Active Compact Wearable Body Area Networks for Wireless Communication, Medical and IoT Applications
Abstract
:1. Introduction
2. Active Wearable Body Area Networks and Antennas
3. Active Receiving Wearable Body Area Network with Loop Antenna
4. Active Receiving Wearable Body Area Network with a Dual Polarized Antenna
5. Active Transmitting Wearable Body Area Network with a Dual Polarized Antenna
6. Tunable Wearable Body Area Network
7. Medical Applications for Tunable Wearable Body Area Network
8. Wireless Body Area Networks (WBANs) and Wearable (WBANs)
9. Active T Shape Slot Antennas for Ultra-Wideband IoT and 5G Communication Systems
10. Conclusion
Funding
Conflicts of Interest
References
- Sabban, A. Novel Wearable Antennas for Communication and Medical Systems; Taylor & Francis Group: Boca Raton, FL, USA, October 2017. [Google Scholar]
- Sabban, A. Low Visibility Antennas for Communication Systems; Taylor & Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Sabban, A. Wideband RF Technologies and Antenna in Microwave Frequencies; Wiley Sons: Hoboken, NJ, USA, July 2016. [Google Scholar]
- Sabban, A. New Wideband printed Antennas for Medical Applications. IEEE J. Trans. Antennas Propag. 2013, 61, 84–91. [Google Scholar] [CrossRef]
- Sabban, A. Wearable Antenna Measurements in Vicinity of Human Body. Wirel. Eng. Technol. J. 2016, 7, 97–104. [Google Scholar] [CrossRef]
- Sabban, A. Small Wearable Meta Materials Antennas for Medical Systems. Appl. Comput. Electromagn. Soc. J. 2016, 31, 434–443. [Google Scholar]
- Sabban, A. Microstrip Antenna Arrays. In Microstrip Antennas; Nasimuddin, N., Ed.; InTech: London, UK, 2011; pp. 361–384. ISBN 978-953-307-247-0. Available online: http://www.intechopen.com/articles/show/title/microstrip-antenna-arrays (accessed on 1 November 2011).
- Sabban, A. Wideband printed antennas for medical applications. In Proceedings of the APMC 2009 Conference, Singapore, 7–10 December 2009. [Google Scholar]
- Sabban, A. Dual Polarized Dipole Wearable Antenna. U.S Patent Number 8203497, 19 June 2012. [Google Scholar]
- James, J.R.; Hall, P.S.; Wood, C. Microstrip Antenna Theory and Design; IET: London, UK, 1981. [Google Scholar]
- Sabban, A. Microstrip Antennas. In Proceedings of the 11th IEEE Symposium, Tel-Aviv, Israel, October 1979. [Google Scholar]
- Sabban, A.; Gupta, K.C. Characterization of Radiation Loss from Microstrip Discontinuities Using a Multiport Network Modeling Approach. IEEE Trans. Microw. Theory Tech. 1991, 39, 705–712. [Google Scholar] [CrossRef]
- Sabban, A. A New Wideband Stacked Microstrip Antenna. In Proceedings of the IEEE Antenna and Propagation Symposium, Houston, TX, USA, 23–26 May 1983. [Google Scholar]
- Kastner, R.; Heyman, E.; Sabban, A. Spectral Domain Iterative Analysis of Single and Double-Layered Microstrip Antennas Using the Conjugate Gradient Algorithm. IEEE Trans. Antennas Propag. 1988, 36, 1204–1212. [Google Scholar] [CrossRef]
- Sabban, A. Wideband Microstrip Antenna Arrays. In Proceedings of the IEEE Antenna and Propagation Symposium MELCOM, Tel-Aviv, Israel, 24–28 May 1981. [Google Scholar]
