Simulating the Software Development Lifecycle: The Waterfall Model
Abstract
:1. Introduction
Our Contribution and the Remainder of this Paper
2. Background
2.1. The Software Development Lifecycle
2.2. The Waterfall Model
2.3. Motivation to Study the Waterfall Model
3. Materials and Methods
3.1. Assumptions
3.2. Zero-Wait Times
4. Results
5. Discussion
6. Conclusions
6.1. Implications
6.2. Limitations and Next Steps
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cerpa, N.; Verner, J.M. Why Did Your Project Fail? Commun. ACM 2009, 52, 130–134. [Google Scholar] [CrossRef]
- Kotowaroo, M.Y.; Sungkur, R.K. Success and Failure Factors Affecting Software Development Projects from IT Professionals’ Perspective. In Soft Computing for Security Applications: Proceedings of ICSCS 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 757–772. [Google Scholar]
- Bloch, M.; Blumberg, S.; Laartz, J. Delivering Large-Scale IT Projects on Time, on Budget, and on Value. Harv. Bus. Rev. 2012, 5, 2–7. [Google Scholar]
- Wu, W.W.; Rose, G.M.; Lyytinen, K. Managing Black Swan Information Technology Projects. In Proceedings of the 2011 44th Hawaii International Conference on System Sciences, Kauai, HI, USA, 4 January 2011; pp. 1–10. [Google Scholar]
- Charette, R.N. Why Software Fails [Software Failure]. IEEE Spectrum 2005, 42, 42–49. [Google Scholar] [CrossRef]
- Zykov, S. Software Development Crisis: Human-Related Factors’ Influence on Enterprise Agility. In Research Anthology on Recent Trends, Tools, and Implications of Computer Programming; IGI Global: Hershey, PA, USA, 2021; pp. 1145–1162. [Google Scholar]
- Kellner, M.I.; Madachy, R.J.; Raffo, D.M. Software Process Simulation Modeling: Why? What? How? J. Syst. Softw. 1999, 46, 91–105. [Google Scholar] [CrossRef]
- DeFranco, J.F.; Voas, J. Revisiting Software Metrology. Computer 2022, 55, 12–14. [Google Scholar] [CrossRef]
- Morawiec, P.; Sołtysik-Piorunkiewicz, A. Cloud Computing, Big Data, and Blockchain Technology Adoption in ERP Implementation Methodology. Sustainability 2022, 14, 3714. [Google Scholar] [CrossRef]
- The Standish Group, CHAOS Manifesto 2015, The Law of Diminishing Returns. Available online: https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf (accessed on 9 November 2023).
- Portman, H. Review Standish Group—CHAOS 2020: Beyond Infinity. Available online: https://hennyportman.wordpress.com/2021/01/06/review-standish-group-chaos-2020-beyond-infinity/ (accessed on 9 November 2023).
