef]
- Horodytska, O.; Kiritsis, D.; Fullana, A. Upcycling of printed plastic films: LCA analysis and effects on the circular economy. J. Clean. Prod. 2020, 268, 122138. [Google Scholar] [CrossRef]
- Pauli, G.; Hartkemeyer, J.F. UpCycling; Chronik Verlag im Bertelsmann LEXIKON Verlag: Gütersloh, Germany, 1999. [Google Scholar]
- Jehanno, C.; Alty, J.W.; Roosen, M.; De Meester, S.; Dove, A.P.; Chen, E.Y.-X.; Leibfarth, F.A.; Sardon, H. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022, 603, 803–814. [Google Scholar] [CrossRef]
- Mazzi, A.; Sciarrone, M.; Bernardo, E. Environmental performance of glass foam as insulation material from waste glass with the alkali activation process. Heliyon 2023, 9, e19001. [Google Scholar] [CrossRef]
- Ribeiro, M.J.; Tulyaganov, D. Traditional Ceramics Manufacturing. In Ceramics, Glass and Glass-Ceramics; Baino, F., Tomalino, M., Tulyaganov, D., Eds.; PoliTO Springer Series; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Tite, M.S. Ceramic production, provenance and use—A review. Archaeometry 2008, 50, 216–231. [Google Scholar] [CrossRef]
- Yeşilay, S. Production of stoneware clay bodies by using industrial soda-lime-silica glass waste. J. Aust. Ceram. Soc. 2019, 55, 747–758. [Google Scholar] [CrossRef]
- Andreola, F.; Barbieri, L.; Lancellotti, I.; Leonelli, C.; Manfredini, T. Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies. Ceram. Int. 2016, 42, 13333–13338. [Google Scholar] [CrossRef]
- Lassinantti Gualteriei, M.; Mugoni, C.; Guandalini, S.; Cattini, A.; Mazzini, D.; Alboni, C.; Siligardi, C. Glass recycling in the production of low-temperature stoneware tiles. J. Clean. Prod. 2018, 197, 1531–1539. [Google Scholar] [CrossRef]
- Bernardo, E.; Esposito, L.; Rambaldi, E.; Tucci, A.; Hreglich, S. Recycle of Waste Glass into “Glass–Ceramic Stoneware”. J. Am. Ceram. Soc. 2008, 91, 2156–2162. [Google Scholar] [CrossRef]
- Tucci, A.; Esposito, L.; Rastelli, E.; Palmonari, C.; Rambaldi, E. Use of sodalime scrap-glass as a fluxing agent in a porcelain stoneware tile mix. J. Eur. Ceram. Soc. 2004, 24, 83–92. [Google Scholar] [CrossRef]
- Luz, A.P.; Ribeiro, S. Use of glass waste as a raw material in porcelain stoneware tile mixtures. Ceram. Int. 2007, 33, 761–765. [Google Scholar] [CrossRef]
- Väntsi, O.; Kärki, T. Mineral wool waste in Europe: A review of mineral wool waste quantity, quality, and current recycling methods. J. Mater. Cycles Waste Manag. 2013, 16, 62–72. [Google Scholar] [CrossRef]
- Kapoor, A.; Mudgal, S.; Muruganandam, L. Impact of shock waves on glass wool composition and properties. Mater. Today Proc. 2021, 46, 7056–7060. [Google Scholar] [CrossRef]
- Bennett, T.M.; Allen, J.F.; Garden, J.A.; Shaver, M.P. Low Formaldehyde Binders for Mineral Wool Insulation: A Review. Glob. Chall. 2022, 6, 2100110. [Google Scholar] [CrossRef]
- Yliniemi, J.; Ramaswamy, R.; Luukkonen, T.; Laitinen, O.; de Sousa, A.N.; Huuhtanen, M.; Illikainen, M. Characterization of mineral wool waste chemical composition, organic resin content and fiber dimensions: Aspects for aluminum. Waste Manag. 2021, 131, 323–330. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, T. Development and Application Status of Glass Wool, Rock Wool, and Ceramic Wool. In Thermal Insulation and Radiation Control Technologies for Buildings. Green Energy and Technology; Kośny, J., Yarbrough, D.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Zhang, Y.; Vulfson, Y.; Zheng, Q.; Luo, J.; Kim, S.H.; Yue, Y. Impact of fiberizing method on physical properties of glass wool aluminum. J. Non Cryst. Solids 2017, 476, 122–127. [Google Scholar] [CrossRef]