- Chirwa, L.C.; Hammond, P.A.; Roy, S.; Cumming, D.R.S. Electromagnetic Radiation from Ingested Sources in the Human Intestine between 150 MHz and 1.2 GHz. IEEE Trans. Biomed. Eng. 2003, 50, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Werber, D.; Schwentner, A.; Biebl, E.M. Investigation of RF transmission properties of human tissues. Adv. Radio Sci. 2006, 4, 357–360. [Google Scholar] [CrossRef]
- Gupta, B.; Sankaralingam, S.; Dhar, S. Development of wearable and implantable antennas in the last decade. In Proceedings of the 2010 10th Mediterranean Microwave Symposium (MMS), Guzelyurt, Cyprus, 25–27 August 2010; pp. 251–267. [Google Scholar]
- Thalmann, T.; Popovic, Z.; Notaros, B.M.; Mosig, J.R. Investigation and design of a multi-band wearable antenna. In Proceedings of the 3rd European Conference on Antennas and Propagation, EuCAP 2009, Berlin, Germany, 23–27 March 2009; pp. 462–465. [Google Scholar]
- Salonen, P.; Rahmat-Samii, Y.; Kivikoski, M. Wearable antennas in the vicinity of human body. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Monterey, CA, USA, 20–25 June 2004; Volume 1, pp. 467–470. [Google Scholar]
- Kellomaki, T.; Heikkinen, J.; Kivikoski, M. Wearable antennas for FM reception. In Proceedings of the First European Conference on Antennas and Propagation, EuCAP 2006, Nice, France, 6–10 November 2006; pp. 1–6. [Google Scholar]
- Lee, Y. Antenna Circuit Design for RFID Applications; Microchip (application note 710c); Microchip Technology Inc.: Chandler, AZ, USA, 2003. [Google Scholar]
- Sabban, A. Microstrip Antenna and Antenna Arrays. U.S. Patent US 4,623,893, 18 November 1986. [Google Scholar]
- Wheeler, H.A. Small antennas. IEEE Trans. Antennas Propag. 1975, 23, 462–469. [Google Scholar] [CrossRef]
- Lin, J.; Itoh, T. Active integrated antennas. IEEE Trans. Microw. Theory Tech. 1994, 42, 2186–2194. [Google Scholar]
- Mortazwi, A.; Itoh, T.; Harvey, J. Active Antennas and Quasi-Optical Arrays; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Jacobsen, S.; Klemetsen, Ø. Improved detectability in medical microwave radio-thermometers as obtained by active antennas. IEEE Trans. Biomed. Eng. 2008, 55, 2778–2785. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.; Klemetsen, Ø. Active antennas in medical microwave radiometry. Electron. Lett. 2007, 43, 606–608. [Google Scholar] [CrossRef]
- Ellingson, S.W.; Simonetti, J.H.; Patterson, C.D. Design and evaluation of an active antenna for a 29–47 MHz radio telescope array. IEEE Trans. Antennas Propag. 2007, 55, 826–831. [Google Scholar] [CrossRef]
- Segovia-Vargas, D.; Castro-Galan, D.; Garcia-Munoz, L.E.; Gonzalez-Posadas, V. Broadband active receiving patch with resistive equalization. IEEE Trans. Microw. Theory Tech. 2008, 56, 56–64. [Google Scholar] [CrossRef]
- Rizzoli, V.; Costanzo, A.; Spadoni, P. Computer-aided design of ultra-wideband active antennas by means of a new figure of merit. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 290–292. [Google Scholar] [CrossRef]
- ADS Momentum Software, Keysightt. Available online: http://www.keysight.com/en/pc-1297113/advanced-design-system- ads?cc=IL&lc=eng (accessed on 3 January 2018).
