Properties of 2 mol% Yttria Stabilized Zirconia–Alumina–Cerium Hexaaluminate Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Mechanical Properties
3.3. Phase Composition and Calculation of Transformation Toughness
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Garvie, R.C.; Hannink, R.H.; Pascoe, R.T. Ceramic steel? Nature 1975, 258, 703–704. [Google Scholar] [CrossRef]
- Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C. Transformation Toughening in Zirconia-Containing Ceramics. J. Am. Ceram. Soc. 2000, 83, 461–487. [Google Scholar] [CrossRef]
- Kelly, P.M.; Francis Rose, L.R. The martensitic transformation in ceramics—Its role in transformation toughening. Prog. Mater. Sci. 2002, 47, 463–557. [Google Scholar] [CrossRef]
- Swain, M.V.; Rose, L.R.F. Strength Limitations of Transformation-Toughened Zirconia Alloys. J. Am. Ceram. Soc. 1986, 69, 511–518. [Google Scholar] [CrossRef]
- Ross, I.M.; Rainforth, W.M.; McComb, D.W.; Scott, A.J.; Brydson, R. The role of trace additions of alumina to yttria partially stabilized zirconia (Y-TZP). Scripta Materialia. 2001, 45, 653–660. [Google Scholar] [CrossRef]
- Tsukuma, K.; Ueda, K.; Shimada, K. Strength and Fracture Toughness of Isostatically Hot-Pressed Composites of Al2O3 and Y2O3-Partially-Stabilized ZrO2. J. Am. Ceram. Soc. 1985, 68, C4–C5. [Google Scholar] [CrossRef]
- Cutler, R.A.; Mayhew, R.J.; Prettiman, K.M.; Virkar, A. High-Toughness Ce-TZP/Al2O3 Ceramics with Improved Hardness and Strength. J. Am. Ceram. Soc. 1991, 74, 179–186. [Google Scholar] [CrossRef]
- Nawa, M.; Nakamoto, S.; Sekino, T.; Niihara, K. Tough and Strong Ce-TZP/Alumina Nanocomposites Doped with Titania. Ceram. Int. 1998, 24, 497–506. [Google Scholar] [CrossRef]
- Benzaid, R.; Chevalier, J.; Saâdaoui, M.; Fantozzi, G.; Nawa, M.; Diaz, L.A.; Torrecillas, R. Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia–alumina nanocomposite for medical applications. Biomaterials 2008, 29, 3636–3641. [Google Scholar] [CrossRef]
- Miura, M.; Hongoh, H.; Yogo, T.; Hirano, S.; Fujii, T. Formation of plate-like lanthanum-13-Aluminate crystal in Ce-TZP matrix. J. Mat. Sci. 1994, 29, 262–268. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Sakamoto, W.; Yogo, T.; Fujii, T.; Hirano, S. In situ formation of Ce-TZP/Ba-Hexaaluminate composites. J. Ceram. Soc. Jpn. 1999, 107, 814–819. [Google Scholar] [CrossRef] [Green Version]
- Tsai, J.F.; Chon, U.; Ramachandran, N.; Shetty, D.K. Transformation Plasticity and Toughening in CeO2-Partially-Stabilized Zirconia–Alumina (Ce-TZP/Al2O3) Composites Doped with MnO. J. Am. Ceram. Soc. 1992, 75, 1219–1238. [Google Scholar] [CrossRef]
- Kern, F.; Gadow, R. Influence of In-Situ Platelet Reinforcement on the Properties of Injection Moulded Alumina-Toughened Zirconia. J. Ceram. Sci. Technol. 2011, 2, 47–54. [Google Scholar]
- Kern, F. A comparison of microstructure and mechanical properties of 12Ce-TZP reinforced with alumina and in situ formed strontium- or lanthanum hexaaluminate precipitates. J. Eur. Ceram. Soc. 2014, 34, 413–423. [Google Scholar] [CrossRef]
- Gottwik, L.; Wippermann, A.; Kuntz, M.; Denkena, B. Effect of strontium hexaaluminate addition on the damage-tolerance of yttria-stabilized zirconia. Ceram. Int. 2017, 43, 15891–15898. [Google Scholar] [CrossRef]
- Tsukuma, K. Conversion from β-Ce2O3∙11 Al2O3 to α-Al2O3 in Tetragonal ZrO2 Matrix. J. Am. Ceram. Soc. 2000, 83, 3219–3221. [Google Scholar] [CrossRef]
- Evans, A.G.; He, M.Y.; Hutchinson, J.W. Interface Debonding and Fiber Cracking in Brittle Matrix Composites. J. Am. Ceram. Soc. 1989, 72, 2300–2303. [Google Scholar] [CrossRef]
- Schmid, C.; Lucchini, E.; Sbaizero, O.; Maschio, S. The Synthesis of Calcium or Strontium Hexaluminate Added ZTA Composite Ceramics. J. Eur. Ceram. Soc. 1999, 19, 1741–1746. [Google Scholar] [CrossRef]