- Yue, Y. Fiber Forming and Its Impact on Mechanical Properties. In Fiberglass Science and Technology; Li, H., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Gol’tsman, B.M.; Yatsenkoa, E.A. Modern Methods for Foaming of Glass and Silicate Raw Materials: Review and Analysis. Theor. Found. Chem. Eng. 2022, 56, 678–686. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, J.; Hao, P.; Shi, Y.; Xu, Y.; Ding, X. Study on factors affecting properties of foam glass made from waste glass. J. Renew. Mater. 2021, 9, 237–253. [Google Scholar] [CrossRef]
- Owoeye, S.S.; Matthew, G.O.; Ovienmhanda, F.O.; Tunmilayo, S.O. Preparation and characterization of foam glass from waste container glasses and water glass for application in thermal insulations. Ceram. Int. 2020, 46, 11770–11775. [Google Scholar] [CrossRef]
- Mengguang, Z.; Ru, J.; Zhongmin, L.; Hao, W.; Lili, L.; Zuotai, Z. Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Const. Build. Mater. 2016, 112, 398–405. [Google Scholar] [CrossRef]
- Stochero, N.P.; de Souza Chami, J.O.R.; Souza, M.T.; de Moraes, E.G.; Novaes de Oliveira, A.P. Green Glass Foams from Wastes Designed for Thermal Insulation. Waste Biomass Valor. 2021, 12, 1609–1620. [Google Scholar] [CrossRef]
- Shishkin, A.; Aguedal, H.; Goel, G.; Pecilevica, J.; Newport, D.; Ozolins, J. Influence of waste glass in the foaming process of open cell porous ceramic as filtration media for industrial wastewater. J. Clean. Prod. 2021, 282, 124546. [Google Scholar] [CrossRef]
- El Amir, A.A.M.; Attia, M.A.A.; Fend, T.; Ewais, E.M.M. Production of high-quality glass foam from soda lime glass waste using SiC-AlN foaming agent. J. Korean Ceram. Soc. 2022, 59, 444–452. [Google Scholar] [CrossRef]
- Scheffler, M.; Colombo, P. Cellular Ceramics: Structure, Manufacturing, Properties and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ioana, A.; Paunescu, L.; Constantin, N.; Pollifroni, M.; Deonise, D.; Patcu, F.S. Glass Foam from Flat Glass Waste Produced by the Microwave Irradiation Technique. Micromachines 2022, 13, 550. [Google Scholar] [CrossRef]
- Fernandes, H.R.; Tulyaganov, D.U.; Ferreira, J.M.F. Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agent. Ceram. Inter. 2009, 35, 229–235. [Google Scholar] [CrossRef]
- Gol’tsman, B.M.; Yatsenko, E.A. Role of Carbon Phase in the Formation of Foam Glass Porous Structure. Materials 2022, 15, 7913. [Google Scholar] [CrossRef]
- König, J.; Petersen, R.R.; Yue, Y.; Suvorov, D. Gas-releasing reactions in foam-glass formation using carbon and MnxOy as the foaming agents. Ceram. Int. 2017, 43, 4638–4646. [Google Scholar] [CrossRef]
- Petersen, R.R.; König, J.; Yue, Y. Evaluation of foaming aluminum of glass melts by high-temperature microscopy. Int. J. Appl. Glass Sci. 2016, 7, 524–531. [Google Scholar] [CrossRef]
- Abdollahi, S.; Yekta, B.E. Prediction of foaming temperature of glass in the presence of various oxidizers via thermodynamics route. Ceram. Int. 2020, 46 Pt A, 25626–25632. [Google Scholar] [CrossRef]
- Petersen, R.R.; König, J.; Yue, Y. The viscosity window of the silicate glass foam production. J. Non-Cryst. Solids 2017, 456, 49–54. [Google Scholar] [CrossRef]
- Qin, Z.; Li, G.; Tian, Y.; Ma, Y.; Shen, P. Numerical Simulation of Thermal Conductivity of Foam Glass Based on the Steady-State Method. Materials 2019, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Haesche, M.; Lehmhus, D.; Weise, J.; Wichmann, M.; Mocellin, I.C.M. Carbonates as Foaming Agent in Chip-based Aluminum Foam Precursor. J. Mater. Sci. Technol. 2010, 26, 845–850. [Google Scholar] [CrossRef]
