# Photovoltaic Solar Cells: A Review

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Solar Cells

#### 2.1. The Working Principle of PV Cells

- Absorption of photons in a p-n junction electronic semiconductor to generate the charge carriers (electron-hole pairs). The absorption of a photon with energy (E = hυ) higher than the gap energy ‘E
_{g}’ of the doped semiconductor material means that its energy is used to excite an electron from the valence band ‘Eυ’ to the conduction band ‘E_{c}’ leaving a void (hole) at the valance level. Additional kinetic energy is given to the electron or hole by the excess photon energy (hυ–hυ_{0}). ‘hυ_{0}′ is the minimum energy or work function of the semiconductor required to generate an electron-hole pair. The work function here represents the energy gap. The excess energy is dissipated as heat in the semiconductor [21,22]. - Consequent separation of the light-generated charge carriers. In an external solar circuit, the holes can flow away from the junction through the p-region, and electrons can flow out across the n-region and pass through the circuit before they recombine with the holes.
- Finally, the separated electrons can be used to drive an electric circuit. After the electrons passed through the circuit, they will recombine with the holes.

#### 2.2. Solar Cell Panels

#### 2.3. Components of Solar Power System

#### 2.4. p-n Junction Solar Cell

#### 2.4.1. Formation of the Depletion Region

_{diff}’ and a depleted area of charge carriers, referred to as the depletion region or space charge region. All electrons and holes are swept out of the depletion region by a generated electric field, which prevents any additional flow of the charge carriers [25], as shown Figure 3 below.

_{diff}’ as a result of the concentration difference and drift current ‘I

_{drift}’ as a result of the generated field at the junction [26]. The diffusion current of electrons ‘I

_{n-diff}’ is expressed by:

_{drift}’ is generated, which is opposite to the ‘I

_{diff}’ [27].

_{n-drift}’ is given by:

_{n}’ is the electron’s mobility, ‘E’ is the electric field in the depletion region, and ‘υ

_{dn}’ is the drift velocity of electrons.

_{p-drift}’ due to drift of holes is expressed as:

_{p}’ is the holes mobility and ‘υ

_{dp}’ is the average drift velocity of holes.

_{drift}’ due to drift of holes and electrons is as follows:

_{drift}’ and ‘I

_{diff}’ are balanced at the state of equilibrium. This leads to the Einstein relation:

#### 2.4.2. p-n Junction Solar Cell under Applied Voltage

_{d}’ is the diode current as the mobile carriers move through the junction; ‘I

_{0}′ is the saturation diode current in the depletion area at room temperature ‘T’, 300 K; ‘V’ is the external voltage; k: Boltzmann’s constant, 1.3805 × 10

^{−23}J/K, and ‘e’ is the electron charge, 1.60217657 × 10

^{−19}coulombs [30].

#### 2.4.3. PV Cell under Illumination

^{−}and h

^{+}). The electrons move out of the n-area to the metal contacts across the negative contact then through the load. Next, the electrons move back into the positive contact and finally to the p-area where they can recombine with holes, as shown in Figure 5.

_{d}’ and photocurrent ‘I

_{ph}’ [25], which is expressed as:

- The net flow of the electrons and holes in a p-n junction semiconductor under equilibrium conditions will generate two currents: ‘I
_{diff}’ and ‘I_{drift}’. These currents balance and cancel each other at the equilibrium state. - If an external source is deployed to the p-n junction, the generated current is the diode current ‘I
_{d}’. - Under illumination, the p-n junction will present another current called light or photocurrent ‘I
_{ph}’.

_{s}’ created due to the ohmic contact in the front surface and shunt resistance ‘R

_{sh}’ due to leakage current. Therefore, for a practical solar cell, the equivalent circuit includes ‘R

_{sh}’ added in parallel with the diode and ‘R

_{s}’ added in series with the load as given below, Figure 6 [31,32,33].

#### 2.5. I-V and P-V Characteristics

- Short-circuit current density ‘Isc’ occurs at (R = 0 and V = 0)
- Open-circuit voltage ‘Voc’ (no-load, I = 0 and R = ∞)
- Fill factor ‘FF’ that represents the ratio of ‘Pmax’ to the electrical output of ‘Voc’ and ‘Isc’

#### 2.6. Design Considerations

^{13}cm

^{−3}. The p-i-n structure offers carriers confinement in the intermediate undoped layer, providing a higher output current. In the forward bias, both types of carriers are injected into the intrinsic layer, leading to an increase in the carriers’ density and consequently the output current. The direct and flexible bandgap of the p-i-n double heterostructures offers a unique opportunity to develop highly efficient solar cells [44,45,46]. An experimental work by [47] focused on developing a p-i-n PV model with the compound materials AlGaInP/AlGaAs. The cell recorded the highest conversion efficiency of 51.50% under the AM 1.5 standard.

