Rheological Behavior of an Algerian Natural Kaolin: Effect of Dispersant
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fourati, N.; Léger, D.; Fakhfakh, Z. Etude de la défloculation de suspensions concentrées de kaolin en milieu aqueux. Cas des polyacrylates et des silicates de sodium. Les Cah. Rhéologie 1998, 15, 475–487. [Google Scholar]
- Teh, E.J.; Leong, Y.K.; Liu, Y.; Fourie, A.B.; Fahey, M. Differences in the Rheology and Surface Chemistry of Kaolin Clay Slurries: The Source of the Variations. Chem. Eng. Sci. 2009, 64, 3817–3825. [Google Scholar] [CrossRef]
- Van Olphen, H. An Introduction to Clay Colloid Chemistry, 2nd ed.; National Academy of Sciences: Washington, DC, USA, 1977. [Google Scholar]
- Mpofu, P.; Addai-Mensah, J.; Ralston, J. Investigation of the Effect of Polymer Structure Type on Flocculation, Rheology and Dewatering Behaviour of Kaolinite Dispersions. Int. J. Miner. Process. 2003, 71, 247–268. [Google Scholar] [CrossRef]
- Peng, F.F.; Di, P. Efecto de Las Sales Multivalentes de Calcio y Aluminio Sobre La Floculación de La Suspensión de Caolín Con Poliacrilamida Aniónica. J. Colloid Interface Sci. 1994, 164, 229. [Google Scholar] [CrossRef]
- Avadiar, L.; Leong, Y.; Fourie, A.; Nugraha, T. rheological response to ca (ii) concentration—The source of kaolin slurry rheological variation. In Proceedings of the Australasian Chemical Engineering Conference, CHEMECA, Wellington, New Zealand, 23–26 September 2012. [Google Scholar]
- Au, P.; Leong, Y. Colloids and Surfaces A: Physicochemical and Engineering Aspects Rheological and Zeta Potential Behaviour of Kaolin and Bentonite Composite Slurries. Colloids Surf. A Eng. Asp. 2013, 436, 530–541. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 2nd ed.; Academic Press Inc.: London, UK, 1992; pp. 139–307. [Google Scholar]
- Hunter, R.J. Zeta Potential in Colloid Science, 3rd ed.; Academic Press Inc.: San Diego, CA, USA, 1988; pp. 230–240. [Google Scholar]
- Ersoy, B.; Evcin, A.; Uygunoglu, T.; Akdemir, Z.B.; Brostow, W.; Wahrmund, J. Zeta Potential-Viscosity Relationship in Kaolinite Slurry in the Presence of Dispersants. Arab. J. Sci. Eng. 2014, 39, 5451–5457. [Google Scholar] [CrossRef]
- Johnson, S.B.; Franks, G.V.; Scales, P.J.; Boger, D.V.; Healy, T.W. Surface Chemistry-Rheology Relationships in Concentrated Mineral Suspensions. Int. J. Miner. Process. 2000, 58, 267–304. [Google Scholar] [CrossRef]
- Yao, X.; Tan, S.; Huang, Z.; Jiang, D. Dispersion of Talc Particles in a Silica Sol. Mater. Lett. 2005, 59, 100–104. [Google Scholar] [CrossRef]
- Penner, D.; Lagaly, G. Influence of anions on the rheological properties of clay mineral dispersions. Appl. Clay Sci. 2001, 19, 131–142. [Google Scholar] [CrossRef]
- Sposito, G. Surface-reactions in natural aqueous colloidal systems. Chimia 1989, 43, 169–176. [Google Scholar] [CrossRef]
- Singh, B.P.; Menchavez, R.; Takai, C.; Fuji, M.; Takahashi, M. Stability of Dispersions of Colloidal Alumina Particles in Aqueous Suspensions. J. Colloid Interface Sci. 2005, 291, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Knowles, J.C.; Callcut, S.; Georgiou, G. Characterisation of the Rheological Properties and Zeta Potential of a Range of Hydroxyapatite Powders. Biomaterials 2000, 21, 1387–1392. [Google Scholar] [CrossRef]