- Alves, J.L.; Ferreira, E.A.; de Nadae, J. Crisis and Risks in Engineering Project Management: A Review. Braz. J. Oper. Prod. Manag. 2021, 18, 1–17. [Google Scholar] [CrossRef]
- Middleton, P.; Sutton, J. The Way Out of the Software Crisis. In Lean Software Strategies; Productivity Press: New York, NY, USA, 2020; pp. 89–96. [Google Scholar]
- Alshamrani, A.; Bahattab, A. A Comparison between Three SDLC Models Waterfall Model, Spiral Model, and Incremental/Iterative Model. Int. J. Comput. Sci. Issues (IJCSI) 2015, 12, 106. [Google Scholar]
- Balaji, S.; Murugaiyan, M. WATEERFALLVs V-MODEL Vs AGILE: A COMPARATIVE STUDY ON SDLC. Int. J. Inf. Technol. Bus. Manag. 2012, 2, 26–30. [Google Scholar]
- Sommerville, I. Software Process Models. ACM Comput. Surv. (CSUR) 1996, 28, 269–271. [Google Scholar] [CrossRef]
- Sanchez, P.J. As Simple as Possible, but No Simpler: A Gentle Introduction to Simulation Modeling. In Proceedings of the 2006 Winter Simulation Conference, Monterey, CA, USA, 3–6 December 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 2–10. [Google Scholar]
- Pinho, T.M.; Coelho, J.P.; Boaventura-Cunha, J. Forest-Based Supply Chain Modelling Using the SimPy Simulation Framework. IFAC-PapersOnLine 2016, 49, 90–95. [Google Scholar] [CrossRef]
- Vasilecas, O.; Normantas, K.; Rusinaite, T.; Savickas, T.; Vysockis, T. Shared Resource Model for Allocating Resources to Activities in BP Simulation. In Proceedings of the Information and Software Technologies; Dregvaite, G., Damasevicius, R., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 218–229. [Google Scholar]
- Thind, S.; Karambir, A. Simulation Model for the Spiral Software Development Life Cycle. Int. J. Innov. Res. Comput. Commun. Eng. 2015, 3, 3823–3830. [Google Scholar]
- Bassil, Y. A Simulation Model for the Waterfall Software Development Life Cycle. arXiv 2012, arXiv:1205.6904. [Google Scholar]
- Cocco, L.; Mannaro, K.; Concas, G.; Marchesi, M. Simulating Kanban and Scrum vs. Waterfall with System Dynamics. In Proceedings of the International Conference on agile Software Development, Madrid, Spain, 10–13 May 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 117–131. [Google Scholar]
- Singh, A.; Kaur, P.J. A Simulation Model for Incremental Software Development Life Cycle Model. Int. J. Adv. Res. Comput. Sci. 2017, 8, 126–132. [Google Scholar] [CrossRef]
- Matloff, N. Introduction to Discrete-Event Simulation and the Simpy Language. Davis CA. Dept. Comput. Sci. Univ. Calif. at Davis 2008, 2, 1–33. [Google Scholar]
- Shylesh, S. A Study of Software Development Life Cycle Process Models. In Proceedings of the National Conference on Reinventing Opportunities in Management, IT, and Social Sciences, Washington, DC, USA, 14–15 December 2016; pp. 534–541. [Google Scholar]
- Sarker, I.H.; Faruque, F.; Hossen, U.; Rahman, A. A Survey of Software Development Process Models in Software Engineering. Int. J. Softw. Eng. Its Appl. 2015, 9, 55–70. [Google Scholar] [CrossRef]
- Ruparelia, N.B. Software Development Lifecycle Models. SIGSOFT Softw. Eng. Notes 2010, 35, 8–13. [Google Scholar] [CrossRef]
- Öztürk, V. Selection of Appropriate Software Development Life Cycle Using Fuzzy Logic. J. Intell. Fuzzy Syst. 2013, 25, 797–810. [Google Scholar] [CrossRef]
- Dawson, C.; Dawson, R. Software Development Process Models: A Technique for Evaluation and Decision-Making. Knowl. Process Manag. 2014, 21, 42–53. [Google Scholar] [CrossRef]
- Benington, H.D. Production of Large Computer Programs. In Proceedings of the 9th International Conference on Software Engineering; IEEE Computer Society Press: Washington, DC, USA, 1987; pp. 299–310. [Google Scholar]
- Angulo, A.A.R.; Yang, X.; Niyaz, Q.; Paheding, S.; Javaid, A.Y. A Secure Software Engineering Design Framework for Educational Purpose. In Proceedings of the 2022 IEEE International Conference on Electro Information Technology (eIT), Mankato, MN, USA, 19 May 2022; pp. 375–381. [Google Scholar]
- Dhaini, M.; Jaber, M.; Fakhereldine, A.; Hamdan, S.; Haraty, R.A. Green Computing Approaches-A Survey. Informatica 2021, 45, 1–12. [Google Scholar] [CrossRef]
- Navaei, M.; Tabrizi, N. Machine Learning in Software Development Life Cycle: A Comprehensive Review. ENASE 2022, 1, 344–354. [Google Scholar]
- Rastogi, V. Software Development Life Cycle Models-Comparison, Consequences. Int. J. Comput. Sci. Inf. Technol. 2015, 6, 168–172. [Google Scholar]
- Dennis, A.; Wixom, B.; Tegarden, D. Systems Analysis and Design: An Object-Oriented Approach with UML, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 1-118-80467-8. [Google Scholar]
- Weisert, C. Waterfall Methodology: There’s No Such Thing! Available online: https://www.idinews.com/waterfall.html (accessed on 17 December 2021).
