State-of-the-Art Developments in Advanced Hard Ceramic Coatings Using PVD Techniques for High-Temperature Tribological Applications
Abstract
:1. Introduction and Need for Hard Coatings
Coating Contact/Failure Mechanisms at Elevated Temperatures
2. Hard Refractory Ceramic Coatings for High-Temperature Applications
3. Fabrication of Hard Ceramic Coatings
3.1. Fabrication Methods
3.2. Binary, Ternary, and Multicomponent Ceramic Coatings
3.3. Significance of the Structural and Mechanical Properties of Ceramic Coatings
4. Recent Progress in Advanced Coatings for Application in Harsh Environments
4.1. Recent Advancements in Coating Design Aspects
4.2. Role of Dopants (Mo, Cr, W, Si, and C) in Hard Ceramic Coatings
4.3. Soft/noble Metal (Ag and Cu)-Doped Hard Coatings for High-Temperature Applications
4.4. Functionally Modified Coatings
4.5. High Entropy Alloy-Based Nitride Coatings
5. Failure Mechanisms of Hard Ceramic Coatings Tested under HT Sliding Conditions
Tribochemical Layer Formation and Failure Mechanisms of Coatings under HT Conditions
6. Conclusions
- Appropriate addition of Si and B to the TiAlN and CrAlN coatings promotes the formation of a lubricating layer consisting of SiO2 and B2O3/B(OH)3, which provides lower friction and wear resistance at 800–900 °C. The a-Si3N4 and a-BNx matrices around the ceramic nanocrystallites strengthen the coatings due to grain refinement. A similar effect was observed for Mo and V addition due to the formation of Mo-O and V-O Magnéli phase oxides in the tribolayer at HT (>700 °C);
- Multilayer coatings of binary, ternary, and quaternary nitride layers with nanoscale bilayer thickness exhibit remarkably high hardness (>30 GPa) and wear resistance under HT conditions. The combined protective surface oxide formation and multilayer structure restrict crack propagation, and further oxidation results in enhanced wear resistance;
- Gradient coatings with Si-rich surface layers of hard coatings demonstrate improved lubrication and ceramic nitride mechanical strength towards the substrate. Pre-oxidation of nitride coatings also favors lubricity; however, excessive oxidation deteriorates the mechanical properties;
- Appropriate soft metal (Ag and Cu) additions exhibit interesting low friction and wear resistance behavior at intermediate temperatures (up to 500 °C) due to the formation of an out-diffused Ag- and Cu-rich tribolayer;
- At very high temperatures, various coating failure mechanisms are related to the coating microstructure, compactness, and resistance to HT deformations, as well as excessive oxidation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fox-Rabinovich, G.S.; Yamamoto, K.; Beake, B.D.; Gershman, I.S.; Kovalev, A.I.; Veldhuis, S.C.; Aguirre, M.H.; Dosbaeva, G.; Endrino, J.L. Hierarchical Adaptive Nanostructured PVD Coatings for Extreme Tribological Applications: The Quest for Nonequilibrium States and Emergent Behavior. Sci. Technol. Adv. Mater. 2012, 13, 043001. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-C.; Lin, Y.-T.; Chan, A.; Chang, J.-T. High Temperature Wear Behavior of Titanium Nitride Coating Deposited Using High Power Impulse Magnetron Sputtering. Coatings 2019, 9, 555. [Google Scholar] [CrossRef] [Green Version]
- Ul-Hamid, A. Deposition, Microstructure and Nanoindentation of Multilayer Zr Nitride and Carbonitride Nanostructured Coatings. Sci. Rep. 2022, 12, 5591. [Google Scholar] [CrossRef] [PubMed]
- Aissani, L.; Alhussein, A.; Zia, A.W.; Mamba, G.; Rtimi, S. Magnetron Sputtering of Transition Metal Nitride Thin Films for Environmental Remediation. Coatings 2022, 12, 1746. [Google Scholar] [CrossRef]
- Kirnbauer, A.; Kretschmer, A.; Koller, C.M.; Wojcik, T.; Paneta, V.; Hans, M.; Schneider, J.M.; Polcik, P.; Mayrhofer, P.H. Mechanical Properties and Thermal Stability of Reactively Sputtered Multi-Principal-Metal Hf-Ta-Ti-V-Zr Nitrides. Surf. Coat. Technol. 2020, 389, 125674. [Google Scholar] [CrossRef]
- Mersagh Dezfuli, S.; Sabzi, M. Deposition of Self-Healing Thin Films by the Sol–Gel Method: A Review of Layer-Deposition Mechanisms and Activation of Self-Healing Mechanisms. Appl. Phys. A Mater. Sci. Process. 2019, 125, 557. [Google Scholar] [CrossRef]
- Mersagh Dezfuli, S.; Sabzi, M. Deposition of Ceramic Nanocomposite Coatings by Electroplating Process: A Review of Layer-Deposition Mechanisms and Effective Parameters on the Formation of the Coating. Ceram. Int. 2019, 45, 21835–21842. [Google Scholar] [CrossRef]
- Sabzi, M.; Dezfuli, S.M.; Far, S.M. Deposition of Ni-Tungsten Carbide Nanocomposite Coating by TIG welding: Characterization and Control of Microstructure and Wear/Corrosion Responses. Ceram. Int. 2018, 44, 22816–22829. [Google Scholar] [CrossRef]
- Rapuc, A.; Simonovic, K.; Huminiuc, T.; Cavaleiro, A.; Polcar, T. Nanotribological Investigation of Sliding Properties of Transition Metal Dichalcogenide Thin Film Coatings. ACS Appl. Mater. Interfaces 2020, 12, 54191–54202. [Google Scholar] [CrossRef]
- Kumar, D.D.; Kumar, N.; Kalaiselvam, S.; Dash, S.; Jayavel, R. Wear Resistant Super-Hard Multilayer Transition Metal-Nitride Coatings. Surf. Interfaces 2017, 7, 74–82. [Google Scholar] [CrossRef]
- Ghailane, A.; Makha, M.; Larhlimi, H.; Alami, J. Design of Hard Coatings Deposited by HiPIMS and DcMS. Mater. Lett. 2020, 280, 128540. [Google Scholar] [CrossRef]