- Shakeel, A.; Ali, W.; Chassagne, C.; Kirichek, A. Tuning the Rheological Properties of Kaolin Suspensions Using Biopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130120. [Google Scholar] [CrossRef]
- Liu, D. Adsorption, Rheology, Packing, and Sintering of Nanosize Ceramic Powders. Ceram. Int. 1999, 25, 107–113. [Google Scholar] [CrossRef]
- Kolli, M.; Hamidouche, M.; Bouaouadja, N.; Fantozzi, G. Physicochemical Characterization of Algerian Kaolin to Be Used in the Production of Refractories. J. Optoelectron. Adv. Mater.-Symp. 2011, 3, 134–136. [Google Scholar]
- Adeosun, S.O.; Sekunowo, O.I.; Taiwo, O.O.; Ayoola, W.A.; Machado, A. Evaluation of Secondary Aluminium Dross in Calcium Aluminate Cement. Adv. Mater. 2014, 3, 541–546. [Google Scholar] [CrossRef]
- Gil, A.; Korili, S.A. Management and Valorization of Aluminum Saline Slags: Current Status and Future Trends. Chem. Eng. J. 2016, 289, 74–84. [Google Scholar] [CrossRef]
- Meshram, A.; Singh, K.K. Recovery of Valuable Products from Hazardous Aluminum Dross. Resour. Conserv. Recycl. 2018, 130, 95–108. [Google Scholar] [CrossRef]
- Satish Reddy, M.; Neeraja, D. Aluminum Residue Waste for Possible Utilisation as a Material: A Review. Sādhanā 2018, 43, 124. [Google Scholar] [CrossRef]
- Hiraki, T.; Nosaka, A.; Okinaka, N.; Akiyama, T. Synthesis of Zeolite-X from Waste Materials. ISIJ Int. 2009, 49, 1644–1648. [Google Scholar] [CrossRef]
- Jraba, N.; Tounsi, H.; Makhlouf, T. Valorization of Aluminum Chips into γ-Al2O3 and η-Al2O3 with High Surface Areas via the Precipitation Route. Int. J. Miner. Metall. Mater. 2018, 9, 1003–1014. [Google Scholar] [CrossRef]
- Chargui, F.; Hamidouche, M.; Belhouchet, H.; Jorand, Y.; Doufnoune, R.; Fantozzi, G. Mullite Fabrication from Natural Kaolin. Boletín Soc. Española Cerámica Vidr. 2018, 57, 169–177. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.A.; Mejía de Gutiérrez, R.; Puertas, F. Effect of Metakaolin on Natural Volcanic Pozzolan-Based Geopolymer Cement. Appl. Clay Sci. 2016, 132–133, 491–497. [Google Scholar] [CrossRef]
- Tchakoute Kouamo, H.; Mbey, J.A.; Elimbi, A.; Kenne Diffo, B.B.; Njopwouo, D. Synthesis of Volcanic Ash-Based Geopolymer Mortars by Fusion Method: Effects of Adding Metakaolin to Fused Volcanic Ash. Ceram. Int. 2013, 39, 1613–1621. [Google Scholar] [CrossRef]
- Izak, P.; Ogłaza, L.; Mozgawa, W.; Mastalska-Popławska, J.; Stempkowska, A. Influence of the Type of Aqueous Sodium Silicate on the Stabilization and Rheology of Kaolin Clay Suspensions. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2018, 196, 155–159. [Google Scholar] [CrossRef]
- Kouamo, H.T.; Elimbi, A.; Mbey, J.A.; Sabouang, C.J.N.; Njopwouo, D. The Effect of Adding Alumina-Oxide to Metakaolin and Volcanic Ash on Geopolymer Products: A Comparative Study. Constr. Build. Mater. 2012, 35, 960–969. [Google Scholar] [CrossRef]
- Sainz, M.A.; Serrano, F.J.; Amigo, J.M.; Bastida, J.; Caballero, A. XRD Microstructural Analysis of Mullites Obtained from Kaolinite—Alumina Mixtures. J. Eur. Ceram. Soc. 2000, 20, 403–412. [Google Scholar] [CrossRef]
- Robles, P.; Piceros, E.; Leiva, W.H.; Valenzuela, J.; Toro, N.; Jeldres, R.I. Analysis of Sodium Polyacrylate as a Rheological Modifier for Kaolin Suspensions in Seawater. Appl. Clay Sci. 2019, 183, 105328. [Google Scholar] [CrossRef]