- Petersen, K.; Wohlin, C.; Baca, D. The Waterfall Model in Large-Scale Development. In Proceedings of the Product-Focused Software Process Improvement; Bomarius, F., Oivo, M., Jaring, P., Abrahamsson, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 386–400. [Google Scholar]
- Royce, W.W. Managing the Development of Large Software Systems: Concepts and Techniques. In Proceedings of the 9th International Conference on Software Engineering; IEEE Computer Society Press: Monterey, CA, USA, 1987; pp. 328–338. [Google Scholar]
- Bell, T.E.; Thayer, T.A. Software Requirements: Are They Really a Problem? In Proceedings of the 2nd International Conference on Software Engineering, San Francisco, CA, USA, 13–15 October 1976; pp. 61–68. [Google Scholar]
- Paul, D.; Yeates, D.; Cadle, J.; Eva, M.; Hindle, K.; Rollaston, C.; Tudor, D. Business Analysis, 2nd ed.; British Informatics Society: Swindon, UK, 2010; ISBN 978-1-78017-006-0. [Google Scholar]
- Humphrey, W.S.; Kellner, M.I. Software Process Modeling: Principles of Entity Process Models. In Proceedings of the 11th International Conference on Software Engineering, Singapore, 11–15 April 1988; pp. 331–342. [Google Scholar]
- Andrei, B.-A.; Casu-Pop, A.-C.; Gheorghe, S.-C.; Boiangiu, C.-A. A Study on Using Waterfall and Agile Methods in Software Project Management. J. Inf. Syst. Oper. Manag. 2019, 13, 125–135. [Google Scholar]
- PMI Ahead of the Curve: Forging a Future-Focused Culture. Pulse of the Profession. Available online: https://www.pmi.org/learning/library/forging-future-focused-culture-11908 (accessed on 10 October 2023).
- Fagarasan, C.; Popa, O.; Pisla, A.; Cristea, C. Agile, Waterfall and Iterative Approach in Information Technology Projects. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1169, p. 012025. [Google Scholar]
- Bryar, C.; Carr, B. Have We Taken Agile Too Far? 2021. Available online: https://hbr.org/2021/04/have-we-taken-agile-too-far (accessed on 9 November 2023).
- Kirpitsas, I.K.; Pachidis, T.P. Evolution towards Hybrid Software Development Methods and Information Systems Audit Challenges. Software 2022, 1, 316–363. [Google Scholar] [CrossRef]
- Bhavsar, K.; Shah, V.; Gopalan, S. Scrumbanfall: An Agile Integration of Scrum and Kanban with Waterfall in Software Engineering. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2020, 9, 2075–2084. [Google Scholar] [CrossRef]
- Sommerville, I. Software Engineering, 9th ed.; Pearson: London, UK, 2011; p. 18, ISBN-10 137035152. [Google Scholar]
- Dennis, A.; Wixom, B.H.; Roth, R.M. Systems Analysis and Design, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-118-05762-9. [Google Scholar]
- Zhang, H.; Raffo, D.; Birkhöltzer, T.; Houston, D.; Madachy, R.; Münch, J.; Sutton, S.M., Jr. Software Process Simulation—At a Crossroads? J. Softw. Evol. Process 2014, 26, 923–928. [Google Scholar] [CrossRef]
- Ruiz, M.; Ramos, I.; Toro, M. A Dynamic Integrated Framework for Software Process Improvement. Softw. Qual. J. 2002, 10, 181–194. [Google Scholar] [CrossRef]