_{d}’ and acceptor atoms ‘N

_{a}’ affects the width of the depletion region. Moreover, adding some elements by alloying affects the physical properties of the employed materials [49].

#### 2.7. Materials Employed in PV Cells

#### 2.7.1. III-V PV Gallium Arsenide

#### 2.7.2. Future Trends

#### 2.8. Challenges in Solar Cells

## 3. Simulation of Solar Cells and Modules

#### 3.1. Simulation of Solar Cells by MATLAB/Simulink

_{ph}’ according to the following equation:

_{i}’ is the temperature coefficient of ‘Isc’; T: operating temperature (K); ‘G’: solar insolation representing a full-sunlight condition as the illumination of sunlight varies widely in intensity and spectrum [96].

_{rs}’ as follows:

_{s}’ is the number of cells connected in series and ‘n’ is the ideality factor of the diode.

_{0}′ varies with the cell temperature, which is expressed by:

_{n}’ is the nominal temperature (298.15 K).

_{sh}’ is simulated by [97]:

_{p}’ is the number of cells connected in parallel.

_{s}’ and ‘R

_{sh}’. For ideal PV performance, ‘R

_{sh}’ must be as high as possible while ‘R

_{s}’ must be as low as possible [94], referring to Figure 10.

#### 3.2. Simulation of Solar Cells by COMSOL/Multiphysics

- Creating a user-defined, spatially dependent variable for the generation rate, using an integral expression involving the solar radiation ‘F(λ)’, which is used to find the rate of photon generation ‘ϕ(λ)’.

- 2.
- Create the geometry.
- 3.
- Define the materials.
- 4.
- Determine the uniform bulk and surface as well as the doping junction depth.
- 5.
- Boundary selection for doping profiles and metal contacts.
- 6.
- The Shockley–Read–Hall model (SRH) is employed using the feature of trap-assisted recombination for the uniform bulk doping by the analytic doping feature and surface doping by the geometric doping feature.
- 7.