- Lebullenger, R.; Chenu, S.; Rocherullé, J.; Merdrignac-Conanec, O.; Cheviré, F.; Tessier, F.; Bouzaza, A.; Brosillon, S. Glass foams for environmental applications. J. Non-Cryst. Solids 2010, 356, 2563–2568. [Google Scholar] [CrossRef]
- Gol’tsman, B.M.; Yatsenko, E.A. Dynamics of foam glass structure formation using glass waste and liquid foaming mixture. J. Clean. Prod. 2010, 426, 138994. [Google Scholar] [CrossRef]
- Yatsenko, E.A.; Gol’tsman, B.M.; Smolii, V.A.; Gol’tsman, N.S.; Yatsenko, L.A. Study on the Possibility of Applying Organic Compounds as Pore-Forming Agents for the Synthesis of Foam Glass. Glass Phys. Chem. 2019, 45, 138–142. [Google Scholar] [CrossRef]
- Deubener, J.; Allix, M.; Davis, M.J.; Duran, A.; Höche, T.; Honma, T.; Komatsu, T.; Krüger, S.; Mitra, I.; Müller, R.; et al. Updated definition of glass-ceramics. J. Non-Cryst. Solids. 2018, 501, 3–10. [Google Scholar] [CrossRef]
- Zhao, S.Z.; Liu, B.; Ding, Y.J.; Zhang, J.; Wen, Q.; Ekberg, C.; Zhang, S. Study on glass-ceramics made from MSWI fly ash, pickling sludge and waste glass by one-step process. J. Clean. Prod. 2020, 271, 122674. [Google Scholar] [CrossRef]
- Spacil, I.; Li, J. Revealing nucleation kinetics of entrained eutectic Si droplets in high purity melt spun Al-5Si based alloys with additions of Ta, TiB2, Eu and P. J. Alloys Compd. 2023, 968, 172032. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Yang, Y.; Shen, B.; Ma, J.; Lina, L. Preparation and characterization of fully waste-based glass-ceramics from incineration fly ash, waste glass and coal fly ash. Ceram. Int. 2022, 48, 21638–21647. [Google Scholar] [CrossRef]
- Tarhan, B.; Tarhan, M.; Aydin, T. Reusing sanitaryware waste products in glazed porcelain tile production. Ceram. Int. 2017, 43, 3107–3112. [Google Scholar] [CrossRef]
- Brusatin, G.; Bernardo, E.; Andreola, F.; Barbieri, L.; Lancellotti, I.; Hreglich, S. Reutilization of waste inert glass from the disposal of polluted dredging spoils by the obtainment of ceramic products for tiles applications. J. Mater. Sci. 2005, 40, 5259–5264. [Google Scholar] [CrossRef]
- Sarkar, T.; Naskar, M.K.; Chakraborty, A.; Roy, P.K.; Chakraborty, S. Preparation of high-strength waste-derived eco-friendly ceramic foam as face brick and its estimation of building energy consumption for thermal insulation. J. Build. Eng. 2021, 88, 109043. [Google Scholar] [CrossRef]
- Kyaw Oo D’Amore, G.; Caniato, M.; Travan, A.; Turco, G.; Marsich, L.; Ferluga, A.; Schmid, C. Innovative thermal and acoustic insulation foam from recycled waste glass powder. J. Clean. Prod. 2017, 165, 1306–1315. [Google Scholar] [CrossRef]
- da Costa, D.L.; Rodrigues da Solva Morais, C.; Rodrigues, A.M. Sustainable glass-ceramic foams manufactured from waste glass bottles and bentonite. Ceram. Intern. 2020, 46A, 17957–17961. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, B.; Zhang, S.A. review of glass ceramic foams prepared from solid wastes: Processing, heavy-metal solidification and volatilization, applications. Sci. Total Environ. 2021, 781, 146727. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, B.; Zhao, S.; Shen, H.; Liu, J.; Zhang, S. Preparation and characterization of glass ceramic foams based on municipal solid waste incineration ashes using secondary aluminum ash as foaming agent. Const. Build. Mater. 2020, 262, 120781. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Zareechian, M.; Siad, H.; Lachemi, M.; Sahmaran, M. Advancements in cleaner production of one-part geopolymers: A comprehensive review of mechanical properties, durability, and microstructure. Const. Build. Mater. 2023, 409, 133876. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer chemistry and sustainable development. The poly(sialate) terminology: A very useful and simple model for the promotion and understanding of green-chemistry. In Proceedings of the 2005 Geopolymer Conference, Quarrying Australia, Adelaide, SA, Australia, 12–15 October 2005; Volume 1, pp. 9–15. [Google Scholar]
- Kriven, W.M.; Leonelli, C.; Provis, J.L.; Boccaccini, A.R.; Attwell, C.; Ducman, V.S.; Ferone, C.; Rossignol, S.; Luukkonene, T.; van Deventer, J.S.J.; et al. Why geopolymers and alkali-activated materials are key components of sustaibnable world: A perspective contribution. J. Am. Ceram. Soc. 2024, 107, 5159–5177. [Google Scholar] [CrossRef]
- Dey, A.; Rumman, R.; Wakjira, T.G.; Jindal, A.; Bediwy, A.G.; Islam, M.S.; Alam, M.S.; Al Martini, S.; Sabouni, R. Towards net-zero emission: A case study investigating sustainability potential of geopolymer concrete with recycled glass powder and gold mine tailings. J. Build. Eng. 2015, 101, 675–683. [Google Scholar] [CrossRef]
- Jani, Y.; Hogland, W. Waste glass in the production of cement and concrete—A review. J. Environ. Chem. Eng. 2014, 2, 1767–1775. [Google Scholar] [CrossRef]
- Varma, D.N.; Singh, S.P. A review on waste glass-based geopolymer composites as a sustainable binder. Silicon 2023, 15, 7685–7703. [Google Scholar] [CrossRef]
- Xiao, R.; Dau, X.; Zhong, J.; Ma, Y.; Jiang, X.; He, J.; Wang, Y.; Huang, B. Toward waste glass upcycling: Preparation and characterization of high-volume waste glass geopolymer composites. SMT 2024, 40, e00890. [Google Scholar] [CrossRef]
- Sarkar, M.; Maiti, M.; Akbar Malik, M.; Xu, S. Waste valorization: Sustainable geopolymer production using recycled glass and fly ash at ambient temperature. Chem. Eng. J. 2024, 494, 153144. [Google Scholar] [CrossRef]
- Torres-Carrasco, M.; Puertas, F. Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 2015, 90, 397–408. [Google Scholar] [CrossRef]
- Namatollahi, B.; Sanjayan, J.; Shaikh, F.U.A. Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate. Ceram. Int. 2015, 41, 5696–5704. [Google Scholar] [CrossRef]
- van Deventer, J.S.J.; Provis, J.L.; Duxon, P.; Brice, D.G. Chemical Research and Climate Change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valor. 2010, 1, 145–155. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Myres, R.J.; Bernal, S.A.; San Nicolas, R.; Provis, J.L. Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model. Langmuir 2013, 29, 5294–5306. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lodeiro, I.; Fernández-Jimenez, A.; Pena, P.; Palomo, A. Alkaline activation of synthetic aluminosilicate glass. Ceram. Int. 2014, 40, 5547–5558. [Google Scholar] [CrossRef]
- Ruiz-Santaquiteria, C.; Fernández-Jiménez, A.; Palomo, A. Alternative prime materials for developing new cements: Alkaline activation of alkali aluminosilicate glasses. Ceram. Int. 2016, 42, 9333–9340. [Google Scholar] [CrossRef]
- Cyr, M.; Idir, R.; Poinot, T. Properties of inorganic polymer (geopolymer) mortars made of glass cullet. J. Mater. Sci. 2012, 47, 2782–2797. [Google Scholar] [CrossRef]
- Idir, R.; Cyr, M.; Pavoine, A. Investigations on the durability of alkali-activated recycled glass. Constr. Build. Mater. 2020, 236, 117477. [Google Scholar] [CrossRef]