- Acuna, S.T.; De Antonio, A.; Ferre, X.; Maté, L.; López, M. The Software Process: Modeling, Evaluation and Improvement. In Handbook of Software Engineering and Knowledge Engineering: Volume I: Fundamentals; World Scientific: Singapore, 2001; pp. 193–237. [Google Scholar]
- Pall, G.A. Quality Process Management; Prentice-Hall: Englewood Cliffs, NJ, USA, 1987. [Google Scholar]
- Ruiz, M.; Ramos, I.; Toro, M. Software Process Dynamics: Modeling, Simulation and Improvement. In New Trends in Software Process Modelling; World Scientific: Singapore, 2006; pp. 21–56. [Google Scholar]
- Jørgensen, M. Do Agile Methods Work for Large Software Projects? In Agile Processes in Software Engineering and Extreme Programming, Proceedings of the 19th International Conference, Porto, Portugal, 21–25 May 2018; Garbajosa, J., Wang, X., Aguiar, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 179–190. [Google Scholar]
- Riley, L.A. Discrete-Event Simulation Optimization: A Review of Past Approaches and Propositions for Future Direction. In Proceedings of the 2013 Summer Computer Simulation Conference, Toronto, Canada, 7–10 July 2013; pp. 386–393. [Google Scholar]
- Zhang, H.; Jeffery, R.; Houston, D.; Huang, L.; Zhu, L. Impact of Process Simulation on Software Practice: An Initial Report. In Proceedings of the 33rd International Conference on Software Engineering, Honolulu, HI, USA, 21–28 May 2011; pp. 1046–1056. [Google Scholar]
- McHaney, R.; White, D.; Heilman, G.E. Simulation Project Success and Failure: Survey Findings. Simul. Gaming 2002, 33, 49–66. [Google Scholar] [CrossRef]
- Ali, N.B.; Petersen, K.; Wohlin, C. A Systematic Literature Review on the Industrial Use of Software Process Simulation. J. Syst. Softw. 2014, 97, 65–85. [Google Scholar] [CrossRef]
- Trivedi, P.; Sharma, A. A Comparative Study between Iterative Waterfall and Incremental Software Development Life Cycle Model for Optimizing the Resources Using Computer Simulation. In Proceedings of the 2013 2nd International Conference on Information Management in the Knowledge Economy, Chandigarh, India, 19–20 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 188–194. [Google Scholar]
- Brooks, F.P., Jr. The Mythical Man-Month (Anniversary Ed.); Addison-Wesley Longman Publishing Co., Inc.: Upper Saddle River, NJ, USA, 1995; ISBN 0-201-83595-9. [Google Scholar]
- Martin, A. The Design and Evolution of a Simulation/Game for Teaching Information Systems Development. Simul. Gaming 2000, 31, 445–463. [Google Scholar] [CrossRef]
Phase | Definition |
---|---|
Requirements analysis and definition | “The system’s services, constraints, and goals are established by consultation with system users. They are then defined in detail and serve as a system specification” [48]. |
System and software design | “The systems design process allocates the requirements to either hardware or software systems by establishing an overall system architecture. Software design involves identifying and describing the fundamental software system abstractions and their relationships” [48]. |
Implementation and unit testing | “During this stage, the software design is realized as a set of programs or program units. Unit testing involves verifying that each unit meets its specification” [48]. |