## 4. Summary and Outlook

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Awasthi, A.; Shukla, A.K.; Murali Manohar, S.R.; Dondariya, C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking technology in solar PV system. Energy Rep.
**2020**, 6, 392–405. [Google Scholar] [CrossRef] - Al-Ezzi, A. The market of solar panels in the United Kingdom. Appl. Sol. Energy
**2017**, 53, 78–84. [Google Scholar] [CrossRef] - Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater.
**2019**, 4, 269–285. [Google Scholar] [CrossRef] - Mohammad Bagher, A. Types of Solar Cells and Application. Am. J. Opt. Photonics
**2015**, 3, 94–113. [Google Scholar] [CrossRef] [Green Version] - Xing, Y.; Han, P.; Wang, S.; Liang, P.; Lou, S.; Zhang, Y.; Hu, S.; Zhu, H.; Zhao, C.; Mi, Y. A review of concentrator silicon solar cells. Renew. Sustain. Energy Rev.
**2015**, 51, 1697–1708. [Google Scholar] [CrossRef] - Rathore, N.; Panwar, N.L.; Yettou, F.; Gama, A. A comprehensive review of different types of solar photovoltaic cells and their applications. Int. J. Ambient Energy
**2019**, 1–18. [Google Scholar] [CrossRef] - Efaz, E.T.; Rhaman, M.M.; Imam, S.A.; Bashar, K.L.; Kabir, F.; Mourtaza, M.E.; Sakib, S.N.; Mozahid, F.A. A review of primary technologies of thin-film solar cells. Eng. Res. Express
**2021**, 3, 032001. [Google Scholar] [CrossRef] - Gray, J.L. The Physics of the Solar Cell. In Handbook of Photovoltaic Science and Engineering; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 82–129. [Google Scholar]
- Almosni, S.; Delamarre, A.; Jehl, Z.; Suchet, D.; Cojocaru, L.; Giteau, M.; Behaghel, B.; Julian, A.; Ibrahim, C.; Tatry, L.; et al. Material challenges for solar cells in the twenty-first century: Directions in emerging technologies. Sci. Technol. Adv. Mater.
**2018**, 19, 336–369. [Google Scholar] [CrossRef] [PubMed] - Shah, D.K.; KC, D.; Muddassir, M.; Akhtar, M.S.; Kim, C.Y.; Yang, O.B. A simulation approach for investigating the performances of cadmium telluride solar cells using doping concentrations, carrier lifetimes, thickness of layers, and band gaps. Sol. Energy
**2021**, 216, 259–265. [Google Scholar] [CrossRef] - Physics of Semiconductor Devices. Mater. Today
**2003**, 6, 38. [CrossRef] - Torchynska, T.V. III-V material solar cells for space application. Semicond. Phys. Quantum Electron. Optoelectron.
**2002**, 5, 63–70. [Google Scholar] [CrossRef] [Green Version] - Gruginskie, N.; van Laar, S.C.W.; Bauhuis, G.; Mulder, P.; van Eerden, M.; Vlieg, E.; Schermer, J.J. Increased performance of thin-film GaAs solar cells by rear contact/mirror patterning. Thin Solid Films
**2018**, 660, 10–18. [Google Scholar] [CrossRef] - Angadi, R.V. A Review on Different Types of Materials Employed in Solar Photovoltaic Panel. Int. J. Eng. Res. Technol.
**2019**, 7, 1–5. [Google Scholar] - Neamen, D.A. Semiconductor Physics and Devices: Basic Principles; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Smith, R.P.; Hwang, A.A.-C.; Beetz, T.; Helgren, E. Introduction to semiconductor processing: Fabrication and characterization of p-n junction silicon solar cells. Am. J. Phys.
**2018**, 86, 740–746. [Google Scholar] [CrossRef] [Green Version] - Seeger, K. Semiconductor Physics; Springer Science & Business: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Smets, A.H.M.; Jager, K.; Isabella, O.; van Swaaij, R.A.; Zeman, M. Solar Cell Parameters and Equivalent Circuit. Sol. Energy Phys. Eng. Photovolt. Convers. Technol. Syst.
**2016**, 113–121. [Google Scholar] - Sze, S.M.; Ng, K.K. Photodetectors and Solar Cells. In Physics of Semiconductor Devices; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 663–742. [Google Scholar]
- Sharma, D.; Mehra, R.; Raj, B. Comparative analysis of photovoltaic technologies for high efficiency solar cell design. Superlattices Microstruct.
**2021**, 153, 106861. [Google Scholar] [CrossRef] - Zhang, C.; Honsberg, C.; Faleev, N.; Goodnick, S. High Efficiency GaAs-Based Solar Cells Simulation and Fabrication; Arizona State University: Phoenix, AZ, USA, 2014. [Google Scholar]
- Radziemska, E. Thermal performance of Si and GaAs based solar cells and modules: A review. Prog. Energy Combust. Sci.
**2003**, 29, 407–424. [Google Scholar] [CrossRef] - Floyd, T.L. Electronic Devices, 9th ed.; Pearson: London, UK, 2011. [Google Scholar]
- Arefeen, S.; Dallas, T. Low-cost racking for solar photovoltaic systems with renewable tensegrity structures. Sol. Energy