- Singh, A.; Ghosh, S.; Aravindan, S. Investigation of Oxidation Behaviour of AlCrN and AlTiN Coatings Deposited by Arc Enhanced HIPIMS Technique. Appl. Surf. Sci. 2020, 508, 144812. [Google Scholar] [CrossRef]
- Yang, J.; Fu, H.; He, Y.; Gu, Z.; Fu, Y.; Ji, J.; Zhang, Y.; Zhou, Y. Investigation on Friction and Wear Performance of Volcano-Shaped Textured PVD Coating. Surf. Coat. Technol. 2022, 431, 128044. [Google Scholar] [CrossRef]
- Khetan, V.; Valle, N.; Duday, D.; Michotte, C.; Mitterer, C.; Delplancke-Ogletree, M.P.; Choquet, P. Temperature-Dependent Wear Mechanisms for Magnetron-Sputtered AlTiTaN Hard Coatings. ACS Appl. Mater. Interfaces 2014, 6, 15403–15411. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.J.; Kim, J.-I.; Kim, W.-s.; Kim, D.H.; Kim, J. Thermal Stability of Si/SiC/Ta-C Composite Coatings and Improvement of Tribological Properties through High-Temperature Annealing. Sci. Rep. 2022, 12, 3536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cao, H.; Han, D.; Qiao, S.; Guo, Y. Influence of a TiAlN Coating on the Mechanical Properties of a Heat Resistant Steel at Room Temperature and 650 C. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2013, 28, 1029–1033. [Google Scholar] [CrossRef]
- Sampath Kumar, T.; Balasivanandha Prabu, S.; Manivasagam, G.; Padmanabhan, K.A. Comparison of TiAlN, AlCrN, and AlCrN/TiAlN Coatings for Cutting-Tool Applications. Int. J. Miner. Metall. Mater. 2014, 21, 796–805. [Google Scholar] [CrossRef]
- Khetan, V.; Valle, N.; Duday, D.; Michotte, C.; Delplancke-Ogletree, M.P.; Choquet, P. Influence of Temperature on Oxidation Mechanisms of Fiber-Textured AlTiTaN Coatings. ACS Appl. Mater. Interfaces 2014, 6, 4115–4125. [Google Scholar] [CrossRef]
- Ul-Hamid, A. Microstructure, Properties and Applications of Zr-Carbide, Zr-Nitride and Zr-Carbonitride Coatings: A Review. Mater. Adv. 2020, 1, 1012–1037. [Google Scholar] [CrossRef]
- Al-Asadi, M.M.; Al-Tameemi, H.A. A Review of Tribological Properties and Deposition Methods for Selected Hard Protective Coatings. Tribol. Int. 2022, 176, 107919. [Google Scholar] [CrossRef]
- Courbon, C.; Fallqvist, M.; Hardell, J.; M’Saoubi, R.; Prakash, B. Adhesion Tendency of PVD TiAlN Coatings at Elevated Temperatures during Reciprocating Sliding against Carbon Steel. Wear 2015, 330–331, 209–222. [Google Scholar] [CrossRef]
- Nohava, J.; Dessarzin, P.; Karvankova, P.; Morstein, M. Characterization of Tribological Behavior and Wear Mechanisms of Novel Oxynitride PVD Coatings Designed for Applications at High Temperatures. Tribol. Int. 2015, 81, 231–239. [Google Scholar] [CrossRef]
- Luo, Y.; Ning, C.; Dong, Y.; Xiao, C.; Wang, X.; Peng, H.; Cai, Z. Impact Abrasive Wear Resistance of CrN and CrAlN Coatings. Coatings 2022, 12, 427. [Google Scholar] [CrossRef]
- Devia, D.M.; Restrepo-Parra, E.; Arango, P.J. Comparative Study of Titanium Carbide and Nitride Coatings Grown by Cathodic Vacuum Arc Technique. Appl. Surf. Sci. 2011, 258, 1164–1174. [Google Scholar] [CrossRef]
- Chen, L.; Paulitsch, J.; Du, Y.; Mayrhofer, P.H. Thermal Stability and Oxidation Resistance of Ti-Al-N Coatings. Surf. Coat. Technol. 2012, 206, 2954–2960. [Google Scholar] [CrossRef] [Green Version]
- Beake, B.D.; Smith, J.F.; Gray, A.; Fox-Rabinovich, G.S.; Veldhuis, S.C.; Endrino, J.L. Investigating the Correlation between Nano-Impact Fracture Resistance and Hardness/Modulus Ratio from Nanoindentation at 25–500 °C and the Fracture Resistance and Lifetime of Cutting Tools with Ti1-XAlxN (x = 0.5 and 0.67) PVD Coatings in Milling Operations. Surf. Coat. Technol. 2007, 201, 4585–4593. [Google Scholar] [CrossRef]
- Peng, J.; Su, D.; Wang, C. Combined Effect of Aluminum Content and Layer Structure on the Oxidation Performance of Ti1-XAlxN Based Coatings. J. Mater. Sci. Technol. 2014, 30, 803–807. [Google Scholar] [CrossRef]
- He, Q.; DePaiva, J.M.; Kohlscheen, J.; Beake, B.D.; Veldhuis, S.C. Study of Wear Performance and Tribological Characterization of AlTiN PVD Coatings with Different Al/Ti Ratios during Ultra-High Speed Turning of Stainless Steel 304. Int. J. Refract. Met. Hard Mater. 2021, 96, 105488. [Google Scholar] [CrossRef]
- Hu, C.; Xu, Y.X.; Chen, L.; Pei, F.; Zhang, L.J.; Du, Y. Structural, Mechanical and Thermal Properties of CrAlNbN Coatings. Surf. Coat. Technol. 2018, 349, 894–900. [Google Scholar] [CrossRef]
- He, Q.; DePaiva, J.M.; Kohlscheen, J.; Veldhuis, S.C. Analysis of the Performance of PVD AlTiN Coating with Five Different Al/Ti Ratios during the High-Speed Turning of Stainless Steel 304 under Dry and Wet Cooling Conditions. Wear 2022, 492–493, 204213. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Willmann, H.; Reiter, A.E. Structure and Phase Evolution of Cr-Al-N Coatings during Annealing. Surf. Coat. Technol. 2008, 202, 4935–4938. [Google Scholar] [CrossRef]
- Lim, K.S.; Kim, Y.S.; Hong, S.H.; Song, G.; Kim, K.B. Influence of N2 Gas Flow Ratio and Working Pressure on Amorphous Mo–Si–N Coating during Magnetron Sputtering. Coatings 2020, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-L.; Lin, C.-Y.; Yang, F.-C.; Tang, J.-F. The Effect of Match between High Power Impulse and Bias Voltage: TiN Coating Deposited by High Power Impulse Magnetron Sputtering. Coatings 2021, 11, 822. [Google Scholar] [CrossRef]