Integration and systems testing | “The individual program units or programs are integrated and tested as a complete system to ensure that the software requirements have been met. After testing, the software system is delivered to the customer” [48]. |
Operation and maintenance | “Normally (although not necessarily), this is the longest life cycle phase. The system is installed and put into practical use. Maintenance involves correcting errors which were not discovered in earlier stages of the life cycle, improving the implementation of system units and enhancing the system’s services as new requirements are discovered” [48]. |
Category | Quantity |
---|---|
Analyst(s) | 5 |
Designer(s) | 5 |
Programmer(s) | 10 |
Tester(s) | 20 |
Maintenance personnel | 5 |
Role | Small | Medium | Large |
---|---|---|---|
Analyst(s) | 1 | 2 | 5 |
Designer(s) | 1 | 2 | 5 |
Programmer(s) | 2 | 4 | 10 |
Tester(s) | 2 | 6 | 20 |
Maintenance personnel | 1 | 2 | 5 |
Phase | Lower | Upper |
---|---|---|
Analysis | 3 | 5 |
Design | 5 | 10 |
Implementation | 15 | 20 |
Testing | 5 | 10 |
Maintenance | 1 | 3 |
Phase | Small | Medium | Large |
---|---|---|---|
Analysis | - | - | - |
Design | 10% | 20% | 30% |
Implementation | 10% | 20% | 30% |
Testing | 10% | 20% | 30% |
Maintenance | 10% | 20% | 30% |
Phase | Resource | Number of Delays | Mean Wait Time for Resource | ||||
---|---|---|---|---|---|---|---|
Small | Medium | Large | Small | Medium | Large | ||
Analysis | Analyst(s) | 1.000 | 1.000 | 5.000 | 0.010 | 0.069 | 0.388 |
Design | Designer(s) | 6.000 | 8.000 | 17.000 | 0.525 | 0.380 | 1.030 |
Implementation | Programmer(s) | 21.000 | 26.000 | 34.000 | 5.344 | 7.422 | 9.707 |
Testing | Tester(s) | 2.000 | 2.000 | 10.000 | 0.111 | 0.120 | 0.796 |
Maintenance | Maintenance personnel | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
All phases | All resources | 30.000 | 37.000 | 66.000 | 1.250 | 1.799 | 2.728 |
Phase | Resource | Scenario 1 (Intuition) | Scenario 2 (Zero-Wait) |
---|---|---|---|
Analysis | Analyst(s) | 5 | 15 |
Design | Designer(s) | 5 | 18 |
Implementation | Programmer(s) | 10 | 38 |
Testing | Tester(s) | 20 | 49 |
Maintenance | Maintenance personnel | 5 | 10 |
Phase | Small | Medium | Large | All Sizes | |||||
---|---|---|---|---|---|---|---|---|---|
Scenario | Scenario | Scenario | Scenario | ||||||
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | ||
Analysis | Count | 1.000 | 0.000 | 1.000 | 0.000 | 5.000 | 0.000 | 7.000 | 0.000 |
Max Wait | 0.509 | 0.000 | 2.979 | 0.000 | 4.707 | 0.000 | 4.707 | 0.000 | |
Mean Wait | 0.010 | 0.000 | 0.069 | 0.000 | 0.388 | 0.000 | 0.143 | 0.000 | |
Std. Dev. | 0.072 | 0.000 | 0.454 | 0.000 | 1.091 | 0.000 | 0.668 | 0.000 | |
Design | Count | 6.000 | 0.000 | 8.000 | 0.000 | 17.000 | 0.000 | 31.000 | 0.000 |
Max Wait | 8.977 | 0.000 | 6.000 | 0.000 | 8.059 | 0.000 | 8.977 | 0.000 | |
Mean Wait | 0.525 | 0.000 | 0.380 | 0.000 | 1.030 | 0.000 | 0.645 | 0.000 | |
Std. Dev. | 1.754 | 0.000 | 1.124 | 0.000 | 1.989 | 0.000 | 1.669 | 0.000 | |