**2021**, 224, 798–807. [Google Scholar] [CrossRef] - Wang, F.; Liu, X.-K.; Gao, F. Fundamentals of Solar Cells and Light-Emitting Diodes. In Advanced Nanomaterials for Solar Cells and Light Emitting Diodes; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Willardson, R.K.; Beer, A.C. Semiconductors and Semimetals. In Semiconductors and Semimetals; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Padmanabhan, B. Modeling of Solar Cells; Arizona State University: Phoenix, AZ, USA, 2008. [Google Scholar]
- Grundmann, M. The Physics of Semiconductors; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Please, C.P. An Analysis of Semiconductor P-N Junctions. 1982. Available online: http://imamat.oxfordjournals.org/ (accessed on 9 September 2021).
- Poole, C. Depletion Region Width Microwave Semiconductor Materials and Diodes. 2016. Available online: https://www.sciencedirect.com/topics/engineering/depletion-region-width (accessed on 9 September 2021).
- Shishkin, I.A.; Lizunkova, D.A.; Latukhina, N.V. Simulation of current-voltage characteristics and power-voltage characteristics of «space» solar cells based porous silicon in the Comsol Multiphysics package. J. Phys. Conf. Ser.
**2019**, 1410, 012096. [Google Scholar] [CrossRef] - Loulou, M.; Turkestan, M.K.A.; Brahmi, N.; Abdelkrim, M. Current dependence of series and shunt resistances of solar cells. In Proceedings of the 2018 9th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 20–22 March 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Liang, K.; Ai, D.; Zhang, H.; Zhao, Y.; Zhang, Y.; Chen, H. Experimental performance analysis of the concentrated crystalline silicon solar cell—slicing cell. Sol. Energy
**2021**, 224, 1008–1016. [Google Scholar] [CrossRef] - Saravanan, S.; Krishna Teja, T.; Dubey, R.S.; Kalainathan, S. Design and analysis of GaAs thin film solar cell using an efficient light trapping bottom structure. Mater. Today Proc.
**2016**, 3, 2463–2467. [Google Scholar] [CrossRef] - Dzimano, G. Modeling of Photovoltaic Systems; Ohio State University: Columbus, OH, USA, 2008. [Google Scholar]
- Hamaguchi, C. Basic Semiconductor Physics; Springer-Verlag: Berlin, Germany, 2010; Volume 9. [Google Scholar] [CrossRef]
- Abbassi, R.; Abbassi, A.; Jemli, M.; Chebbi, S. Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches. Renew. Sustain. Energy Rev.
**2018**, 90, 453–474. [Google Scholar] [CrossRef] - Zekry, A.; Shaker, A.; Salem, M. Solar Cells and Arrays: Principles, Analysis, and Design; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1. [Google Scholar]
- Ali, K.; Khalid, A.; Ahmad, M.R.; Khan, H.M.; Ali, I.; Sharma, S.K. Multi-junction (III–V) Solar Cells: From Basics to Advanced Materials Choices. In Solar Cells; Springer International Publishing: Cham, Switzerland, 2020; pp. 325–350. [Google Scholar]
- Moon, S.; Kim, K.; Kim, Y.; Heo, J.; Lee, J. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep.
**2016**, 6, 30107. [Google Scholar] [CrossRef] - Kayes, B.M.; Nie, H.; Twist, R.; Spruytte, S.G.; Reinhardt, F.; Kizilyalli, I.C.; Higashi, G.S. 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, DC, USA, 19–24 June 2011; pp. 000004–000008. [Google Scholar] [CrossRef]
- Yamaguchi, M. III-V compound multi-junction solar cells: Present and future. Sol. Energy Mater. Sol. Cells
**2003**, 75, 261–269. [Google Scholar] [CrossRef] - Verma, A.; Pethe, A. Modelling and Analysis of Multi-Junction Photovoltaic Cells. In Proceedings of the 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020. [Google Scholar] [CrossRef]
- Hossain, J. Design and simulation of double-heterojunction solar cells based on Si and GaAs wafers. J. Phys. Commun.
**2021**, 5, 085008. [Google Scholar] [CrossRef] - Imran, A.; Sulaman, M.; Song, Y.; Eric, D.; Zahid, M.N.; Yousaf, M.; Saleem, M.I.; Li, M.; Li, D. Modeling and simulation of high-efficiency GaAs PIN solar cells. J. Comput. Electron.