- Sánchez-López, J.C.; Dominguez-Meister, S.; Rojas, T.C.; Colasuonno, M.; Bazzan, M.; Patelli, A. Tribological Properties of TiC/a-C:H Nanocomposite Coatings Prepared via HiPIMS. Appl. Surf. Sci. 2018, 440, 458–466. [Google Scholar] [CrossRef]
- Anders, A. Tutorial: Reactive High Power Impulse Magnetron Sputtering (R-HiPIMS). J. Appl. Phys. 2017, 121, 171101. [Google Scholar] [CrossRef] [Green Version]
- Reinhard, C.; Ehiasarian, A.P.; Hovsepian, P.E. CrN/NbN Superlattice Structured Coatings with Enhanced Corrosion Resistance Achieved by High Power Impulse Magnetron Sputtering Interface Pre-Treatment. Thin Solid Films 2007, 515, 3685–3692. [Google Scholar] [CrossRef]
- Lakhonchai, A.; Chingsungnoen, A.; Poolcharuansin, P.; Pasaja, N.; Bunnak, P.; Suwanno, M. Comparison of the Structural and Optic al Properties of Amorphous Silicon Thin Films Prepared by Direct Current, Bipolar Pulse, and High-Power Impulse Magnetron Sputtering Methods. Thin Solid Films 2022, 747, 139140. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Uglov, V.; Milovich, F.; Cherenda, N.; Andreev, N.; Migranov, M.; Seleznev, A. Influence of Tribological Properties of Zr-ZrN-(Zr,Cr,Al)N and Zr-ZrN-(Zr,Mo,Al)N Multilayer Nanostructured Coatings on the Cutting Properties of Coated Tools during Dry Turning of Inconel 718 Alloy. Wear 2023, 512–513, 204521. [Google Scholar] [CrossRef]
- Vereschaka, A.; Grigoriev, S.; Tabakov, V.; Migranov, M.; Sitnikov, N.; Milovich, F.; Andreev, N. Influence of the Nanostructure of Ti-TiN-(Ti,Al,Cr)N Multilayer Composite Coating on Tribological Properties and Cutting Tool Life. Tribol. Int. 2020, 150, 106388. [Google Scholar] [CrossRef]
- Gayathri, S.; Kumar, N.; Krishnan, R.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.; Sridharan, M. Influence of Cr Content on the Micro-Structural and Tribological Properties of PLD Grown Nanocomposite DLC-Cr Thin Films. Mater. Chem. Phys. 2015, 167, 194–200. [Google Scholar] [CrossRef]
- Bonse, J.; Kirner, S.V.; Koter, R.; Pentzien, S.; Spaltmann, D.; Krüger, J. Femtosecond Laser-Induced Periodic Surface Structures on Titanium Nitride Coatings for Tribological Applications. Appl. Surf. Sci. 2017, 418, 572–579. [Google Scholar] [CrossRef]
- Geng, D.; Li, H.; Chen, Z.; Xu, Y.X.; Wang, Q. Microstructure, Oxidation Behavior and Tribological Properties of AlCrN/Cu Coatings Deposited by a Hybrid PVD Technique. J. Mater. Sci. Technol. 2022, 100, 150–160. [Google Scholar] [CrossRef]
- Alhafian, M.R.; Chemin, J.B.; Fleming, Y.; Bourgeois, L.; Penoy, M.; Useldinger, R.; Soldera, F.; Mücklich, F.; Choquet, P. Comparison on the Structural, Mechanical and Tribological Properties of TiAlN Coatings Deposited by HiPIMS and Cathodic Arc Evaporation. Surf. Coat. Technol. 2021, 423, 127529. [Google Scholar] [CrossRef]
- de Castilho, B.C.N.M.; Rodrigues, A.M.; Avila, P.R.T.; Apolinario, R.C.; de Souza Nossa, T.; Walczak, M.; Fernandes, J.V.; Menezes, R.R.; de Araújo Neves, G.; Pinto, H.C. Hybrid Magnetron Sputtering of Ceramic Superlattices for Application in a next Generation of Combustion Engines. Sci. Rep. 2022, 12, 2342. [Google Scholar] [CrossRef]
- Chang, L.-C.; Zheng, Y.-Z.; Chen, Y.-I. Mechanical Properties of Zr–Si–N Films Fabricated through HiPIMS/RFMS Co-Sputtering. Coatings 2018, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- de Bonis, A.; Teghil, R. Ultra-Short Pulsed Laser Deposition of Oxides, Borides and Carbides of Transition Elements. Coatings 2020, 10, 501. [Google Scholar] [CrossRef]
- Gayathri, S.; Kumar, N.; Krishnan, R.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.; Raj, B.; Sridharan, M. Tribological Properties of Pulsed Laser Deposited DLC/TM (TM=Cr, Ag, Ti and Ni) Multilayers. Tribol. Int. 2012, 53, 87–97. [Google Scholar] [CrossRef]
- Groenen, R.; Smit, J.; Orsel, K.; Vailionis, A.; Bastiaens, B.; Huijben, M.; Boller, K.; Rijnders, G.; Koster, G. Research Update: Stoichiometry Controlled Oxide Thin Film Growth by Pulsed Laser Deposition. APL Mater. 2015, 3, 070701. [Google Scholar] [CrossRef]
- Cao, H.; Liu, F.; Li, H.; Qi, F.; Ouyang, X.; Zhao, N.; Liao, B. High Temperature Tribological Performance and Thermal Conductivity of Thick Ti/Ti-DLC Multilayer Coatings with the Application Potential for Al Alloy Pistons. Diam. Relat. Mater. 2021, 117, 108466. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Terek, P.; Miletić, A.; Čekada, M.; Panjan, M. Comparative Study of Tribological Behavior of TiN Hard Coatings Deposited by Various PVD Deposition Techniques. Coatings 2022, 12, 294. [Google Scholar] [CrossRef]
- Hirata, Y.; Takeuchi, R.; Taniguchi, H.; Kawagoe, M.; Iwamoto, Y.; Yoshizato, M.; Akasaka, H.; Ohtake, N. Structural and Mechanical Properties of A-BCN Films Prepared by an Arc-Sputtering Hybrid Process. Materials 2021, 14, 719. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, J.; Paczkowski, T. Electrochemical Machining of Curvilinear Surfaces of Revolution: Analysis, Modelling, and Process Control. Materials 2022, 15, 7751. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.W.; Zhang, Z.H.; Shao, M.H.; Lu, J.P.; Yan, J.W.; Zhang, L.; He, Y.Y. Microstructure and Tribological Properties of Multilayered ZrCrW(C)N Coatings Fabricated by Cathodic Vacuum-Arc Deposition. Ceram. Int. 2022, 48, 36655–36669. [Google Scholar] [CrossRef]
