Impacts of COVID-19 on Electric Vehicle Charging Behavior: Data Analytics, Visualization, and Clustering
Abstract
:1. Introduction
2. Background
2.1. Related Works
2.2. Clustering Algorithms and Evaluation
Algorithm 1: K-Means Clustering | |||
randomly | |||
Repeat until convergence: | |||
Cluster points based on distance from centroid: | |||
(1) | |||
Compute and update new centroids for each cluster: | |||
(2) | |||
END |
3. Impacts of COVID-19 on EVs Charging
3.1. Dataset and Preprocessing
3.2. Data Analysis
4. Clustering of Charging Behavior during COVID-19
4.1. Experimental Setup
4.2. Clustering Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Archived: WHO Timeline—COVID-19. Available online: https://www.who.int/news/item/27-04-2020-who-timeline---covid-19 (accessed on 16 August 2021).
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Hayawi, K.; Shahriar, S.; Serhani, M.A.; Alashwal, H.; Masud, M.M. Vaccine versus Variants (3Vs): Are the COVID-19 Vaccines Effective against the Variants? A Systematic Review. Vaccines 2021, 9, 1305. [Google Scholar] [CrossRef]
- Ozili, P.K.; Arun, T. Spillover of COVID-19: Impact on the Global Economy. 2020. Available online: https://ssrn.com/abstract=3562570 (accessed on 16 August 2021).
- Kumar, A.; Nayar, K.R. COVID 19 and its mental health consequences. J. Ment. Health 2021, 30, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Škare, M.; Soriano, D.R.; Porada-Rochoń, M. Impact of COVID-19 on the travel and tourism industry. Technol. Forecast. Soc. Chang. 2021, 163, 120469. [Google Scholar] [CrossRef]
- Krarti, M.; Aldubyan, M. Review analysis of COVID-19 impact on electricity demand for residential buildings. Renew. Sustain. Energy Rev. 2021, 143, 110888. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- IEA. Key World Energy Statistics 2018—Analysis. Available online: https://www.iea.org/reports/key-world-energy-statistics-2019 (accessed on 1 June 2020).
- IEA. Global EV Outlook 2021—Analysis. Available online: https://www.iea.org/reports/global-ev-outlook-2021 (accessed on 16 August 2021).
- Mandrile, F.; Cittanti, D.; Mallemaci, V.; Bojoi, R. Electric vehicle ultra-fast battery chargers: A boost for power system stability? World Electr. Veh. J. 2021, 12, 16. [Google Scholar] [CrossRef]
- Van Mierlo, J.; Berecibar, M.; El Baghdadi, M.; De Cauwer, C.; Messagie, M.; Coosemans, T.; Jacobs, V.; Hegazy, O. Beyond the state of the art of electric vehicles: A fact-based paper of the current and prospective electric vehicle technologies. World Electr. Veh. J. 2021, 12, 20. [Google Scholar] [CrossRef]
- Clement-Nyns, K.; Haesen, E.; Driesen, J. Analysis of the impact of plug-in hybrid electric vehicles on residential distribution grids by using quadratic and dynamic programming. World Electr. Veh. J. 2009, 3, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Wróblewski, P.; Drożdż, W.; Lewicki, W.; Miązek, P. Methodology for assessing the impact of aperiodic phenomena on the energy balance of propulsion engines in vehicle electromobility systems for given areas. Energies 2021, 14, 2314. [Google Scholar] [CrossRef]
- Barthel, V.; Schlund, J.; Landes, P.; Brandmeier, V.; Pruckner, M. Analyzing the charging flexibility potential of different electric vehicle fleets using real-world charging data. Energies 2021, 14, 4961. [Google Scholar] [CrossRef]
- Shahriar, S.; Al-Ali, A.R.; Osman, A.H.; Dhou, S.; Nijim, M. Machine learning approaches for ev charging behavior: A review. IEEE Access 2020, 8, 168980–168993. [Google Scholar] [CrossRef]
- Haesalhelou, H.; Parthasarathy, H.; Nagpal, N.; Agarwal, V.; Nagpal, H.; Siano, P. Decentralised stochastic disturbance observer-based optimal frequency control method for interconnected power systems with high renewable shares. IEEE Trans. Ind. Inform. 2021, 1. [Google Scholar] [CrossRef]