**2021**, 20, 310–316. [Google Scholar] [CrossRef] - Milanova, M.; Donchev, V.; Cheetham, K.J.; Cao, Z.; Sandall, I.; Piana, G.M.; Hutter, O.S.; Durose, K.; Mumtaz, A. Single-junction solar cells based on p-i-n GaAsSbN heterostructures grown by liquid phase epitaxy. Sol. Energy
**2020**, 208, 659–664. [Google Scholar] [CrossRef] - Ko, T.S.; Lin, D.Y.; He, Y.C.; Kao, C.C.; Hu, B.Y.; Horng, R.H.; Wu, F.L.; Wu, C.H.; Tsai, Y.L. Optoelectric Properties of GaInP p-i-n Solar Cells with Different i-Layer Thicknesses. Int. J. Photoenergy
**2015**, 2015, 703045. [Google Scholar] [CrossRef] - Sengupta, R.; Prashant, V.; Chakrabarti, T.; Sarkar, S.K. Modeling, simulation and comparative study of new compound alloy based P-I-N solar cells—An efficient way of energy management. In Proceedings of the 2015 International Conference on Power and Advanced Control Engineering (ICPACE), Bengaluru, India, 12–14 August 2015; pp. 86–89. [Google Scholar] [CrossRef]
- Al-Ezzi, A.; Abass, A. Selecting the Most Suitable Material for Punch Dies Using CES EduPack. In Proceedings of the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 19–21 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Massiot, I.; Cattoni, A.; Collin, S. Progress and prospects for ultrathin solar cells. Nat. Energy
**2020**, 5, 959–972. [Google Scholar] [CrossRef] - Hörantner, M.T.; Leijtens, T.; Ziffer, M.E.; Eperon, G.E.; Christoforo, M.G.; McGehee, M.D.; Snaith, H.J. The Potential of Multijunction Perovskite Solar Cells. ACS Energy Lett.
**2017**, 2, 2506–2513. [Google Scholar] [CrossRef] - Yamamoto, K.; Yoshikawa, K.; Uzu, H.; Adachi, D. High-efficiency heterojunction crystalline Si solar cells. Jpn. J. Appl. Phys.
**2018**, 57, 08RB20. [Google Scholar] [CrossRef] - Balaji, N.; Raval, M.C.; Saravanan, S. Review on Metallization in Crystalline Silicon Solar Cells. In Solar Cells; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, R.A. Advances in Solar Cell Technology: An Overview. J. Sci. Res.
**2021**, 65, 72–75. [Google Scholar] [CrossRef] - Roy, S.; Baruah, M.S.; Sahu, S.; Nayak, B.B. Computational analysis on the thermal and mechanical properties of thin film solar cells. Mater. Today Proc.
**2021**, 44, 1207–1213. [Google Scholar] [CrossRef] - Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Rouway, M.; Boulahia, Z.; Chakhchaoui, N.; Fouzia, F.; El Hachemi Omari, L.; Cherkaoui, O.; Van Langenhove, L. Mathematical and numerical modelling of soiling effects of photovoltaic solar panels on their electrical performance. IOP Conf. Ser. Mater. Sci. Eng.
**2020**, 827, 012064. [Google Scholar] [CrossRef] - Kawamoto, H. Electrostatic cleaning equipment for dust removal from soiled solar panels. J. Electrostat.
**2019**, 98, 11–16. [Google Scholar] [CrossRef] - He, G.; Zhou, C.; Li, Z. Review of Self-Cleaning Method for Solar Cell Array. Procedia Eng.
**2011**, 16, 640–645. [Google Scholar] [CrossRef] [Green Version] - Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev.
**2017**, 70, 1286–1297. [Google Scholar] [CrossRef] - Qarony, W.; Hossain, M.I.; Hossain, M.K.; Uddin, M.J.; Haque, A.; Saad, A.R.; Tsang, Y.H. Efficient amorphous silicon solar cells: Characterization, optimization, and optical loss analysis. Results Phys.
**2017**, 7, 4287–4293. [Google Scholar] [CrossRef] - Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol.
**2006**, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ramanujam, J.; Singh, U.P. Copper indium gallium selenide based solar cells—A review. Energy Environ. Sci.
**2017**, 10, 1306–1319. [Google Scholar] [CrossRef] - Mufti, N.; Amrillah, T.; Taufiq, A.; Sunaryono; Aripriharta; Diantoro, M.; Zulhadjri; Nur, H. Review of CIGS-based solar cells manufacturing by structural engineering. Sol. Energy
**2020**, 207, 1146–1157. [Google Scholar] [CrossRef] - Frenzel, M.; Mikolajczak, C.; Reuter, M.A.; Gutzmer, J. Quantifying the relative availability of high-tech by-product metals—The cases of gallium, germanium and indium. Resour. Policy
**2017**, 52, 327–335. [Google Scholar] [CrossRef] - Gul, M.; Kotak, Y.; Muneer, T. Review on recent trend of solar photovoltaic technology. Energy Explor. Exploit.
**2016**, 34, 485–526. [Google Scholar] [CrossRef] [Green Version] - Papež, N.; Škvarenina, Ľ.; Tofel, P.; Sobola, D. Thermal stability of gallium arsenide solar cells. In Proceedings of the Photonics, Devices, and Systems VII, Prague, Czech Republic, 28–30 August 2017; 1060313, p. 27. [Google Scholar] [CrossRef]
- Pouladi, S.; Asadirad, M.; Oh, S.K.; Shervin, S.; Chen, J.; Wang, W.; Manh, C.N.; Choi, R.; Kim, J.; Khatiwada, D.; et al. Effects of grain boundaries on conversion efficiencies of single-crystal-like GaAs thin-film solar cells on flexible metal tapes. Sol. Energy Mater. Sol. Cells