- Shugurov, A.R.; Kuzminov, E.D. Mechanical and Tribological Properties of Ti-Al-Ta-N/TiAl and Ti-Al-Ta-N/Ta Multilayer Coatings Deposited by DC Magnetron Sputtering. Surf. Coat. Technol. 2022, 441, 128582. [Google Scholar] [CrossRef]
- Cao, H.; Momand, J.; Syari’ati, A.; Wen, F.; Rudolf, P.; Xiao, P.; de Hosson, J.T.M.; Pei, Y. Temperature-Adaptive Ultralubricity of a WS2/a-C Nanocomposite Coating: Performance from Room Temperature up to 500 °C. ACS Appl. Mater. Interfaces 2021, 13, 28843–28854. [Google Scholar] [CrossRef] [PubMed]
- Vuchkov, T.; Leviandhika, V.; Cavaleiro, A. On the Tribological Performance of Magnetron Sputtered W-S-C Coatings with Conventional and Graded Composition. Surf. Coat. Technol. 2022, 449, 128929. [Google Scholar] [CrossRef]
- Cai, Q.; Li, S.; Pu, J.; Cai, Z.; Lu, X.; Cui, Q.; Wang, L. Effect of Multicomponent Doping on the Structure and Tribological Properties of VN-Based Coatings. J. Alloys Compd. 2019, 806, 566–574. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Sitnikov, N.; Andreev, N.; Bublikov, J.; Kutina, N. Investigation of the Properties of the Cr,Mo-(Cr,Mo,Zr,Nb)N-(Cr,Mo,Zr,Nb,Al)N Multilayer Composite Multicomponent Coating with Nanostructured Wear-Resistant Layer. Wear 2021, 468–469, 203597. [Google Scholar] [CrossRef]
- Mondragón-Rodríguez, G.C.; Hernández-Mendoza, J.L.; Gómez-Ovalle, A.E.; González-Carmona, J.M.; Ortega-Portilla, C.; Camacho, N.; Hurtado-Macías, A.; Espinosa-Arbeláez, D.G.; Alvarado-Orozco, J.M. High-Temperature Tribology of Hf Doped c-Al0.64Ti0.36N Cathodic Arc PVD Coatings Deposited on M2 Tool Steel. Surf. Coat. Technol. 2021, 422, 127516. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Migranov, M.; Andreev, N.; Bublikov, J.; Sitnikov, N.; Oganyan, G. Investigation of the Tribological Properties of Ti-TiN-(Ti,Al,Nb,Zr)N Composite Coating and Its Efficiency in Increasing Wear Resistance of Metal Cutting Tools. Tribol. Int. 2021, 164, 107236. [Google Scholar] [CrossRef]
- Guan, X.; Wang, Y.; Xue, Q. Effects of Constituent Layers and Interfaces on the Mechanical and Tribological Properties of Metal (Cr, Zr)/Ceramic (CrN, ZrN) Multilayer Systems. Appl. Surf. Sci. 2020, 502, 144305. [Google Scholar] [CrossRef]
- Frank, F.; Kainz, C.; Tkadletz, M.; Czettl, C.; Pohler, M.; Schalk, N. Microstructural and Micro-Mechanical Investigation of Cathodic Arc Evaporated ZrN/TiN Multilayer Coatings with Varying Bilayer Thickness. Surf. Coat. Technol. 2022, 432, 128070. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, J.; Liu, F.; Zhong, X.; Xiao, X.; Zhang, T.F.; Wang, Q. Effects of Microstructure Evolution on the Oxidation Behavior and High-Temperature Tribological Properties of AlCrN/TiAlSiN Multilayer Coatings. Ceram. Int. 2018, 44, 23150–23161. [Google Scholar] [CrossRef]
- Miletić, A.; Panjan, P.; Čekada, M.; Kovačević, L.; Terek, P.; Kovač, J.; Dražič, G.; Škorić, B. Nanolayer CrAlN/TiSiN Coating Designed for Tribological Applications. Ceram. Int. 2021, 47, 2022–2033. [Google Scholar] [CrossRef]
- Wang, R.; Li, H.Q.; Li, R.S.; Mei, H.J.; Zou, C.W.; Zhang, T.F.; Wang, Q.M.; Kim, K.H. Thermostability, Oxidation, and High-Temperature Tribological Properties of Nano-Multilayered AlCrSiN/VN Coatings. Ceram. Int. 2022, 48, 11915–11923. [Google Scholar] [CrossRef]
- Wang, T.C.; Hsu, S.Y.; Lai, Y.T.; Tsai, S.Y.; Duh, J.G. Microstructure and High-Temperature Tribological Characteristics of Self-Lubricating TiAlSiN/VSiN Multilayer Nitride Coatings. Mater. Chem. Phys. 2023, 295, 127149. [Google Scholar] [CrossRef]
- Mei, H.; Ding, J.C.; Yan, K.; Peng, W.; Zhao, C.; Luo, Q.; Gong, W.; Ren, F.; Wang, Q. Effects of V and Cu Codoping on the Tribological Properties and Oxidation Behavior of AlTiN Coatings. Ceram. Int. 2022, 48, 22317–22327. [Google Scholar] [CrossRef]
- Evaristo, M.; Fernandes, F.; Cavaleiro, A. Room and High Temperature Tribological Behaviour of W-DLC Coatings Produced by DCMS and Hybrid DCMS-HiPIMS Configuration. Coatings 2020, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Alamgir, A.; Bogatov, A.; Jõgiaas, T.; Viljus, M.; Raadik, T.; Kübarsepp, J.; Sergejev, F.; Lümkemann, A.; Kluson, J.; Podgursky, V. High-Temperature Oxidation Resistance and Tribological Properties of Al2O3/Ta-C Coating. Coatings 2022, 12, 547. [Google Scholar] [CrossRef]
- Wang, C.; Xu, B.; Wang, Z.; Li, H.; Wang, L.; Chen, R.; Wang, A.; Ke, P. Tribological Mechanism of (Cr, V)N Coating in the Temperature Range of 500–900 °C. Tribol. Int. 2021, 159, 106952. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Zhang, Y.; Wang, A.; Ke, P. M-Site Solid Solution of Vanadium Enables the Promising Mechanical and High-Temperature Tribological Properties of Cr2AlC Coating. Mater. Des. 2022, 222, 111060. [Google Scholar] [CrossRef]
- Mei, H.; Wang, R.; Zhong, X.; Dai, W.; Wang, Q. Influence of Nitrogen Partial Pressure on Microstructure and Tribological Properties of Mo-Cu-V-N Composite Coatings with High Cu Content. Coatings 2018, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wang, L.; Shang, L.; Zhang, G.; Li, C. Temperature-Dependent Tribological Behavior of CrAlN/TiSiN Tool Coating Sliding against 7A09 Al Alloy and GCr15 Bearing Steel. Tribol. Int. 2023, 177, 107942. [Google Scholar] [CrossRef]