- Rubio-Hernández, F.J.; Páez-Flor, N.M.; Gómez-Merino, A.I.; Sánchez-Luque, F.J.; Delgado-García, R.; Goyos-Pérez, L. The Influence of High-Concentration Na Hexametaphosphate Dispersant on the Rheological Behavior of Aqueous Kaolin Dis-persions. Clays Clay Miner. 2016, 64, 210–219. [Google Scholar] [CrossRef]
- Rand, B.; Melton, I.E. Isoelectric point of the edge surface of kaolinite. Nature 1975, 257, 214–216. [Google Scholar] [CrossRef]
- Zaman, A.A.; Mathur, S. Influence of Dispersing Agents and Solution Conditions on the Solubility of Crude Kaolin. J. Colloid Interface Sci. 2004, 271, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Franks, G.V.; Meagher, L. The Isoelectric Points of Sapphire Crystals and Alpha-Alumina Powder. Colloids Surf. A Physicochem. Eng. Asp. 2003, 214, 99–110. [Google Scholar] [CrossRef]
- Durgut, E.; Cinar, M.; Terzi, M.; Kursun Unver, I.; Yildirim, Y.; Ozdemir, O. Evaluation of Different Dispersants on the Dis-persion/Sedimentation Behavior of Halloysite, Kaolinite, and Quartz Suspensions in the Enrichment of Halloysite Ore by Me-chanical Dispersion. Minerals 2022, 12, 1426. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, J.; He, B. Effect of Electrical Characteristics Modification on Viscosity of Kaolin Suspension. Adv. Mater. Res. 2011, 335–336, 1262–1266. [Google Scholar] [CrossRef]
- Management, L.; Osmond, G. Dispersion and Zeta Potential of Pure Clays as Related to Net Particle Charge under Varying PH, Electrolyte Concentration and Cation Type. Eur. J. Soil Sci. 1995, 46, 657–665. [Google Scholar]
- Yukselen-Aksoy, Y.; Kaya, A. Specific Surface Area Effect on Compressibility Behaviour of Clayey Soils. Proc. Inst. Civ. Eng. Geotech. Eng. 2013, 166, 76–87. [Google Scholar] [CrossRef]
- Singh, B.P.; Bhattacharjee, S.; Besra, L.; Sengupta, D.K. Evaluation of Dispersibility of Aqueous Alumina Suspension in Presence of Darvan C. Ceram. Int. 2004, 30, 939–946. [Google Scholar] [CrossRef]
- Lee, L.T.; Rahbari, R.; Lecourtier, J.; Chauveteau, G. Adsorption of Polyacrylamides on the Different Faces of Kaolinites. J. Colloid Interface Sci. 1991, 147, 351–357. [Google Scholar] [CrossRef]
- Lee, S.K.; Ryu, S.S.; Yoon, D.H. Synthesis of Fine Ca-Doped BaTiO3 Powders by Solid-State Reaction Method-Part II: Rheological Study on Milling. J. Electroceram. 2007, 18, 1–7. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, X.; Su, P. Dispersion of Kaolin Powders in Silica Sols. Appl. Clay Sci. 2010, 49, 51–54. [Google Scholar] [CrossRef]
- Nabzar, L.; Pefferkorn, E.; Varoqui, R. Stability of Polymer-Clay Suspensions. The Polyacrylamide-Sodium Kaolinite System. Colloid Surf. A 1988, 30, 345–353. [Google Scholar] [CrossRef]
- Önen, V.; Göçer, M.; Taner, H.A. Kaolen Süspansiyonlarinin Susuzlaştirilmasinda Koagülant Ve Flokülantlari Etkisi. Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg. 2018, 7, 297–305. [Google Scholar] [CrossRef]
- Xu, X.; Oliveira, M.; Ferreira, J.M.F. Effect of Solvent Composition on Dispersing Ability of Reaction Sialon Suspensions. J. Colloid Interface Sci. 2003, 259, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Loginov, M.; Larue, O.; Lebovka, N.; Vorobiev, E. Fluidity of Highly Concentrated Kaolin Suspensions: Influence of Particle Concentration and Presence of Dispersant. Colloids Surf. A Physicochem. Eng. Asp. 2008, 325, 64–71. [Google Scholar] [CrossRef]