**2019**, 199, 122–128. [Google Scholar] [CrossRef] - Park, S.; Simon, J.; Schulte, K.L.; Ptak, A.J.; Wi, J.S.; Young, D.L.; Oh, J. Germanium-on-Nothing for Epitaxial Liftoff of GaAs Solar Cells. Joule
**2019**, 3, 1782–1793. [Google Scholar] [CrossRef] - Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut.
**2021**, 289, 117940. [Google Scholar] [CrossRef] - Li, S.S. High-Speed III-V Semiconductor Devices. In Semiconductor Physical Electronics; Springer: New York, NY, USA, 2007; pp. 613–663. [Google Scholar]
- Cariou, R.; Benick, J.; Feldmann, F.; Höhn, O.; Hauser, H.; Beutel, P.; Razek, N.; Wimplinger, M.; Bläsi, B.; Lackner, D.; et al. III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat. Energy
**2018**, 3, 326–333. [Google Scholar] [CrossRef] - Li, S.S. Semiconductor Physical Electronics; Li, S.S., Ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Kasap, S.; Burr Ridge, B.; Dubuque, I.; Madison, I. New York San Francisco St. Louis Bangkok Bogotб Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto, Principles of Electronic Materials and Devices Second Edition. 2006. Available online: www.mhhe.com (accessed on 9 September 2021).
- Masafumi Yamaguchi High-Efficiency GaAs-Based Solar Cells. In Post-Transition Metals; Rahman, I.M.M.; Asiri, A.M.; Tabbakh, T.A.; Khan, A. (Eds.) BoD—Books on Demand, Post-Transition Met: London, UK, 2020; p. 196. [Google Scholar]
- Papež, N.; Dallaev, R.; Ţălu, Ş.; Kaštyl, J. Overview of the Current State of Gallium Arsenide-Based Solar Cells. Materials
**2021**, 14, 3075. [Google Scholar] [CrossRef] - Gulaliyev, M.G.; Mustafayev, E.R.; Mehdiyeva, G.Y. Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case. Sustainability
**2020**, 12, 1116. [Google Scholar] [CrossRef] [Green Version] - Chesnutt, J.K.W.; Guo, B.; Wu, C.Y. Numerical analysis of the effects of particle-particle interactions and particle size on the performance of an electrodynamic dust shield. J. Electrostat.
**2019**, 98, 58–68. [Google Scholar] [CrossRef] - Kawamoto, H. Improved detachable electrodynamic cleaning system for dust removal from soiled photovoltaic panels. J. Electrostat.
**2020**, 107, 103481. [Google Scholar] [CrossRef] - Kumar, S. Solar PV Performance-Issues and Challenges. 2014. Available online: www.ijireeice.com (accessed on 9 September 2021).
- Kawamoto, H.; Guo, B. Improvement of an electrostatic cleaning system for removal of dust from solar panels. J. Electrostat.
**2018**, 91, 28–33. [Google Scholar] [CrossRef] - Zouaghi, A.; Zouzou, N. Numerical modeling of particle motion in traveling wave solar panels cleaning device. J. Electrostat.
**2021**, 110, 103552. [Google Scholar] [CrossRef] - Karki, I.B. Effect of Temperature on the I-V Characteristics of a Polycrystalline Solar Cell. J. Nepal Phys. Soc.
**2016**, 3, 35. [Google Scholar] [CrossRef] [Green Version] - Sun, C.; Xu, L.; Lai, X.; Li, Z.; He, M. Advanced Strategies of Passivating Perovskite Defects for High-Performance Solar Cells. Energy Environ. Mater.
**2020**, 4, 293–301. [Google Scholar] [CrossRef] - Metaferia, W.; Schulte, K.L.; Simon, J.; Johnston, S.; Ptak, A.J. Gallium arsenide solar cells grown at rates exceeding 300 µm h
^{−1}by hydride vapor phase epitaxy. Nat. Commun.**2019**, 10, 3361. [Google Scholar] [CrossRef] - Hussain, A.B.; Abdalla, A.S.; Mukhtar, A.S.; Elamin, M.; Alammari, R.; Iqbal, A. Modelling and simulation of single- and triple-junction solar cells using MATLAB/SIMULINK. Int. J. Ambient Energy
**2017**, 38, 613–621. [Google Scholar] [CrossRef] - Zhang, Z.; Wu, J.; Wang, L.; Liu, F.; Jia, P.; Dai, L.; Lu, Y.; Bian, T. The analysis on simulation and invalidation of hot-spot temperature distribution in micro-defective crystalline silicon solar cells. Renew. Energy
**2020**, 147, 2218–2228. [Google Scholar] [CrossRef] - Tayyaba, S.; Ashraf, M.W.; Tariq, M.I.; Akhlaq, M.; Balas, V.E.; Wang, N.; Balas, M.M. Simulation, analysis, and characterization of calcium-doped ZnO nanostructures for dye-sensitized solar cells. Energies
**2020**, 13, 4863. [Google Scholar] [CrossRef] - Altermatt, P.P. Models for numerical device simulations of crystalline silicon solar cells—a review. J. Comput. Electron.
**2011**, 10, 314–330. [Google Scholar] [CrossRef] - Üzüm, A.; Mandong, A.-M. Analysis of Silicon Solar Cell Device Parameters using PC1D. Sak. Univ. J. Sci.
**2019**, 1190–1197. [Google Scholar] [CrossRef] [Green Version] - Markvart, T.; Castañer, L. Semiconductor Materials and Modelling. In Solar Cells; Elsevier: Amsterdam, The Netherlands, 2013; pp. 27–54. [Google Scholar]
- Sakib, S.; Abu, M.; Siddique, B. Modeling and Simulation of Solar Photovoltaic Cell for the Generation of Electricity in UAE. In Proceedings of the 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019; pp. 66–71. [Google Scholar]