- Lange, F.F. Transformation toughening—Part 3: Experimental Observations in the ZrO2-Y2O3-System. J. Mater. Sci. 1982, 17, 240–246. [Google Scholar] [CrossRef]
- Chen, P.L.; Chen, I.W. In-Situ Alumina/Aluminate Platelet Composites. J. Am. Ceram. Soc. 1992, 75, 2610–2612. [Google Scholar] [CrossRef] [Green Version]
- Kingery, D.; Bowen, H.K.; Uhlmann, R. Introduction to Ceramics; Wiley: New York, NY, USA, 1976; p. 785. [Google Scholar]
- Becher, P.F.; Hsueh, C.-H.; Angelini, P.; Tiegs, T.N. Toughening Behavior in Whisker-Reinforced Ceramic Matrix Composites. J. Am. Ceram. Soc. 1988, 71, 1050–1061. [Google Scholar] [CrossRef]
- Kern, F.; Reveron, H.; Chevalier, J.; Gadow, R. Mechanical behaviour of extremely tough TZP bioceramics. J. Mech. Behav. Biomater. 2018, 90, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Calado, J. Ceramic powder production with emulsion detonation synthesis. CFI/Ber. DKG 2016, 93, E32–E34. [Google Scholar]
- Kern, F. Effect of In Situ-Formed Cerium Hexaaluminate Precipitates on Properties of Alumina -24 Vol% Zirconia (1.4Y) Composites. J. Ceram. Sci. Technol. 2013, 4, 177–186. [Google Scholar]
- Chantikul, P.; Anstis, G.R.; Lawn, B.R.; Marshall, D.B. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength method. J. Am. Ceram. Soc. 1981, 64, 539–543. [Google Scholar] [CrossRef]
- Dransmann, G.W.; Steinbrech, R.W.; Pajares, A.; Guiberteau, F.; Dominguez-Rodriguez, A.; Heuer, A. Indentation Studies on Y2O3-Stabilized ZrO2: II, Toughness Determination from Stable Growth of Indentation-Induced Cracks. J. Am. Ceram. Soc. 1994, 77, 1194–1201. [Google Scholar] [CrossRef]
- De Aza, A.H.; Chevalier, J.; Fantozzi, G.; Schehl, M.; Torrecillas, R. Slow-Crack-Growth Behavior of Zirconia-Toughened Alumina Ceramics Processed by Different Methods. J. Am. Ceram. Soc. 2003, 86, 115–120. [Google Scholar] [CrossRef]
- Toraya, H.; Yoshimura, M.; Somiya, S. Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction. J. Am. Ceram. Soc. 1984, 67, C119–C121. [Google Scholar]
- Nakayama, S.; Maekawa, S.; Sato, T.; Masuda, Y.; Imai, S.; Sakamoto, M. Mechanical properties of ytterbia stabilized zirconia ceramics (Yb-TZP) fabricated from powders prepared by co-precipitation method. Ceram. Int. 2000, 26, 207–211. [Google Scholar] [CrossRef]
- Scott, H.G. Phase relationships in the zirconia-yttria system. J. Mater. Sci. 1975, 10, 1527–1535. [Google Scholar] [CrossRef]
- Kosmac, T.; Wagner, R.; Claussen, N. X-ray Determination of Transformation Depths in Ceramics Containing Tetragonal ZrO2. J. Am. Ceram. Soc. 1981, 64, C72–C73. [Google Scholar] [CrossRef]
- McMeeking, R.M.; Evans, A.G. Mechanics of Transformation-Toughening in Brittle Materials. J. Am. Ceram. Soc. 1982, 65, 242–246. [Google Scholar] [CrossRef]
- Kao, H.C.; Ho, F.Y.; Yang, C.C.; Wei, W.J. Surface machining of Fine-grain Y-TZP. J. Eur. Ceram. Soc. 2000, 20, 2447–2455. [Google Scholar] [CrossRef]
- Zhang, F.; Vanmeensel, K.; Inokoshi, M.; Batuk, M.; Hadermann, J.; van Meerbeek, B.; Naert, I.; Vleugels, J. 3Y-TZP ceramics with improved hydrothermal degradation resistance and fracture toughness. J. Eur. Ceram. Soc. 2014, 34, 2453–2463. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kern, F. Properties of 2 mol% Yttria Stabilized Zirconia–Alumina–Cerium Hexaaluminate Composites. Ceramics 2020, 3, 190-198. https://doi.org/10.3390/ceramics3020017
Kern F. Properties of 2 mol% Yttria Stabilized Zirconia–Alumina–Cerium Hexaaluminate Composites. Ceramics. 2020; 3(2):190-198. https://doi.org/10.3390/ceramics3020017
Chicago/Turabian StyleKern, Frank. 2020. "Properties of 2 mol% Yttria Stabilized Zirconia–Alumina–Cerium Hexaaluminate Composites" Ceramics 3, no. 2: 190-198. https://doi.org/10.3390/ceramics3020017
APA StyleKern, F. (2020). Properties of 2 mol% Yttria Stabilized Zirconia–Alumina–Cerium Hexaaluminate Composites. Ceramics, 3(2), 190-198. https://doi.org/10.3390/ceramics3020017