- Bell, N.S.; Rodriguez, M.A. Dispersion Properties of an Alumina Nanopowder Using Molecular, Polyelectrolyte, and Steric Stabilization. J. Nanosci. 2004, 4, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wu, H.; Liu, Z.; Hu, H.; Guo, S. Study on the Adsorption Behavior of Polymeric Dispersants to S-ZnF Particles during Grinding Process. Materials 2023, 16, 1287. [Google Scholar] [CrossRef]
- Fripiat, J.J.; Gatineau, L. Interaction Eau-Argile. Sci. Geol. Bull. 1984, 37, 283–296. [Google Scholar] [CrossRef]
- Tseng, W.J.; Wu, C.H. Aggregation, Rheology and Electrophoretic Packing Structure of Aqueous Al2O3 Nanoparticle Suspensions. Acta Mater. 2002, 50, 3757–3766. [Google Scholar] [CrossRef]
- Qiang, Z.; Xiao, X.; Li, D.; Fu, F.; Ning, Y. Performance Evaluation of Laponite as a Mud—Making Material for Drilling Fluids. Pet. Sci. 2019, 16, 890–900. [Google Scholar] [CrossRef]
- Ramsay, J.D.F.; Lindner, P. Small-angle neutron scattering investigations of the structure of thixotropic dispersions of smectite clay colloids. J. Chem. Soc. Faraday Trans. 1993, 89, 4207–4214. [Google Scholar] [CrossRef]
- Rubbi, F.; Das, L.; Habib, K.; Aslfattahi, N.; Saidur, R. State-of-the-Art Review on Water-Based Nanofluids for Low Temperature Solar Thermal Collector Application. Sol. Energy Mater. Sol. Cells 2021, 230, 111220. [Google Scholar] [CrossRef]
- Rahman, M.T.; Negash, B.M.; Danso, D.K.; Idris, A.; Elryes, A.A.; Umar, I.A. Effects of Imidazolium- and Ammonium-Based Ionic Liquids on Clay Swelling: Experimental and Simulation Approach. J. Pet. Explor. Prod. Technol. 2022, 12, 1841–1853. [Google Scholar] [CrossRef]
- Tsetsekou, A.; Agrafiotis, C.; Leon, I.; Milias, A. Optimization of the Rheological Properties of Alumina Slurries for Ceramic Processing Applications Part II: Spray-Drying. J. Eur. Ceram. Soc. 2001, 21, 493–506. [Google Scholar] [CrossRef]
Oxides | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | TiO2 | Na2O | K2O |
---|---|---|---|---|---|---|---|---|
Kaolin wt.% | 44.9 | 37.49 | 0.12 | 0.26 | 0.13 | 0.1 | 0.19 | 0.01 |
Aluminum slag wt.% | 2.5 | 87 | 0.15 | 0.12 | 0.21 | 0.2 | 0.2 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chargui, F.; Hamidouche, M.; Louahdi, R.; Fantozzi, G. Rheological Behavior of an Algerian Natural Kaolin: Effect of Dispersant. Ceramics 2024, 7, 1159-1171. https://doi.org/10.3390/ceramics7030076
Chargui F, Hamidouche M, Louahdi R, Fantozzi G. Rheological Behavior of an Algerian Natural Kaolin: Effect of Dispersant. Ceramics. 2024; 7(3):1159-1171. https://doi.org/10.3390/ceramics7030076
Chicago/Turabian StyleChargui, Fouzia, Mohamed Hamidouche, Rachid Louahdi, and Gilbert Fantozzi. 2024. "Rheological Behavior of an Algerian Natural Kaolin: Effect of Dispersant" Ceramics 7, no. 3: 1159-1171. https://doi.org/10.3390/ceramics7030076
APA StyleChargui, F., Hamidouche, M., Louahdi, R., & Fantozzi, G. (2024). Rheological Behavior of an Algerian Natural Kaolin: Effect of Dispersant. Ceramics, 7(3), 1159-1171. https://doi.org/10.3390/ceramics7030076