- Rincon, A.; Giacomello, G.; Pasetto, M.; Bernardo, E. Novel ‘inorganic gel casting’ process for the manufacturing of glass foams. J. Eur. Ceram. Soc. 2017, 37, 2227–2234. [Google Scholar] [CrossRef]
- Ramteke, D.D.; Hujova, M.; Kraxner, J.; Galusek, D.; Romero, A.R.; Falcone, R.; Bernardo, E. Up-cycling of 8unrecyclable9 glasses in glass-based foams by weak alkali-activation, gel casting and low-temperature sintering. J. Clean. Prod. 2021, 278, 123985. [Google Scholar] [CrossRef]
- Ramakanth, D.; Singh, S.; Maji, P.K.; Lee, Y.S.; Gaikwad, K.K. Advanced packaging for distribution and storage of COVID-19 vaccines: A review. Environ. Chem. Lett. 2021, 19, 3597–3608. [Google Scholar] [CrossRef]
- Taveri, G.; Tousek, J.; Bernardo, E.; Toniolo, N.; Boccaccini, A.R.; Dlouhy, I. Proving the role of boron in the structure of fly-ash/borosilicate glass based geopolymers. Mater. Lett. 2017, 200, 105–108. [Google Scholar] [CrossRef]
- Elsayed, H.; Romero, A.R.; Molino, G.; Vitale Brovarone, C.; Bernardo, E. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization. Materials 2018, 11, 349. [Google Scholar] [CrossRef]
- Rincon, A.R.; Tamburini, S.; Taveri, G.; Touaek, J.; Dlouhy, I.; Bernardo, E. Extension of the ‘inorganic gel casting’ process to the manufacturing of Boro-Alumino-Silicate glass foams. Materials 2018, 11, 2545. [Google Scholar] [CrossRef]
- Metha, A.; Karbouche, K.; Kraxner, J.; Elsayed, H.; Galusek, D.; Bernardo, E. Upcycling of pharmaceutical glass into highly porous ceramics: From foams to membrans. Materials 2022, 15, 3784. [Google Scholar] [CrossRef]
- Tameni, G.; Lago, D.; KaIková, H.; KaIková, L.; Kraxner, J.; Galusek, D.; Dawson, D.M.; Ashbrook, S.E.; Bernardo, E. Alkaline attack of boro-alumino-silicate glass: New insights of the molecular mechanism of cold consolidation and new applications. Open Ceram. 2025, 21, 100726. [Google Scholar] [CrossRef]
- Ma, T.; Jivkov, A.P.; Li, W.; Liang, W.; Wang, Y.; Xu, H.; Han, X. A mechanistic model for long-term nuclear waste glass dissolution integrating chemical affinity and interfacial diffusion barrier. J. Nucl. Mater. 2017, 70–85, 486. [Google Scholar] [CrossRef]
- Rébiscoul, D.; Bruguier, F.; Magnin, V.; Gin, S. Impact of soda-lime borosilicate glass composition on water penetration and water structure at the first time of alteration. J. Non-Cryst. Solids 2012, 358, 2951–2960. [Google Scholar] [CrossRef]
- Gin, S.; Delaye, J.M.; Angeli, F.; Schuller, S. Aqueous alteration of silicate glass: State of knowledge and perspectives. Mater. Degrad. 2022, 5, 42. [Google Scholar] [CrossRef]
- Samarakoon, M.H.; Ranjith, P.G.; Duan, W.H.; Haque, A.; Chen, B.K. Extensive use of waste glass in one-part alkali-activated materials: Towards sustainable construction practices. Waste Manag. 2021, 130, 1–11. [Google Scholar] [CrossRef]
- Su, P.; Eniola, S.; Xie, J.; Zhao, X.; Ugboaja, C.; Li, M.; Si, R.; Dai, Q.; Fei, Y.; Hu, Y.H. Performance evaluation of glass powder as a partial precursor in alkali-activated slag (AAS) binder and recycled glass and steel fibers in AAS mortar. Constr. Build. Mater. 2025, 473, 140757. [Google Scholar] [CrossRef]
- Liang, G.; Li, H.; Zhu, H.; Liu, T.; Chen, Q.; Guo, H. Reuse of waste glass powder in alkali-activated metakaolin/fly ash pastes: Physical properties, reaction kinetics and microstructure. Resour. Conserv. Recycl. 2021, 173, 105721. [Google Scholar] [CrossRef]
- Redden, R.; Naithalath, N. Microstructure, strength, and moisture stability of alkali activated glass powder-based binders. Cem. Concr. Compos. 2014, 45, 46–56. [Google Scholar] [CrossRef]