- Yeh-Liu, L.K.; Hsu, S.Y.; Chen, P.Y.; Lee, J.W.; Duh, J.G. Improvement of CrMoN/SiNx Coatings on Mechanical and High Temperature Tribological Properties through Biomimetic Laminated Structure Design. Surf. Coat. Technol. 2020, 393, 125754. [Google Scholar] [CrossRef]
- Alamgir, A.; Yashin, M.; Bogatov, A.; Viljus, M.; Traksmaa, R.; Sondor, J.; Lümkemann, A.; Sergejev, F.; Podgursky, V. High-Temperature Tribological Performance of Hard Multilayer TiN-AlTiN/NACo-CrN/AlCrN-AlCrOAlTiCrN Coating Deposited on WC-Co Substrate. Coatings 2020, 10, 909. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, S.; Lin, J.; Cao, F.; Liu, Y.; Xue, R.; Wang, T. Microstructure, Mechanical and Tribological Properties of Gradient CrAlSiN Coatings Deposited by Magnetron Sputtering and Arc Ion Plating Technology. Thin Solid Films 2022, 760, 139490. [Google Scholar] [CrossRef]
- Ferreira, R.; Carvalho, Ó.; Sobral, L.; Carvalho, S.; Silva, F. Influence of Morphology and Microstructure on the Tribological Behavior of Arc Deposited CrN Coatings for the Automotive Industry. Surf. Coat. Technol. 2020, 397, 126047. [Google Scholar] [CrossRef]
- Yan, M.; Wang, C.; Sui, X.; Liu, J.; Lu, Y.; Hao, J.; Liu, W. Effect of Substrate Rotational Speed during Deposition on the Microstructure, Mechanical and Tribological Properties of a-C: Ta Coatings. Ceram. Int. 2022. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Chen, F.; Tian, C.; Valiev, U.v.; Zou, C.; Fu, D. Effects of N2 Partial Pressure on Microstructure and Mechanical Properties of Cathodic Arc Deposited TiBN/TiAlSiN Nano-Multilayered Coatings. Mater. Today Commun. 2022, 31, 103436. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Q.; Li, J.; Yang, Z.; Guo, Y.; Yang, W.; Xu, D.; Yang, B. Microstructure and Tribological Properties of CrAlTiN Coating Deposited via Multi-Arc Ion Plating. Mater. Today Commun. 2022, 30, 103136. [Google Scholar] [CrossRef]
- Akhter, R.; Zhou, Z.; Xie, Z.; Munroe, P. Influence of Substrate Bias on the Scratch, Wear and Indentation Response of TiSiN Nanocomposite Coatings. Surf. Coat. Technol. 2021, 425, 127687. [Google Scholar] [CrossRef]
- Cao, H.S.; Liu, F.J.; hao, L.I.; Luo, W.Z.; Qi, F.G.; Lu, L.W.; Nie, Z.H.; Ouyang, X.P. Effect of Bias Voltage on Microstructure, Mechanical and Tribological Properties of TiAlN Coatings. Trans. Nonferrous Met. Soc. China 2022, 32, 3596–3609. [Google Scholar] [CrossRef]
- Akhter, R.; Bendavid, A.; Munroe, P. Tailoring the Scratch Adhesion Strength and Wear Performance of TiNiN Nanocomposite Coatings by Optimising Substrate Bias Voltage during Cathodic Arc Evaporation. Surf. Coat. Technol. 2022, 445, 128707. [Google Scholar] [CrossRef]
- Biswas, B.; Purandare, Y.; Khan, I.; Hovsepian, P.E. Effect of Substrate Bias Voltage on Defect Generation and Their Influence on Corrosion and Tribological Properties of HIPIMS Deposited CrN/NbN Coatings. Surf. Coat. Technol. 2018, 344, 383–393. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Chih, P.-C.; Huang, J.-H. Effect of Ti Interlayer Thickness on Mechanical Properties and Wear Resistance of TiZrN Coatings on AISI D2 Steel. Surf. Coat. Technol. 2020, 394, 125690. [Google Scholar] [CrossRef]
- Huang, B.; Zhou, Q.; An, Q.; Zhang, E.G.; Chen, Q.; Liang, D.D.; Du, H.M.; Li, Z.M. Tribological Performance of the Gradient Composite TiAlSiN Coating with Various Friction Pairs. Surf. Coat. Technol. 2022, 429, 127945. [Google Scholar] [CrossRef]
- Ovchinnikov, S.; Kalashnikov, M. Structure and Tribological Properties of Gradient-Layered Coatings (Ti, Al, Si, Cr, Mo, S) O, N. Surf. Coat. Technol. 2021, 408, 126807. [Google Scholar] [CrossRef]
- Bondarev, A.; Al-Rjoub, A.; Yaqub, T.B.; Polcar, T.; Fernandes, F. TEM Study of the Oxidation Resistance and Diffusion Processes in a Multilayered TiSiN/TiN(Ag) Coating Designed for Tribological Applications. Appl. Surf. Sci. 2023, 609, 155319. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Chang, B.Y.; Chen, C.S. Effect of CrN Addition on the Mechanical and Tribological Performances of Multilayered AlTiN/CrN/ZrN Hard Coatings. Surf. Coat. Technol. 2022, 433, 128107. [Google Scholar] [CrossRef]
- Tao, H.; Tsai, M.T.; Chen, H.W.; Huang, J.C.; Duh, J.G. Improving High-Temperature Tribological Characteristics on Nanocomposite CrAlSiN Coating by Mo Doping. Surf. Coat. Technol. 2018, 349, 752–756. [Google Scholar] [CrossRef]
- Yi, B.; Zhou, S.; Qiu, Z.; Zeng, D.C. The Influences of Pulsed Bias Duty Cycle on Tribological Properties of Solid Lubricating TiMoCN Coatings. Vacuum 2020, 180, 109552. [Google Scholar] [CrossRef]
- Fernandes, F.; Danek, M.; Polcar, T.; Cavaleiro, A. Tribological and Cutting Performance of TiAlCrN Films with Different Cr Contents Deposited with Multilayered Structure. Tribol. Int. 2018, 119, 345–353. [Google Scholar] [CrossRef]
- Yu, W.; Li, H.; Li, J.; Liu, Z.; Huang, J.; Kong, J.; Wu, Q.; Shi, Y.; Zhang, G.; Xiong, D. Balance between Oxidation and Tribological Behaviors at Elevated Temperatures of Hf1-XWxN Films by Optimizing W Content. Vacuum 2022, 207, 111673. [Google Scholar] [CrossRef]
- Chim, Y.C.; Ding, X.Z.; Zeng, X.T.; Zhang, S. Oxidation Resistance of TiN, CrN, TiAlN and CrAlN Coatings Deposited by Lateral Rotating Cathode Arc. Thin Solid Films 2009, 517, 4845–4849. [Google Scholar] [CrossRef]
