New Fuzzy Numerical Methods for Solving Cauchy Problems
Abstract
:1. Introduction
2. Basic Concepts
- 1.
- (positivity and locality) – if and if ;
- 2.
- (continuity) – is continuous on ;
- 3.
- (covering) – for .
- 4.
- for all ;
- 5.
- and for all ;
3. New Representations of Basic Functions for Particular Cases
3.1. Power of the Triangular and Raised Cosine Generalized Uniform Fuzzy Partition
3.2. New FT Based Power of the Triangular and Raised Cosine Generalized Uniform Fuzzy Partition
4. New Fuzzy Numerical Methods for Cauchy Problem
4.1. Numeric Scheme I: Modified Trapezoidal Rule Based on FT and NIM for Cauchy Problem
4.2. Numeric Scheme II: Modified 2-Step Adams Moulton Method Based on FT and NIM for Cauchy Problem
4.3. Numeric Scheme III: Modified 3-Step Adams Moulton Method Based on FT and NIM for Cauchy Problem
4.4. Error Analysis of Fuzzy Numeric Method for Cauchy Problem
5. Numerical Examples
- In view of Table 2, a comparison between the Euler method (Euler-FT) [8], the Mid-point rule (Mid-FT), Scheme I and II [9] and three new schemes (16), (19) and (20) in this paper for Example 1. We can easily observe from Table 2, the better results (in comparison with the Euler-FT method [8]) are obtained by the three new schemes in this paper and the best result (in comparison with the Scheme I, II and II) is obtained by the Scheme III. Also, the better results (in comparison with the Mid-point rule (Mid-FT), Scheme I and II [9]) are obtained by the Scheme II (19) and Scheme III (20) in this paper where all fuzzy numerical methods used the FT components and the best approximation is shown by the Scheme III (20) with FT components.
- In Table 3, a comparison of MSE and a comparison of Norm for Examples 1 and 2. We can easily observe, the best results are obtained by the three new schemes in this paper and the better results (in comparison with the other numerical classical methods) are obtained by all fuzzy numerical methods used the FT components except Euler-FT [8] for these examples.
- In view of Table 4, a comparison between the three new schemes (16), (19) and (20) in this paper and the Trapezoidal Rule, 2-Step Adams Moulton Method and 3-Step Adams Moulton Method based on Euler method for Example 2. We can easily observe from Table 4, the better results are obtained by the three new schemes in this paper and the best result (in comparison with the Scheme I, II and II) is obtained by the Scheme III.
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ahmad, M.Z.; Hasan, M.K.; Baets, B.D. Analytical and numerical solutions of fuzzy differential equations. Inf. Sci. 2013, 236, 156–167. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
- Sukale, Y.; Daftardar-Gejji, V. New Numerical Methods for Solving Differential Equations. Int. J. Appl. Comput. Math. 2017, 3, 1639–1660. [Google Scholar] [CrossRef]
- Perfilieva, I. Fuzzy transforms: Theory and applications. Fuzzy Sets Syst. 2006, 157, 993–1023. [Google Scholar] [CrossRef]
- Perfilieva, I.; Baets, B.D. Fuzzy transforms of monotone functions with application to image compression. Inf. Sci. 2010, 180, 3304–3315. [Google Scholar] [CrossRef]
- Nguyen, L.; Novák, V. Filtering out high frequencies in time series using F-transform with respect to raised cosine generalized uniform fuzzy partition. In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5 August 2015; pp. 1–8. [Google Scholar]
- Perfilieva, I.; Hodáková, P.; Hurtík, P. Differentiation by the F-transform and application to edge detection. Fuzzy Sets Syst. 2016, 288, 96–114. [Google Scholar] [CrossRef]