- Torres-Carrasco, M.; Puertas, F. Waste glass as a precursor in alkaline activation: Chemical process and hydration products. Constr. Build. Mater. 2017, 139, 342–354. [Google Scholar] [CrossRef]
- Tameni, G.; Cammelli, F.; Elsayed, H.; Stangherlin, F.; Bernardo, E. Upcycling of boro-alumino-silicate pharmaceutical glass in sustainable construction materials. Detritus 2022, 20, 17–21. [Google Scholar] [CrossRef]
- Ashby, M.F. Chapter 1, Butterworth-Heinemann. In Materials Selection in Mechanical Design; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1–13. [Google Scholar] [CrossRef]
- Papa, E.; Medri, V.; Benito, P.; Vaccari, A.; Bugani, S.; Jaroszewicz, J.; Swieszkowski, W.; Landi, E. Synthesis of porous hierarchical geopolymer monoliths by ice-templating. Microporous Mesoporous Mater. 2015, 215, 206–214. [Google Scholar] [CrossRef]
- Luukkonen, T.; Heponiemi, A.; Runtti, H.; Pesonen, J.; Yliniemi, J.; Lassi, U. Application of alkali-activated materials for water and wastewater treatment: A review. Rev. Environ. Sci. Biotechnol. 2019, 18, 271–297. [Google Scholar] [CrossRef]
- Ettahiri, Y.; Bouargane, B.; Fritah, K.; Akhsassi, B.; Pérez-Villarejo, L.; Aziz, A.; Bouna, L.; Benlhachemi, A.; Novais, R.M. A state-of-the-art review of recent advances in porous geopolymer: Applications in adsorption of inorganic and organic contaminants in water. Constr. Build. Mater. 2023, 395, 132269. [Google Scholar] [CrossRef]
- Ettahiri, Y.; Bouddouch, A.; Akhsassi, B.; Khali, A.; Bouna, L.; Benlhachemi, A.; Pérez-Villarejo, L. Optimized porous alkali-activated material for superior dye removal: Synthesis and performance analysis. Mater. Adv. 2025, 6, 2435–2447. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, S.; Lu, K.; Jia, H.; Xia, M.; Wang, F. Preparation of hierarchically floral ZIF-8 derived carbon@polyaniline@Ni/Al layered double hydroxides composite with outstanding removal phenomenon for saccharin. Chem. Eng. J. 2022, 450, 138127. [Google Scholar] [CrossRef]
- Mahmoud, M.; Kraxner, J.; Elsayed, H.; Galusek, D.; Bernardo, E. Advanced dye sorbents from combined stereolithography 3D printing and alkali activation of pharmaceutical glass waste. Materials 2022, 15, 6823. [Google Scholar] [CrossRef]
- Mahmoud, M.; Kraxner, J.; Mehta, A.; Elsayed, H.; Galusek, D.; Bernardo, E. Alkali activation-induced cold consolidation of waste glass: Application on organic-free direct ink writing of photocatalytic dye destructors. JECS 2024, 44, 5449–5459. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 2023, 1, 775–805. [Google Scholar] [CrossRef]
- Qasem, N.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of heavy metals from industrial wastewaters: A review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Novais, R.M.; Buruberri, L.H.; Seabra, M.-P.; Labrincha, J.A. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters. J. Hazard. Mater. 2016, 318, 631–640. [Google Scholar] [CrossRef]
- Cheng, T.W.; Lee, M.L.; Ko, M.S.; Ueng, T.H.; Yang, S.F. The heavy metal adsorption characteristics of metakaolin-based geopolymer. Appl. Clay Sci. 2012, 56, 90–96. [Google Scholar] [CrossRef]
- Lago, D.; Kraxner, J.; Galusek, D.; Bernardo, E. Novel glass-based membranes for Cu adsorption: From alkali activation to sintering. Helyon 2023, 9, e18221. [Google Scholar] [CrossRef]
- Al-Harahsheh, M.S.; Al Zboon, K.; Al-Makhadmeh, L.; Hararah, M.; Mahasneh, M. Fly ash based geopolymer for heavy metal removal: A case study on copper removal. J. Environ. Chem. Eng. 2015, 3, 1669–1677. [Google Scholar] [CrossRef]