Parameter | Specification | Remarks |
---|---|---|
Frequency range | 0.4–3 GHz | |
Gain | 26 dB @0.4 GHz 18 dB @2 GHz | Vds = 3 V; Ids = 60 mA |
N.F | 0.4 dB @0.4 GHz 0.5 dB @2 GHz | Vds = 3 V; Ids = 60 mA |
P1dB | 18.9 dBm @0.4 GHz 19.1 dBm @2 GHz | Vds = 3 V; Ids = 60 mA |
OIP3 | 32.1 dBm @0.4 GHz 33.6 dBm @2 GHz | Vds = 3 V; Ids = 60 mA |
Max Input power | 17 dBm | |
Vgs | 0.48 V | Vds = 3V; Ids = 60 mA |
Vds | 3 V | |
Ids | 60 mA | |
Supply voltage | ±5 V | |
Package | Surface Mount | |
Operating Temperature | −40 °C–80 °C | |
Storage Temperature | −50 °C–8100 °C |
F-GHz | S11 | S11° | S21 | S21° | S12 | S12° | S22 | S22° |
0.10 | 0.986 | −17.17 | 25.43 | 168.9 | 0.008 | 88.22 | 0.55 | −14.38 |
0.19 | −31.76 | 0.964 | 24.13 | 158.9 | 0.016 | 74.88 | 0.54 | −22.98 |
0.279 | 0.93 | −45.77 | 22.97 | 149.5 | 0.021 | 65.77 | 0.51 | −33.65 |
0.323 | 0.92 | −53.39 | 22.45 | 145.3 | 0.026 | 62.38 | 0.49 | −39.2 |
0.413 | 0.89 | −65.72 | 20.98 | 137.27 | 0.03 | 57.9 | 0.46 | −49.3 |
0.50 | 0.87 | −77.1 | 19.54 | 130.3 | 0.034 | 53.03 | 0.43 | −57.5 |
0.59 | 0.83 | −87.12 | 18.08 | 124.14 | 0.038 | 48.18 | 0.40 | −64.12 |
0.726 | 0.8 | −100.8 | 16.22 | 115.7 | 0.042 | 42.06 | 0.36 | −74.86 |
0.816 | 0.77 | −108.8 | 15.07 | 110.75 | 0.044 | 39.53 | 0.34 | −80.87 |
1.04 | 0.74 | −126.2 | 12.74 | 100.13 | 0.049 | 33.69 | 0.29 | −94.96 |
1.21 | 0.71 | −137.6 | 11.25 | 92.91 | 0.051 | 30.05 | 0.26 | −104 |
1.53 | 0.687 | −154.2 | 9.29 | 82.06 | 0.055 | 26.08 | 0.22 | −119 |
1.75 | 0.67 | −164.1 | 8.24 | 75.31 | 0.058 | 23.14 | 0.20 | −128.4 |
2.02 | 0.67 | −174.6 | 7.27 | 67.82 | 0.06 | 20.88 | 0.18 | −138.8 |
Noise Parameters | ||||||||
F-GHz | N.FMIN | N11X | N11Y | rn | ||||
0.5 | 0.079 | 0.3284 | 24.56 | 0.056 | ||||
0.7 | 0.112 | 0.334 | 36.08 | 0.05 | ||||
0.9 | 0.144 | 0.3396 | 47.4 | 0.045 | ||||
1 | 0.16 | 0.3424 | 52.98 | 0.042 | ||||
1.9 | 0.306 | 0.3682 | 100.93 | 0.029 | ||||
2 | 0.322 | 0.3711 | 106.01 | 0.029 | ||||
2.4 | 0.387 | 0.3829 | 125.79 | 0.029 | ||||
3 | 0.484 | 0.401 | 153.93 | 0.036 | ||||
3.9 | 0.629 | 0.429 | −167.3 | 0.059 | ||||
5 | 0.808 | 0.4645 | −125.53 | 0.11 | ||||
5.8 | 0.937 | 0.4912 | −99.03 | 0.162 | ||||
6 | 0.969 | 0.498 | −92.92 | 0.177 |
Parameter | Specification | Remarks |
---|---|---|
Frequency range | 0.4–2.5 GHz | |
Gain | 15 dB @0.4 GHz 17.8 dB @2 GHz | Vds = 5 V; Ids = 85 mA |
N.F | 5.5 dB @0.4 GHz 5.5 dB @2 GHz | Vds = 5 V; Ids = 85 mA |
P1dB | 18.0 dBm @0.4 GHz 18.0 dBm @2 GHz | Vds = 5 V; Ids = 85 mA |
OIP3 | 29 dBm @0.4 GHz 29 dBm @2 GHz | Vds = 5 V; Ids = 85 mA |
Max. Input power | 10 dBm | |
Vgs | 0.48 V | Vds = 5 V; Ids = 85 mA |
Vds | 5 V | |
Ids | 85 mA | |
Supply voltage | ±5 V | |
Package | Surface Mount | |
Operating Temperature | −40 °C–80 °C | |
Storage Temperature | −50 °C–100 °C |