- Perfilieva, I. Fuzzy transform: Application to the Reef growth problem. In Fuzzy Logic in Geology; Demicco, R.V., Klir, G.J., Eds.; Academic Press: Amsterdam, The Netherlands, 2003; Chapter 9; pp. 275–300. [Google Scholar]
- Khastan, A.; Perfilieva, I.; Alijani, Z. A new fuzzy approximation method to Cauchy problems by fuzzy transform. Fuzzy Sets Syst. 2016, 288, 75–95. [Google Scholar] [CrossRef]
- Perfilieva, I. F-Transform. In Handbook of Computational Intelligence; Kacprzyk, J., Pedrycz, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 113–130. [Google Scholar]
- Perfilieva, I.; Daňková, M.; Bede, B. Towards a higher degree F-transform. Fuzzy Sets Syst. 2011, 180, 3–19. [Google Scholar] [CrossRef]
- Holčapek, M.; Perfilieva, I.; Novák, V.; Kreinovich, V. Necessary and sufficient conditions for generalized uniform fuzzy partitions. Fuzzy Sets Syst. 2015, 277, 97–121. [Google Scholar] [CrossRef]
- Bede, B.; Rudas, I.J. Approximation properties of fuzzy transforms. Fuzzy Sets Syst. 2011, 180, 20–40. [Google Scholar] [CrossRef]
- Hurtik, P.; Perfilieva, I. Image Compression Methodology Based on Fuzzy Transform. In International Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions; Springer: Berlin/Heidelberg, Germany, 2013; pp. 525–532. [Google Scholar]
- Loquin, K.; Strauss, O. Histogram density estimators based upon a fuzzy partition. Stat. Probab. Lett. 2008, 78, 1863–1868. [Google Scholar] [CrossRef]
- Jahedi, S.; Mehdipour, M.; Rafizadeh, R. Approximation of integrable function based on ϕ—transform. Soft Comput. 2013, 18, 2015–2022. [Google Scholar] [CrossRef]
Triangular Generating Function | Raised Cosine Generating Function |
---|---|
Solution | Proposed Scheme I | Proposed Scheme II | Proposed Scheme III | Euler-FT in [8] | Mid-FT in [9] | Scheme I in [9] | Scheme II in [9] | |
---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0.1 | 0.905163 | 0.905350 | 0.905163 | 0.905163 | 0.900166 | 0.905162 | 0.904392 | 0.904297 |
0.2 | 0.821269 | 0.821605 | 0.821322 | 0.821269 | 0.811316 | 0.8213 | 0.819722 | 0.819741 |
0.3 | 0.749182 | 0.749630 | 0.749274 | 0.749221 | 0.734351 | 0.749235 | 0.746860 | 0.747182 |
0.4 | 0.689680 | 0.690208 | 0.689798 | 0.689742 | 0.670083 | 0.689786 | 0.686592 | 0.687391 |
0.5 | 0.643469 | 0.644047 | 0.643602 | 0.643546 | 0.619241 | 0.643611 | 0.639629 | 0.641061 |
0.6 | 0.611188 | 0.611788 | 0.611324 | 0.611271 | 0.582484 | 0.611397 | 0.606615 | 0.608821 |
0.7 | 0.593415 | 0.594012 | 0.593543 | 0.593495 | 0.560402 | 0.593665 | 0.588129 | 0.591239 |
0.8 | 0.590671 | 0.591243 | 0.590781 | 0.590741 | 0.553528 | 0.590998 | 0.584697 | 0.588828 |
0.9 | 0.603430 | 0.603956 | 0.603513 | 0.603483 | 0.562342 | 0.603799 | 0.596795 | 0.602053 |
1 | 0.632121 | 0.632581 | 0.632168 | 0.632149 | 0.587274 | 0.632571 | 0.624851 | 0.631332 |
1.1 | 0.677129 | 0.677507 | 0.677132 | 0.677127 | 0.628714 | 0.677618 | 0.669253 | 0.677045 |
1.2 | 0.738806 | 0.739085 | 0.738757 | 0.738768 | 0.687009 | 0.739381 | 0.730353 | 0.739535 |
1.3 | 0.817468 | 0.817635 | 0.817360 | 0.817388 | 0.762475 | 0.818075 | 0.808466 | 0.819111 |
1.4 | 0.913403 | 0.913443 | 0.913229 | 0.913276 | 0.855394 | 0.914099 | 0.903881 | 0.916053 |
1.5 | 1.026870 | 1.026772 | 1.026624 | 1.026692 | 0.966021 | 1.027588 | 1.016856 | 1.030615 |
1.6 | 1.158103 | 1.157857 | 1.157779 | 1.157869 | 1.094586 | 1.158915 | 1.147625 | 1.163024 |
1.7 | 1.307316 | 1.306911 | 1.306909 | 1.307022 | 1.241294 | 1.308138 | 1.296400 | 1.313489 |
1.8 | 1.474701 | 1.474127 | 1.474205 | 1.474343 | 1.406331 | 1.47562 | 1.463372 | 1.482195 |