- Jain, S.; Onuaguluchi, O.; Banthia, N.; Troczynski, T. Advancements in immobilization of cesium and strontium radionuclides in cementitious wasteforms—A review. J. Am. Ceram. Soc. 2024, 108, e20131. [Google Scholar] [CrossRef]
- El-Kamash, A.M.; El-Naggar, M.R.; El-Dessouky, M.I. Immobilization of cesium and strontium radionuclides in zeolite-cement blends. J. Hazard. Mater. 2006, 136, 310–316. [Google Scholar] [CrossRef]
- Thorpe, C.L.; Neeway, J.J.; Pearce, C.I.; Hand, R.J.; Fisher, A.J.; Walling, S.A.; Hyatt, C.C.; Krugeer, A.A.; Schweiger, M.; Kosson, D.S.; et al. Forty years of durability assessment of nuclear waste glass by standard methods. npj Mater. Degrad. 2021, 5, 6. [Google Scholar] [CrossRef]
- Jahagirdar, P.B.; Warral, P.K. Vitrification of sulphate beraring high level wastes in borosilicate matrix. Waste Maneg. 1998, 18, 265–273. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, Z.; Deng, Y.; Shi, C.; Zhang, Z. Advances in immobilization of radionuclide wastes by alkali activated cement and related materials. Cem. Concr. Compos. 2022, 126, 104377. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; Zaki, A.A.; El-Kamash, A.M. Modeling the long-term leaching behavior of 137Cs, 60Co, and 152,154Eu radionuclides from cement–clay matrices. J. Hazard. Mater. 2007, 145, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Conner, J.R.; Hoeffner, S.L. A Critical Review of Stabilization/Solidification Technology. Crit. Rev. Environ. Sci. Technol. 1998, 28, 397–462. [Google Scholar] [CrossRef]
- Deng, N.; An, H.; Cui, H.; Pan, Y.; Wang, B.; Mao, L.; Zhai, J. Effects of gamma-ray irradiation on leaching of simulated 133Cs+ radionuclides from geopolymer wasteforms. J. Nucl. Mater. 2015, 459, 270–275. [Google Scholar] [CrossRef]
- Forsberg, C.W. Rethinking high-level waste disposal: Separate disposal of high-heat radionuclides (90Sr and 137Cs). Nucl. Technol. 2000, 131, 252–268. [Google Scholar] [CrossRef]
- Berger, S.; Frizon, F.; Joussot-Dubien, C. Formulation of caesium based and caesium containing geopolymers. Adv. Appl. Ceram. 2009, 108, 412–417. [Google Scholar] [CrossRef]
- Khalil, M.; Merz, E. Immobilization of intermediate-level wastes in geopolymers. J. Nucl. Mater. 1994, 211, 141–148. [Google Scholar] [CrossRef]
- Melar, J.; Renaudin, G.; Leroux, F.; Hardy-Dessources, A.; Nedelec, J.-M.; Taviot-Gueho, C.; Petit, E.; Steins, P.; Poulesquen, A.; Frizon, F. The porous network and its interface inside geopolymers as a function of alkali cation and aging. J. Phys. Chem. C 2015, 119, 17619–17632. [Google Scholar] [CrossRef]
- Mukiza, E.; Phung, Q.T.; Frederickx, L.; Jacques, D.; Seetharam, S.; De Schutter, G. Co-immobilization of cesium and strontium containing waste by metakaolin-based geopolymer: Microstructure, mineralogy and mechanical properties. J. Nucl. Mater. 2023, 585, 154639. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, A.; MacPhee, D.E.; Lachowski, E.E.; Palomo, A. Immobilization of cesium in alkaline activated fly ash matrix. J. Nucl. Mater. 2005, 346, 185–193. [Google Scholar] [CrossRef]
- Komljenović, M.; Tanasijević, G.; Džunuzović, N.; Provis, J.L. Immobilization of cesium with alkali-activated blast furnace slag. J. Hazard. Mater. 2020, 388, 121765. [Google Scholar] [CrossRef] [PubMed]
- Lago, D.; Tameni, G.; Zorzi, F.; Kraxner, J.; Galusek, D.; Bernardo, E. Novel cesium immobilization by alkali activation and cold consolidation of waste pharmaceutical glass. J. Clean. Prod. 2024, 461, 142673. [Google Scholar] [CrossRef]