- Sánchez-López, J.C.; Contreras, A.; Domínguez-Meister, S.; García-Luis, A.; Brizuela, M. Tribological Behaviour at High Temperature of Hard CrAlN Coatings Doped with y or Zr. Thin Solid Films 2014, 550, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Drnovšek, A.; Rebelo de Figueiredo, M.; Vo, H.; Xia, A.; Vachhani, S.J.; Kolozsvári, S.; Hosemann, P.; Franz, R. Correlating High Temperature Mechanical and Tribological Properties of CrAlN and CrAlSiN Hard Coatings. Surf. Coat. Technol. 2019, 372, 361–368. [Google Scholar] [CrossRef]
- Cai, F.; Wang, J.; Zhou, Q.; Xue, H.; Zheng, J.; Wang, Q.; Kim, K.H. Microstructure Evolution and High-Temperature Tribological Behavior of AlCrBN Coatings with Various B Contents. Surf. Coat. Technol. 2022, 430, 127994. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sytchenko, A.D.; Vorotilo, S.A.; Klechkovskaya, V.V.; Lopatin, V.Y.; Levashov, E.A. Structure, Oxidation Resistance, Mechanical, and Tribological Properties of N- and C-Doped Ta-Zr-Si-B Hard Protective Coatings Obtained by Reactive D.C. Magnetron Sputtering of TaZrSiB Ceramic Cathode. Coatings 2020, 10, 946. [Google Scholar] [CrossRef]
- Mei, H.; Ding, J.C.; Zhao, Z.; Li, Q.; Song, J.; Li, Y.; Gong, W.; Ren, F.; Wang, Q. Effect of Cu Content on High-Temperature Tribological Properties and Oxidation Behavior of Al-Ti-V-Cu-N Coatings Deposited by HIPIMS. Surf. Coat. Technol. 2022, 434, 128130. [Google Scholar] [CrossRef]
- Ren, Y.; Jia, J.; Cao, X.; Zhang, G.; Ding, Q. Effect of Ag Contents on the Microstructure and Tribological Behaviors of NbN–Ag Coatings at Elevated Temperatures. Vacuum 2022, 204, 111330. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, F.; Fu, Y.; Wang, Q.; Zhou, Z. Influence of Ag Target Current on the Structure and Tribological Properties of CrMoSiCN/Ag Coatings in Air and Water. Tribol. Int. 2021, 160, 107059. [Google Scholar] [CrossRef]
- Perea, D.; Bejarano, G. Development and Characterization of TiAlN (Ag, Cu) Nanocomposite Coatings Deposited by DC Magnetron Sputtering for Tribological Applications. Surf. Coat. Technol. 2020, 381, 125095. [Google Scholar] [CrossRef]
- Rajput, S.S.; Gangopadhyay, S.; Yaqub, T.B.; Cavaleiro, A.; Fernandes, F. Room and High Temperature Tribological Performance of CrAlN(Ag) Coatings: The Influence of Ag Additions. Surf. Coat. Technol. 2022, 450, 129011. [Google Scholar] [CrossRef]
- Cavaleiro, D.; Veeregowda, D.; Cavaleiro, A.; Carvalho, S.; Fernandes, F. High Temperature Tribological Behaviour of TiSiN(Ag) Films Deposited by HiPIMS in DOMS Mode. Surf. Coat. Technol. 2020, 399, 126176. [Google Scholar] [CrossRef]
- Fenker, M.; Balzer, M.; Kellner, S.; Polcar, T.; Richter, A.; Schmidl, F.; Vitu, T. Formation of Solid Lubricants during High Temperature Tribology of Silver-Doped Molybdenum Nitride Coatings Deposited by DcMS and HIPIMS. Coatings 2021, 11, 1415. [Google Scholar] [CrossRef]
- Liu, C.; Ju, H.; Xu, J.; Yu, L.; Zhao, Z.; Geng, Y.; Zhao, Y. Influence of Copper on the Compositions, Microstructure and Room and Elevated Temperature Tribological Properties of the Molybdenum Nitride Film. Surf. Coat. Technol. 2020, 395, 125811. [Google Scholar] [CrossRef]
- Fu, Y.; Li, H.; Chen, J.; Guo, H.; Wang, X. Microstructure, Mechanical and Tribological Properties of Arc Ion Plating NbN-Based Nanocomposite Films. Nanomaterials 2022, 12, 3909. [Google Scholar] [CrossRef]
- Xu, X.; Sun, J.; Su, F.; Li, Z.; Chen, Y.; Xu, Z. Microstructure and Tribological Performance of Adaptive MoN–Ag Nanocomposite Coatings with Various Ag Contents. Wear 2022, 488–489, 204170. [Google Scholar] [CrossRef]
- Lü, W.; Li, G.; Zhou, Y.; Liu, S.; Wang, K.; Wang, Q. Effect of High Hardness and Adhesion of Gradient TiAlSiN Coating on Cutting Performance of Titanium Alloy. J. Alloys Compd. 2020, 820, 153137. [Google Scholar] [CrossRef]
- Lim, H.P.; Jiang, Z.-T.; Gan, J.H.M.; Nayan, N.; Chee, F.P.; Soon, C.F.; Hassan, N.; Liew, W.Y.H. A Systematic Investigation of the Tribological Behaviour of Oxides Formed on AlSiTiN, CrAlTiN, and CrAlSiTiN Coatings. Wear 2022, 512–513, 204552. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, E.G.; Du, H.M.; Chen, Q.; Liang, D.D.; An, Q.; Zhou, Q. Effects of Annealing Temperature on the Microstructure, Mechanical and Tribological Properties of CrAlTiN Coatings. Surf. Coat. Technol. 2022, 449, 128887. [Google Scholar] [CrossRef]
- Tillmann, W.; Grisales, D.; Marin Tovar, C.; Contreras, E.; Apel, D.; Nienhaus, A.; Stangier, D.; Lopes Dias, N.F. Tribological Behaviour of Low Carbon-Containing TiAlCN Coatings Deposited by Hybrid (DCMS/HiPIMS) Technique. Tribol. Int. 2020, 151, 106528. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, F.; Xu, J.; Li, D.; Sun, S.; Gao, C.; Zhao, W.; Lang, W.; Liu, J.; Zuo, D. Effect of the Bias-Graded Increment on the Tribological and Electrochemical Corrosion Properties of DLC Films. Diam. Relat. Mater. 2022, 130, 109421. [Google Scholar] [CrossRef]
- Abedi, M.; Abdollah-zadeh, A.; Vicenzo, A.; Bestetti, M.; Movassagh-Alanagh, F.; Damerchi, E. A Comparative Study of the Mechanical and Tribological Properties of PECVD Single Layer and Compositionally Graded TiSiCN Coatings. Ceram. Int. 2019, 45, 21200–21207. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.Y.; Huang, J.W. Nanostructured AlTiSiN/CrVN/ZrN Coatings Synthesized by Cathodic Arc Deposition-Mechanical Properties and Cutting Performance. Surf. Coat. Technol. 2022, 442, 128424. [Google Scholar] [CrossRef]