F-GHz | S11 dB | S11° | S21 dB | S21° | S12 dB | S12° | S22 dB | S22° |
---|---|---|---|---|---|---|---|---|
0.20 | 0.065 | −38.75 | −3.09 | −139.2 | −47.56 | 157.63 | −1.03 | −74.66 |
0.344 | −1.1 | −77 | 11.8 | 118.7 | −37.9 | 78.4 | −7.2 | −131.6 |
0.4 | −2.2 | −88.5 | 13.8 | 85.24 | −36.9 | 52.76 | −11 | −143.5 |
0.52 | −4.44 | −107.5 | 15.8 | 30.2 | −36.7 | 14.1 | −19.4 | −132.5 |
0.64 | −6.4 | −122 | 16.8 | −11.4 | −37.2 | −12.6 | −19.2 | −100.3 |
0.712 | −7.4 | −100.8 | 17.13 | −32.7 | −37.5 | −25.4 | −17.7 | −100.6 |
0.88 | −9.2 | −144.6 | 17.72 | −77.1 | −38.5 | −49.4 | −15.7 | −119.7 |
1.04 | −10.4 | −158.6 | 18.1 | −115.1 | −39.6 | −67.5 | −15.3 | −144.5 |
1.24 | −11.3 | −178.7 | 18.37 | −159.7 | −41.3 | −86.9 | −15.9 | −178.7 |
1.36 | −11.8 | 167.4 | 18.4 | 174.4 | −42.4 | −91.4 | −16.5 | 159.2 |
1.48 | −12.2 | 151.2 | 18.4 | 149 | −43.6 | −94.9 | −17.5 | 136.8 |
1.6 | −12.8 | 134.3 | 18.3 | 123.3 | −44.2 | −93.4 | −18.9 | 113.7 |
1.8 | −14.3 | 101.2 | 17.9 | 83 | −43 | −86.3 | −22 | 69.5 |
2 | −16.5 | 61.8 | 17.3 | 43.5 | −40.4 | 94.6 | −27 | 6.42 |
2.16 | −18.5 | 22.1 | 16.8 | 12.9 | −38 | −105.5 | −27.8 | −70.2 |
2.4 | −19.4 | −53.9 | 15.7 | −31.8 | −36 | −128 | −22.2 | −147.2 |
2.56 | −17.7 | 99.7 | 15 | −60 | −34.6 | −145.6 | −19.3 | −179.4 |
2.7 | −15.7 | 131 | 14.3 | −84.3 | −33.8 | −160.3 | −17.5 | 158.1 |
2.86 | −13.7 | 159 | 13.5 | −111.1 | −33 | −177.7 | −16 | 134.7 |
3 | −12.2 | 179.1 | 12.7 | −134.1 | −32.4 | 167.4 | 15.2 | 116.3 |
Antenna | Frequency (GHz) | VSWR | Gain (dB) | Noise Figure (dB) |
---|---|---|---|---|
Loop | 0.45 | 4:1 | 0 | – |
Active receiving loop | 0.35–0.58 | 2:1 | 25 ± 2.5 | 0.7 ± 0.2 |
Active Rx. dual polarized antenna | 0.38–0.68 | 2:1 | 25 ± 2.5 | 1 ± 0.5 |
Active Tr. dual polarized antenna | 0.38–0.6 | 3:1 | 14 ± 3 | – |
Active transmitting loop antenna | 0.36–0.6 | 3:1 | 13 ± 3 | – |
T shape slot | 1–3 | 2:1 | 3 | – |
Active Rx. T slot | 0.2–0.581–3 | 3:12:1 | 18 ± 2.512.5 ± 2.5 | 0.5 ± 0.3 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabban, A. Active Compact Wearable Body Area Networks for Wireless Communication, Medical and IoT Applications. Appl. Syst. Innov. 2018, 1, 46. https://doi.org/10.3390/asi1040046
Sabban A. Active Compact Wearable Body Area Networks for Wireless Communication, Medical and IoT Applications. Applied System Innovation. 2018; 1(4):46. https://doi.org/10.3390/asi1040046
Chicago/Turabian StyleSabban, Albert. 2018. "Active Compact Wearable Body Area Networks for Wireless Communication, Medical and IoT Applications" Applied System Innovation 1, no. 4: 46. https://doi.org/10.3390/asi1040046
APA StyleSabban, A. (2018). Active Compact Wearable Body Area Networks for Wireless Communication, Medical and IoT Applications. Applied System Innovation, 1(4), 46. https://doi.org/10.3390/asi1040046