- Lago, D.; Tameni, G.; Kraxner, J.; Galusek, D.; Bernardo, E. Cesium stabilization by engineered alkaline attack of glass for pharmaceutical containers. Mater. Lett. 2024, 372, 137097. [Google Scholar] [CrossRef]
- Zhu, H.; He, J.; Hong, T.; Yang, Q.; Wu, Y.; Yang, Y.; Huang, K. A rotary radiation structure for microwave heating uniformity improvement. Appl. Therm. Eng. 2018, 141, 648–658. [Google Scholar] [CrossRef]
- Makul, N.; Rattanadecho, P.; Agrawal, D.K. Applications of microwave energy in cement and concrete—A review. Renew. Sustain. Energy Rev. 2014, 37, 715–733. [Google Scholar] [CrossRef]
- Li, S.M.; Gao, X. Acceleration mechanism of nonisothermal microwave heating on strength development of mortar. Compos. Struc. 2022, 279, 114765. [Google Scholar] [CrossRef]
- Leung, C.K.Y.; Pheeraphan, T. Microwave curing of Portland cement concrete: Experimental results and feasibility for practical applications. Constr. Build. Mater. 1995, 9, 67–73. [Google Scholar] [CrossRef]
- Guan, X.; Luo, W.; Liu, S.; Garcia Hernandez, A.; Do, H.; Li, B. Ultra-high eraly strength fly ash-based geopolymer paste cured by microwave radiation. DIBE 2023, 14, 100139. [Google Scholar] [CrossRef]
- Acshoff, J.; Partschefeld, S.; Schneider, J.; Osberg, A. Effect of Microwaves on the Rapid Curing of Metakaolin- and Aluminum Orthophosphate-Based Geopolymers. Materials 2024, 17, 463. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kim, H. Robust synthesis of coal bottom ash-based geopolymers using additional microwave heating and curing for high compressive strength properties. Korean J. Chem. Eng. 2019, 36, 1164–1171. [Google Scholar] [CrossRef]
- Carollo, F.; De Rienzo, E.; D’Angelo, A.; Sgarbossa, P.; Barbieri, L.; Leonelli, C.; Lancellotti, I.; Catauro, M.; Bernardo, E. Cold Consolidation of Waste Glass by Alkali Activation and Curing by Traditional and Microwave Heating. Materials 2025, 18, 2628. [Google Scholar] [CrossRef] [PubMed]
- Tameni, G.; Carollo, F.; Cavazzini, A.M.; Forzan, M.; Bernardo, E. Microwaved assisted cold consolidation of alkali activated suspension of glass waste powders. Mater. Lett. 2025, 389, 138354. [Google Scholar] [CrossRef]
Glass Type | Composition [wt%] | Commercial Use | Limitations in Recycling |
---|---|---|---|
Sodalime (SLG) | 73% SiO2 17% Na2O 5% CaO 4% MgO 1% Al2O3 |
|
|
Boro–alumino–silicate (BASG) | 80% SiO2 13% B2O3 4% Na2O 2.3% Al2O3 0.1% K2O | Pharmaceutical packaging |
|
Cathodic Ray Tube (CRT) | 63% SiO2 21% PbO 7.6% Na2O 6% K2O 0.6% Al2O3 0.3% CaO 0.2% MgO 0.2% B2O3 | TV screen |
|
Opal | 72% SiO2 12% Na2O 8% Al2O3 5% F2 2% CaO 2% BaO 1.5% K2O | Kitchenware |
|
Liquid-crystal display (LCD) | 55% SiO2 15% Al2O3 10% B2O3 10% CaO 5% SrO 1% BaO | Electronic device |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tameni, G.; Bernardo, E. Alkali Activation of Glass for Sustainable Upcycling: An Overview. Ceramics 2025, 8, 108. https://doi.org/10.3390/ceramics8030108
Tameni G, Bernardo E. Alkali Activation of Glass for Sustainable Upcycling: An Overview. Ceramics. 2025; 8(3):108. https://doi.org/10.3390/ceramics8030108
Chicago/Turabian StyleTameni, Giulia, and Enrico Bernardo. 2025. "Alkali Activation of Glass for Sustainable Upcycling: An Overview" Ceramics 8, no. 3: 108. https://doi.org/10.3390/ceramics8030108
APA StyleTameni, G., & Bernardo, E. (2025). Alkali Activation of Glass for Sustainable Upcycling: An Overview. Ceramics, 8(3), 108. https://doi.org/10.3390/ceramics8030108