Implementation | Count | 21.000 | 0.000 | 26.000 | 0.000 | 34.000 | 0.000 | 81.000 | 0.000 |
Max Wait | 42.000 | 0.000 | 29.000 | 0.000 | 46.396 | 0.000 | 46.396 | 0.000 | |
Mean Wait | 5.344 | 0.000 | 7.422 | 0.000 | 9.707 | 0.000 | 7.490 | 0.000 | |
Std. Dev. | 9.482 | 0.000 | 9.897 | 0.000 | 11.478 | 0.000 | 10.407 | 0.000 | |
Testing | Count | 2.000 | 0.000 | 2.000 | 0.000 | 10.000 | 0.000 | 14.000 | 0.000 |
Max Wait | 4.000 | 0.000 | 3.000 | 0.000 | 8.000 | 0.000 | 8.000 | 0.000 | |
Mean Wait | 0.111 | 0.000 | 0.120 | 0.000 | 0.796 | 0.000 | 0.333 | 0.000 | |
Std. Dev. | 0.604 | 0.000 | 0.594 | 0.000 | 1.989 | 0.000 | 1.262 | 0.000 | |
Maintenance | Count | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Max Wait | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Mean Wait | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Std. Dev. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Across all phases | Count | 30.000 | 0.000 | 37.000 | 0.000 | 66.000 | 0.000 | 133.000 | 0.000 |
Max Wait | 42.000 | 0.000 | 29.000 | 0.000 | 46.396 | 0.000 | 46.396 | 0.000 | |
Mean Wait | 1.250 | 0.000 | 1.799 | 0.000 | 2.728 | 0.000 | 1.901 | 0.000 | |
Std. Dev. | 4.870 | 0.000 | 5.605 | 0.000 | 6.841 | 0.000 | 5.819 | 0.000 |
Small | Medium | Large | All Sizes | |||||
---|---|---|---|---|---|---|---|---|
Scenario | Scenario | Scenario | Scenario | |||||
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
Min | 32.000 | 34.000 | 41.000 | 36.000 | 39.000 | 33.000 | 32.000 | 33.000 |
Max | 107.141 | 106.000 | 170.142 | 112.000 | 303.000 | 168.000 | 303.000 | 168.000 |
Mean | 49.995 | 47.298 | 81.944 | 59.950 | 119.643 | 80.827 | 75.222 | 57.540 |
Std. Dev. | 17.964 | 15.729 | 38.671 | 25.372 | 65.704 | 40.559 | 47.682 | 28.576 |
Phase | Small | Medium | Large | All Sizes | |||||
---|---|---|---|---|---|---|---|---|---|
Scenario | Scenario | Scenario | Scenario | ||||||
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | ||
Analysis | Min | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 |
Max | 5.509 | 5.000 | 6.979 | 5.000 | 8.189 | 5.000 | 8.189 | 5.000 | |
Mean | 3.890 | 4.095 | 4.093 | 4.083 | 4.313 | 3.975 | 4.083 | 4.058 | |
Std. Dev. | 0.710 | 0.640 | 0.866 | 0.732 | 1.376 | 0.620 | 1.008 | 0.657 | |
Design | Min | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 |
Max | 15.541 | 10.000 | 15.000 | 10.000 | 18.059 | 10.000 | 18.059 | 10.000 | |
Mean | 7.858 | 7.671 | 8.200 | 7.357 | 8.674 | 7.560 | 8.255 | 7.558 | |
Std. Dev. | 2.328 | 1.501 | 1.936 | 1.620 | 2.727 | 1.527 | 2.359 | 1.536 | |
Implementation | Min | 15.000 | 15.000 | 15.000 | 15.000 | 15.000 | 15.000 | 15.000 | 15.000 |
Max | 61.000 | 20.000 | 48.000 | 19.000 | 62.396 | 20.000 | 62.396 | 20.000 | |
Mean | 22.398 | 17.458 | 24.668 | 17.207 | 27.125 | 17.760 | 24.730 | 17.510 | |
Std. Dev. | 9.519 | 1.383 | 9.873 | 1.373 | 11.429 | 1.546 | 10.419 | 1.442 | |
Testing | Min | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 |
Max | 10.000 | 10.000 | 10.000 | 10.000 | 16.000 | 10.000 | 16.000 | 10.000 | |
Mean | 7.278 | 7.433 | 7.540 | 7.500 | 7.980 | 7.320 | 7.588 | 7.406 | |