- Carabillò, A.; Sordetti, F.; Querini, M.; Magnan, M.; Azzolini, O.; Fedrizzi, L.; Lanzutti, A. Tribological Optimization of Titanium-Based PVD Multilayer Hard Coatings Deposited on Steels Used for Cold Rolling Applications. Mater. Today Commun. 2023, 34, 105043. [Google Scholar] [CrossRef]
- Chen, S.N.; Yan, W.Q.; Liao, B.; Wu, X.Y.; Chen, L.; Ouyang, X.; Ouyang, X.P. Effect of Temperature on the Tribocorrosion and High-Temperature Tribological Behaviour of Strong Amorphization AlCrNiTiV High Entropy Alloy Film in a Multifactor Environment. Ceram. Int. 2022, 49, 6880–6890. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Zhao, Y.; Shi, X.; Wang, S.; Zhang, S. Super-Hard (MoSiTiVZr)Nx High-Entropy Nitride Coatings. J. Alloys Compd. 2022, 926, 166807. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, S.; Chen, Y.; Wu, S.; Xie, W.; Yan, W.; Wang, S.; Liao, B.; Zhang, S. Super-Hard and Anti-Corrosion (AlCrMoSiTi)Nx High Entropy Nitride Coatings by Multi-Arc Cathodic Vacuum Magnetic Filtration Deposition. Vacuum 2022, 195, 110685. [Google Scholar] [CrossRef]
- Bachani, S.K.; Wang, C.J.; Lou, B.S.; Chang, L.C.; Lee, J.W. Fabrication of TiZrNbTaFeN High-Entropy Alloys Coatings by HiPIMS: Effect of Nitrogen Flow Rate on the Microstructural Development, Mechanical and Tribological Performance, Electrical Properties and Corrosion Characteristics. J. Alloys Compd. 2021, 873, 159605. [Google Scholar] [CrossRef]
- Cui, P.; Li, W.; Liu, P.; Zhang, K.; Ma, F.; Chen, X.; Feng, R.; Liaw, P.K. Effects of Nitrogen Content on Microstructures and Mechanical Properties of (AlCrTiZrHf)N High-Entropy Alloy Nitride Films. J. Alloys Compd. 2020, 834, 155063. [Google Scholar] [CrossRef]
- Ren, B.; Zhao, R.F.; Zhang, G.P.; Liu, Z.X.; Cai, B.; Jiang, A.Y. Microstructure and Properties of the AlCrMoZrTi/(AlCrMoZrTi)N Multilayer High-Entropy Nitride Ceramics Films Deposited by Reactive RF Sputtering. Ceram. Int. 2022, 48, 16901–16911. [Google Scholar] [CrossRef]
- Lo, W.L.; Hsu, S.Y.; Lin, Y.C.; Tsai, S.Y.; Lai, Y.T.; Duh, J.G. Improvement of High Entropy Alloy Nitride Coatings (AlCrNbSiTiMo)N on Mechanical and High Temperature Tribological Properties by Tuning Substrate Bias. Surf. Coat. Technol. 2020, 401, 126247. [Google Scholar] [CrossRef]
- Zhang, X.; Pelenovich, V.; Liu, Y.; Ke, X.; Zhang, J.; Yang, B.; Ma, G.; Li, M.; Wang, X. Effect of Bias Voltages on Microstructure and Properties of (TiVCrNbSiTaBY)N High Entropy Alloy Nitride Coatings Deposited by RF Magnetron Sputtering. Vacuum 2022, 195, 110710. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, X.; Zhou, F. Comparison of Mechanical and Tribological Properties of CrBN Coatings Modified by Ni or Cu Incorporation. Friction 2022, 10, 516–529. [Google Scholar] [CrossRef]
- Zhu, Y.; Dong, M.; Li, J.; Wang, L. Wear Failure Mechanism of TiSiN Coating at Elevated Temperatures. Appl. Surf. Sci. 2019, 487, 349–355. [Google Scholar] [CrossRef]
- Guo, F.; Li, K.; Huang, X.; Xie, Z.; Gong, F. Understanding the Wear Failure Mechanism of TiAlSiCN Nanocomposite Coating at Evaluated Temperatures. Tribol. Int. 2021, 154, 106716. [Google Scholar] [CrossRef]
Coating | Deposition Method/Post Treatments | Thickness (µm) | Mechanical Properties (GPa) | Tribological Properties at HT | Major Outcomes | Ref. |
---|---|---|---|---|---|---|
Multicomponent and nanocomposite hard ceramic coatings fabricated using PVD techniques for HT tribological applications | ||||||
AlTiVCuN | HiPIMS | 1.0–1.6 | H: 34–41 GPa | µ: 0.5 k: 3.2 × 10−15 m3/Nm (600 °C) | Cu rich coating involved more outwards diffusion of Cu to form the lubricious CuO at HT | [67] |
W-DLC | Hybrid DCMS + HiPIMS | 1.7 | E: 200 GPa | µ: 0.1 k: 2 × 10−7 mm3/Nm (150 °C) | As a result of very compact morphology of nanocomposite coatings, detachment of larger hard W–C particles is prevented, resulting in low-friction and higher wear resistance | [68] |
Al2O3/ta-C | Lateral Arc with Central Sputtering and ALD for Al2O3 layer | (ta-C) and 200 nm (Al2O3 top layer) | -- | µ: 0.1 (500 °C) Wear Volume: 1.4 × 10−3 mm3 (500 °C) | The suppression of oxidation by a thin Al2O3 multifunctional layer improves the thermal stability and durability of the ta-C coating. | [69] |
(Cr, V)N | Cathodic Arc ion-plated | 4.5 | H: 24 GPa | µ: 0.28–0.37 Wear Volume: 1.4–12.9 × 10−5 mm3/Nm (700–900 °C) | Because of the formation of V-O phases, Cr0.58V0.14N0.28 coatings demonstrated superior tribological properties at 700–800 °C | [70] |
AlCrON, and α-(Al,Cr)2O3 | Cathodic Arc | 4.0 | H: 34.6 GPa E: 467 GPa (AlCrON) H: 26 GPa E: 446 GPa (α-(Al,Cr)2O3) | µ: 0.5 k: 150 × 10−17 m3/Nm (AlCrON at 800 °C) µ: 0.25 k: 10 × 10−17 m3/Nm (α-(Al,Cr)2O3 at 800 °C) | Superior tribological properties of the α-(Al,Cr)2O3 coating due to the nitrogen-free, stable alpha-alumina structure that inhibited HT oxidation and subsequent wear | [22] |
Cr-V-Al-C | Hybrid Arc and Magnetron Sputtering | 7.5 | H: ~22.5 GPa E: ~280 GPa | µ: 0.5 k: No measurable wear (900 °C) | The formation of a combined Cr2O3 and Al2O3 tribolayer can be favored by optimizing the solid solution content of V in Cr2AlC coating, leading to high hardness and HT tribological performance | [71] |