- Keshavani, K.; Joshi, J.; Trivedi, V.; Bhavsar, M. Issue 4. 2014. Available online: www.ijedr.org (accessed on 9 September 2021).
- Pandiarajan, N.; Muthu, R. Mathematical modeling of photovoltaic module with Simulink. In Proceedings of the 2011 1st International Conference on Electrical Energy Systems, Chennai, India, 3–5 January 2011; pp. 258–263. [Google Scholar]
- Shah, M.W.; Biate, R.L. Design and Simulation of Solar PV Model Using Matlab/Simulink. 2016. Available online: http://www.ijser.org (accessed on 9 September 2021).
- Gulomov, J.; Aliev, R.; Mirzaalimov, A.; Mirzaalimov, N.; Kakhkhorov, J.; Rashidov, B.; Temirov, S. Studying the Effect of Light Incidence Angle on Photoelectric Parameters of Solar Cells by Simulation. Int. J. Renew. Energy Dev.
**2021**, 10, 731–736. [Google Scholar] [CrossRef] - Silvestre, S.; Chouder, A. Effects of shadowing on photovoltaic module performance. Prog. Photovolt. Res. Appl.
**2008**, 16, 141–149. [Google Scholar] [CrossRef] - Selmi, T.; Belghouthi, R. A novel widespread Matlab/Simulink based modeling of InGaN double hetero-junction p-i-n solar cell. Int. J. Energy Environ. Eng.
**2017**, 8, 273–281. [Google Scholar] [CrossRef] [Green Version] - Haschke, J.; Dupré, O.; Boccard, M.; Ballif, C. Silicon heterojunction solar cells: Recent technological development and practical aspects—from lab to industry. Sol. Energy Mater. Sol. Cells
**2018**, 187, 140–153. [Google Scholar] [CrossRef] - Nguyen, X.H.; Nguyen, M.P. Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink. Environ. Syst. Res.
**2015**, 4, 24. [Google Scholar] [CrossRef] - Das, N.; Wongsodihardjo, H.; Islam, S. Modeling of multi-junction photovoltaic cell using MATLAB/Simulink to improve the conversion efficiency. Renew. Energy
**2015**, 74, 917–924. [Google Scholar] [CrossRef] - Kumar Srivastav, A.; Kumar Gupta, A.; Raj Jaiswal, R.; Kumar Gupta, S. Modelling and Simulation of Photo voltaic System Using Matlab/Simulink. J. Phys. Conf. Ser.
**2020**, 1579, 012024. [Google Scholar] [CrossRef] - Vengatesh, R.P.; Rajan, S.E. Investigation of cloudless solar radiation with PV module employing Matlab-Simulink. Sol. Energy
**2011**, 85, 1727–1734. [Google Scholar] [CrossRef] - Comsol, Si Solar Cell 1D. Available online: www.comsol.com/trademarks (accessed on 9 September 2021).
- Mahakud, D.S.J.J. Numerical Modeling of P-i-N Solar Cell. 2014. Available online: https://www.comsol.com/paper/numerical-modeling-of-p-i-n-solar-cell-19367 (accessed on 9 September 2021).
- Abdellatif, O.; Mahmoud, I.M.; Abdellatif, S.O.; Abdelsalam, T.S. Numerical Modeling and Integration of a PV System Using Finite Element Method. 2015. Available online: https://www.researchgate.net/publication/275099199 (accessed on 9 September 2021).
- Reference Air Mass 1.5 Spectra/Grid Modernization/NREL. Available online: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html (accessed on 9 September 2021).
- Ranabhat, K.; Patrikeev, L.; Antal’evna-Revina, A.; Andrianov, K.; Lapshinsky, V.; Sofronova, E. An introduction to solar cell technology. Istraz. Proj. Privredu
**2016**, 14, 481–491. [Google Scholar] [CrossRef] [Green Version] - Zimmerman, W.B.J. Introduction to Comsol Multiphysics. 2006, pp. 1–26. Available online: https://cdn.comsol.com/doc/5.5/IntroductionToCOMSOLMultiphysics.pdf (accessed on 9 September 2021).
- COMSOL Multiphysics
^{®}Introduction to the Semiconductor Module. 2017. Available online: https://doc.comsol.com/5.6/doc/com.comsol.help.semicond/IntroductionToSemiconductorModule.pdf (accessed on 9 September 2021). - Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon solar cells: Toward the efficiency limits. Adv. Phys. X
**2019**, 4, 1548305. [Google Scholar] [CrossRef] [Green Version] - Shao, G. Work Function and Electron Affinity of Semiconductors: Doping Effect and Complication due to Fermi Level Pinning. Energy Environ. Mater.
**2021**, 4, 273–276. [Google Scholar] [CrossRef] - Li, X.; Xu, Q.; Yan, L.; Ren, C.; Shi, B.; Wang, P.; Mazumdar, S.; Hou, G.; Zhao, Y.; Zhang, X. Silicon heterojunction-based tandem solar cells: Past, status, and future prospects. Nanophotonics
**2020**, 10, 2001–2022. [Google Scholar] [CrossRef]