- Alhelou, H.A.H.; Cuffe, P. A Dynamic state estimator based tolerance control method against cyberattack and erroneous measured data for power systems. IEEE Trans. Ind. Inform. 2021, 1. [Google Scholar] [CrossRef]
- Shen, Y.; Fang, W.; Ye, F.; Kadoch, M. EV charging behavior analysis using hybrid intelligence for 5G smart grid. Electronics 2020, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Gerossier, A.; Girard, R.; Kariniotakis, G. Modeling and forecasting electric vehicle consumption profiles. Energies 2019, 12, 1341. [Google Scholar] [CrossRef] [Green Version]
- Helmus, J.R.; Lees, M.H.; Hoed, R.V.D. A data driven typology of electric vehicle user types and charging sessions. Transp. Res. Part C Emerg. Technol. 2020, 115, 102637. [Google Scholar] [CrossRef]
- Qiao, F.; Lin, S. Data-Driven Prediction of Fine-Grained EV Charging Behaviors in Public Charging Stations: Poster. In Proceedings of the Twelfth ACM International Conference on Future Energy Systems, New York, NY, USA, 28 June–2 July 2021; pp. 276–277. [Google Scholar] [CrossRef]
- Shahriar, S.; Al-Ali, A.R.; Osman, A.H.; Dhou, S.; Nijim, M. Prediction of EV charging behavior using machine learning. IEEE Access 2021, 9, 111576–111586. [Google Scholar] [CrossRef]
- Wen, W.; Yang, S.; Zhou, P.; Gao, S. Impacts of COVID-19 on the electric vehicle industry: Evidence from China. Renew. Sustain. Energy Rev. 2021, 144, 111024. [Google Scholar] [CrossRef]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. 2013, 1, 90–95. [Google Scholar]
- Zualkernan, I.A.; Pasquier, M.; Shahriar, S.; Towheed, M.; Sujith, S. Using BLE beacons and Machine Learning for Personalized Customer Experience in Smart Cafés. In Proceedings of the 2020 International Conference on Electronics, Information, and Communication (ICEIC), Barcelona, Spain, 19–22 January 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Rendón, E.; Abundez, I.; Arizmendi, A.; Quiroz, E.M. Internal versus external cluster validation indexes. Int. J. Comput. Commun. 2011, 5, 27–34. [Google Scholar]
- Lee, Z.J.; Li, T.; Low, S.H. ACN-Data: Analysis and Applications of an Open EV Charging Dataset. In Proceedings of the Tenth ACM International Conference on Future Energy Systems, New York, NY, USA, 25–28 June 2019; pp. 139–149. [Google Scholar] [CrossRef]
- McKinney, W. Pandas: A foundational Python library for data analysis and statistics. Python High Perform. Sci. Comput. 2011, 14, 1–9. [Google Scholar]
- AJMC. A Timeline of COVID-19 Developments in 2020. Available online: https://www.ajmc.com/view/a-timeline-of-covid19-developments-in-2020 (accessed on 17 August 2021).
- Procter, R. Remember When? Timeline Marks Key Events in California’s Year-Long Pandemic Grind. CalMatters. 4 March 2021. Available online: https://calmatters.org/health/coronavirus/2021/03/timeline-california-pandemic-year-key-points/ (accessed on 17 August 2021).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Clustering/Metrics | Silhouette | Davies-Bouldin | Calinski-Harabasz |
---|---|---|---|
K-means | 0.41 | 0.85 | 2904 |
Hierarchical | 0.38 | 0.74 | 2270 |
GMM | 0.15 | 2.05 | 344 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahriar, S.; Al-Ali, A.R. Impacts of COVID-19 on Electric Vehicle Charging Behavior: Data Analytics, Visualization, and Clustering. Appl. Syst. Innov. 2022, 5, 12. https://doi.org/10.3390/asi5010012
Shahriar S, Al-Ali AR. Impacts of COVID-19 on Electric Vehicle Charging Behavior: Data Analytics, Visualization, and Clustering. Applied System Innovation. 2022; 5(1):12. https://doi.org/10.3390/asi5010012
Chicago/Turabian StyleShahriar, Sakib, and A. R. Al-Ali. 2022. "Impacts of COVID-19 on Electric Vehicle Charging Behavior: Data Analytics, Visualization, and Clustering" Applied System Innovation 5, no. 1: 12. https://doi.org/10.3390/asi5010012
APA StyleShahriar, S., & Al-Ali, A. R. (2022). Impacts of COVID-19 on Electric Vehicle Charging Behavior: Data Analytics, Visualization, and Clustering. Applied System Innovation, 5(1), 12. https://doi.org/10.3390/asi5010012