MoCuVN | HiPIMS | 2.1–2.4 | H: 19.0–15.5 GPa E: 393–316 GPa (with increasing N2 flow rate) | µ: 0.43–0.51 k: 3.1–13.5 × 10−8 mm3/Nm (400 °C) | At 400 °C, formation of mixed lubricious oxides of MoO3/CuMoO4 and V2O5 decreases the wear resistance compared to tests conducted at RT due to the loss of N and severe oxidation at HT | [72] |
Multilayer hard ceramic coatings fabricated using PVD techniques for HT tribological applications | ||||||
CrAlN/TiSiN | Arc Ion Plating | 6.8 | 2850 HV | µ: 0.6 k: 3.95 × 10−6 mm3/Nm (300 °C) | Coatings are highly stable at high temperatures, while the adhesive wear of the ball on the coating surface forms the Fe2O3 tribolayer | [73] |
TiAlSiN/VSiN | RF magnetron co-sputtering | 1.0–1.2 (10–40 nm bilayer periods) | H: 29 GPa E: 260 GPa | µ: 0.28 k: 7.01 × 10−6 mm3/Nm (700 °C) | Improved tribological properties due to improved mechanical properties and the formation of a self-lubricating V2O5 Magnéli phase at 700 °C | [74] |
CrMoN/SiNx | RF magnetron co-sputtering | 1.2 (1 nm SiNx and 10–200 nm CrMoN) | H: 27 GPa E: 200 GPa (for 100 nm CrMoN/1 nm SiNx) | µ: 0.22 k: 1.68 × 10−5 mm3/Nm (600 °C) | The optimal thickness of bilayer periods and laminated architecture for stress dispersal and deflection results in improved performance | [66] |
AlCrSiN/VN | Arc Ion Plating and Pulsed DC Sputtering | 3.0 (4.6 nm modulation period) | H: 30.7 GPa (Multilayer) H: 28 GPa (AlCrSiN) H: 20.5 GPa (VN) | µ: 0.26 (800 °C) k: 2.6 × 10−15 m3/Nm (600 °C) & 39.4 × 10−15 m3/Nm (800 °C) | Outwards diffusion pf V and Al to form V2O5 and AlVO4 phases results in low friction and increased wear resistance at HT | [65] |
AlCrN/TiAlSiN | Cathodic Arc | 2.2 | H: 38 GPa E: 463 GPa | µ: 0.45 (800 °C) k: 2.5 × 10−6 mm3/N m (800 °C) | Enhanced wear resistance is provided by the formation of a dense Al2O3 oxide lubricant layer on the wear tracks | [63] |
TiN-AlTiN/nACo-CrN/AlCrN-AlCrOAlTiCrN | Cathodic Arc | 3.6 | H: 36–41 GPa | µ: 0.45 (800 °C) | The formation of stable protective oxides ((Al,Cr)2O3) increases the wear resistance at 800 °C compared to 600 °C | [75] |
Coating and Dopants | Deposition Method/Post Treatments | Thickness (µm) | Mechanical Properties (GPa) | Tribological Properties at HT | Major Outcomes | Ref. |
---|---|---|---|---|---|---|
MoN–Ag (Ag: 0, 2.2, 7.9, 17.3 at%) | DC/RF magnetron sputtering | 3.6–4.4 | H: 14.4 GPa E: 232 GPa (for 2.2 at% of Ag) | µ: 0.27 (700 °C) k: 2.52 × 10−6 mm3/Nm (for 2.2 at% of Ag) | The formation of lubricating oxides (MoO3, Ag2MoO4, and Ag2Mo4O13) reduce the friction coefficient, but wear resistance decreases above 300 °C. | [108] |
TiSiN(Ag) (Ag: 0–17 at%) | HiPIMS | 2.2–2.8 | H: 20 GPa E: 218 GPa (for 6 at% of Ag) | µ: 0.5 k: no wear (600 °C) | At 600 °C, the tribolayer consists of superficial Ag and the adhesive material from the ball counterpart to form a stable protective layer, reducing friction and causing no noticeable wear. | [104] |
NbN–Ag (Ag: 0, 2.62, 15.83, 25.36 at%) | UBMS | 1.5–3.0 | H: 14 GPa E: 261 GPa (for 2.62 at% of Ag) | µ: 0.4 k: 3.24 × 10−5 mm3/Nm (for 15.83 at% (Ag) at 550 °C) | The reduction in friction and the wear rate at 550 °C for the Ag (15.83 at%) sample is due to the formation of tribo-induced compacted glaze tribolayer, which is primarily composed of Nb2O5 and AgNbO3. | [100] |
Al-Ti-V-Cu-N (Cu: 6.2, 8.0, 10.2, 10.7 and 11.7 at%) | HiPIMS | 1.1–1.5 | H: 35.2 GPa (for 6.2 at% of Cu) | µ: 0.45 (600 °C) k: 10−16 m3/Nm (600 °C) | The formation of predominant V2O5 and CuO lubricating oxide phases on worn surfaces results in low friction and wear at 600 °C. | [99] |
Mo(Cu)N (Cu: 0, 5.5, 7.5, 17.8 and 24.3 at%) | Magnetron Sputtering | 1.5 | H: 25 GPa E: 359 GPa (for 5.5 at% of Cu, i.e., 9.2% of Cu/(Cu and Mo)) | µ: 0.4 k: 3.5 × 10−5 mm3/N m (800 °C) | The formation of strong oxide phases, CuMoO4 and MoO3, at 600 °C results in low friction and wear resistance, whereas CuO predominated at 200 °C. | [106] |
TiAlN (Ag, Cu) (Ag and Cu: 0, 11, 16, 17 and 20 at%) | Magnetron Sputtering | 2.0 | H: 15.2 GPa E: 216 GPa (for 11 at% of Ag and Cu) H: 6.7 GPa E: 140 GPa (for 20 at% of Ag and Cu) | µ: 0.25 k: 7.7 × 10−5 mm3/N m(for 17 at% of Ag and Cu) | Friction and wear reduction were due to the solid lubrication effect of out-diffused Au-Cu nanoparticles up to 17 at% in TiAlN coatings | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devarajan, D.K.; Rangasamy, B.; Amirtharaj Mosas, K.K. State-of-the-Art Developments in Advanced Hard Ceramic Coatings Using PVD Techniques for High-Temperature Tribological Applications. Ceramics 2023, 6, 301-329. https://doi.org/10.3390/ceramics6010019
Devarajan DK, Rangasamy B, Amirtharaj Mosas KK. State-of-the-Art Developments in Advanced Hard Ceramic Coatings Using PVD Techniques for High-Temperature Tribological Applications. Ceramics. 2023; 6(1):301-329. https://doi.org/10.3390/ceramics6010019
Chicago/Turabian StyleDevarajan, Dinesh Kumar, Baskaran Rangasamy, and Kamalan Kirubaharan Amirtharaj Mosas. 2023. "State-of-the-Art Developments in Advanced Hard Ceramic Coatings Using PVD Techniques for High-Temperature Tribological Applications" Ceramics 6, no. 1: 301-329. https://doi.org/10.3390/ceramics6010019
APA StyleDevarajan, D. K., Rangasamy, B., & Amirtharaj Mosas, K. K. (2023). State-of-the-Art Developments in Advanced Hard Ceramic Coatings Using PVD Techniques for High-Temperature Tribological Applications. Ceramics, 6(1), 301-329. https://doi.org/10.3390/ceramics6010019