Std. Dev. | 1.406 | 1.373 | 1.541 | 1.703 | 2.537 | 1.596 | 1.890 | 1.507 | |
Maintenance | Min | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Max | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | |
Mean | 2.120 | 1.984 | 1.929 | 2.130 | 1.857 | 2.061 | 1.984 | 2.034 | |
Std. Dev. | 0.594 | 0.713 | 0.745 | 0.626 | 0.648 | 0.659 | 0.667 | 0.679 | |
Across all phases | Min | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Max | 61.000 | 20.000 | 3.000 | 19.000 | 62.396 | 20.000 | 62.396 | 20.000 | |
Mean | 8.934 | 8.000 | 10.041 | 7.686 | 11.059 | 8.336 | 9.976 | 8.036 | |
Std. Dev. | 8.539 | 5.497 | 9.523 | 5.125 | 10.804 | 5.602 | 9.654 | 5.449 |
Phase | Small | Medium | Large | All Sizes | |||||
---|---|---|---|---|---|---|---|---|---|
Scenario | Scenario | Scenario | Scenario | ||||||
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | ||
Design | # of failed phases | 3.000 | 6.000 | 12.000 | 16.000 | 18.000 | 17.000 | 33.000 | 39.000 |
# of phases | 54.000 | 73.000 | 61.000 | 42.000 | 59.000 | 50.000 | 174.000 | 165.000 | |
Percentage | 5.556 | 8.219 | 19.672 | 38.095 | 30.508 | 34.000 | 18.966 | 23.636 | |
Implementation | # of failed phases | 4.000 | 10.000 | 18.000 | 6.000 | 19.000 | 10.000 | 41.000 | 26.000 |
# of phases | 55.000 | 72.000 | 57.000 | 29.000 | 55.000 | 50.000 | 167.000 | 151.000 | |
Percentage | 7.273 | 13.889 | 31.579 | 20.690 | 34.545 | 20.000 | 24.551 | 17.219 | |
Testing | # of failed phases | 4.000 | 5.000 | 8.000 | 3.000 | 14.000 | 17.000 | 26.000 | 25.000 |
# of phases | 54.000 | 67.000 | 50.000 | 26.000 | 49.000 | 50.000 | 153.000 | 143.000 | |
Percentage | 7.407 | 7.463 | 16.000 | 11.538 | 28.571 | 34.000 | 16.993 | 17.483 | |
Maintenance | # of failed phases | 3.000 | 5.000 | 11.000 | 3.000 | 13.000 | 10.000 | 27.000 | 18.000 |
# of phases | 50.000 | 62.000 | 42.000 | 23.000 | 35.000 | 33.000 | 127.000 | 118.000 | |
Percentage (%) | 6.000 | 8.065 | 26.190 | 13.043 | 37.143 | 30.303 | 21.260 | 15.254 | |
All phases | # of failed phases | 14.000 | 26.000 | 49.000 | 28.000 | 64.000 | 54.000 | 127.000 | 108.000 |
# of phases | 263.000 | 337.000 | 253.000 | 156.000 | 238.000 | 223.000 | 754.000 | 716.000 | |
Percentage (%) | 5.323 | 7.715 | 19.368 | 17.949 | 26.891 | 24.215 | 16.844 | 15.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saravanos, A.; Curinga, M.X. Simulating the Software Development Lifecycle: The Waterfall Model. Appl. Syst. Innov. 2023, 6, 108. https://doi.org/10.3390/asi6060108
Saravanos A, Curinga MX. Simulating the Software Development Lifecycle: The Waterfall Model. Applied System Innovation. 2023; 6(6):108. https://doi.org/10.3390/asi6060108
Chicago/Turabian StyleSaravanos, Antonios, and Matthew X. Curinga. 2023. "Simulating the Software Development Lifecycle: The Waterfall Model" Applied System Innovation 6, no. 6: 108. https://doi.org/10.3390/asi6060108
APA StyleSaravanos, A., & Curinga, M. X. (2023). Simulating the Software Development Lifecycle: The Waterfall Model. Applied System Innovation, 6(6), 108. https://doi.org/10.3390/asi6060108