1.9 | 1.660431 | 1.659681 | 1.659842 | 1.660006 | 1.589864 | 1.661347 | 1.648715 | 1.669312 |
2 | 1.864665 | 1.863636 | 1.863899 | 1.864097 | 1.779378 | 1.865684 | 1.852585 | 1.874993 |
Method | Ex.1 | Ex.2 | ||
---|---|---|---|---|
Norm | MSE | Norm | MSE | |
Proposed Scheme I | ||||
Proposed Scheme II | ||||
Proposed Scheme III | ||||
Euler-FT [8] | ||||
Mid-FT [9] | ||||
Scheme I [9] | ||||
Scheme II [9] | ||||
Trapezoidal Rule | ||||
2-Step Adams Moulton | ||||
3-Step Adams Moulton |
Solution | Proposed Scheme I | Proposed Scheme II | Proposed Scheme III | Trap | 2-Step Adams | 3-Step Adams | |
---|---|---|---|---|---|---|---|
1.570796327 | 2.195062 | 2.195062 | 2.195062 | 2.195062 | 2.195062 | 2.195062 | 2.195062 |
1.727875959 | 1.883281 | 1.894259 | 1.883281 | 1.883281 | 1.860613 | 1.883281 | 1.883281 |
1.884955592 | 1.485003 | 1.511046 | 1.490853 | 1.485003 | 1.454428 | 1.463813 | 1.485003 |
2.042035225 | 1.185605 | 1.224868 | 1.191621 | 1.184830 | 1.172418 | 1.163839 | 1.177378 |
2.199114858 | 1.206758 | 1.256721 | 1.208147 | 1.202292 | 1.205264 | 1.180648 | 1.194336 |
2.35619449 | 1.688183 | 1.733796 | 1.675538 | 1.676788 | 1.638071 | 1.613025 | 1.638504 |
2.513274123 | 2.546629 | 2.558069 | 2.508798 | 2.525411 | 2.371288 | 2.370415 | 2.421052 |
2.670353756 | 3.420051 | 3.381690 | 3.362740 | 3.396118 | 3.110292 | 3.151241 | 3.228492 |
2.827433388 | 3.817594 | 3.751660 | 3.766365 | 3.802239 | 3.459038 | 3.534435 | 3.617396 |
2.984513021 | 3.479187 | 3.451288 | 3.463039 | 3.476930 | 3.153857 | 3.226956 | 3.285059 |
3.141592654 | 2.711291 | 2.760842 | 2.722280 | 2.707811 | 2.480046 | 2.498676 | 2.521585 |
3.298672286 | 2.305201 | 2.404556 | 2.301686 | 2.280860 | 2.168197 | 2.117053 | 2.127181 |
3.455751919 | 2.871345 | 2.942818 | 2.810863 | 2.818639 | 2.622265 | 2.558398 | 2.599754 |
3.612831552 | 4.080085 | 4.035446 | 3.952587 | 4.015230 | 3.555034 | 3.556356 | 3.660448 |
3.769911184 | 4.767095 | 4.645081 | 4.647076 | 4.733825 | 4.104830 | 4.188576 | 4.317767 |
3.926990817 | 4.209785 | 4.184589 | 4.183879 | 4.213375 | 3.643127 | 3.728492 | 3.801548 |
4.08407045 | 3.258243 | 3.383482 | 3.263962 | 3.224157 | 2.935940 | 2.895967 | 2.895039 |
4.241150082 | 3.481873 | 3.609332 | 3.386338 | 3.370921 | 3.111499 | 2.989980 | 3.008814 |
4.398229715 | 4.873146 | 4.799588 | 4.642440 | 4.733200 | 4.094280 | 4.055938 | 4.179701 |
4.555309348 | 5.501192 | 5.331327 | 5.311775 | 5.444657 | 4.561691 | 4.652699 | 4.813484 |
4.71238898 | 4.498591 | 4.551357 | 4.485128 | 4.493916 | 3.817903 | 3.867167 | 3.912209 |
Proposed Scheme | Case | Ex.1 | Ex.2 | ||
---|---|---|---|---|---|
Norm | MSE | Norm | MSE | ||
I | |||||
II | |||||
III | |||||
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
ALKasasbeh, H.; Perfilieva, I.; Ahmad, M.Z.; Yahya, Z.R. New Fuzzy Numerical Methods for Solving Cauchy Problems. Appl. Syst. Innov. 2018, 1, 15. https://doi.org/10.3390/asi1020015
ALKasasbeh H, Perfilieva I, Ahmad MZ, Yahya ZR. New Fuzzy Numerical Methods for Solving Cauchy Problems. Applied System Innovation. 2018; 1(2):15. https://doi.org/10.3390/asi1020015
Chicago/Turabian StyleALKasasbeh, Hussein, Irina Perfilieva, Muhammad Zaini Ahmad, and Zainor Ridzuan Yahya. 2018. "New Fuzzy Numerical Methods for Solving Cauchy Problems" Applied System Innovation 1, no. 2: 15. https://doi.org/10.3390/asi1020015
APA StyleALKasasbeh, H., Perfilieva, I., Ahmad, M. Z., & Yahya, Z. R. (2018). New Fuzzy Numerical Methods for Solving Cauchy Problems. Applied System Innovation, 1(2), 15. https://doi.org/10.3390/asi1020015