**Figure 3.**The basic semiconductor form at the instant connection of the p-n sections and generating the electric field in the space charge region.

**Figure 9.**(

**a**) Effect of radiation intensity effect on the P-V characteristics of single-junction GaAs solar cells. (

**b**) Temperature effect on the P-V curve of single-junction GaAs PV cells under AM 1.5 condition.

**Figure 10.**The impact of (

**a**) series resistance (

**b**) shunt resistance on the P-V characteristics of single-junction GaAs cells under AM 1.5 condition.

Material | Sub-Material | PCE | Advantages | Problems |
---|---|---|---|---|

c-Si | Single crystal | 20% [53] | ||

Polycrystal | 16% [60] | Cost-effective as compared to the monocrystalline module [54]. | ||

Thin Films | a-Si | 11.3% [61] | ||

CdTe/CdS | 18.3% [10] | |||

CIS/CIGS | 22.8% [63] | - (1)
- CIGS have high efficiency that is similar to that of (c-Si) PV cells.
- (2)
- Less expensive as CIGS can absorb light using only ~2.0–2.5 mm layer thickness, which decreases the use of raw materials.
- (3)
- Easy to fabricate compared to (c Si) based PV cells [64].
| In and Ga sources are limited [65]. | |

GaAs | Over 30% [66] |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Al-Ezzi, A.S.; Ansari, M.N.M.
Photovoltaic Solar Cells: A Review. *Appl. Syst. Innov.* **2022**, *5*, 67.
https://doi.org/10.3390/asi5040067

**AMA Style**

Al-Ezzi AS, Ansari MNM.
Photovoltaic Solar Cells: A Review. *Applied System Innovation*. 2022; 5(4):67.
https://doi.org/10.3390/asi5040067

**Chicago/Turabian Style**

Al-Ezzi, Athil S., and Mohamed Nainar M. Ansari.
2022. "Photovoltaic Solar Cells: A Review" *Applied System Innovation* 5, no. 4: 67.
https://doi.org/10.3390/asi5040067