Direct Dating of Chinese Immovable Cultural Heritage
Abstract
:1. Introduction
2. Introduction of Direct Rock Art Dating in China
3. The International Centre of Rock Art Dating (ICRAD)
4. The Trouble with U–Th Dating of Rock Art
5. Summary and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Bednarik, R.G. The dating of rock art: A critique. J. Archaeol. Sci. 2002, 29, 1213–1233. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Kumar, G.; Jin, A.; Bednarik, R.G. Rock art of Heilongjiang Province, China. J. Archaeol. Sci. Rep. 2020, 31, 102348. [Google Scholar] [CrossRef]
- Hoffmann, D.L.; Spötl, C.; Mangini, A. Micromill and in situ laser ablation sampling techniques for high spatial resolution MC-ICPMS U–Th dating of carbonates. Chem. Geol. 2009, 259, 253–261. [Google Scholar] [CrossRef]
- Watchman, A. Investigating the cation-ratio calibration curve: Evidence from South Australia. Rock Art Res. 1992, 9, 106–110. [Google Scholar]
- Bednarik, R.G.; Li, F. Rock art dating in China: Past and future. Artefact 1991, 14, 25–33. [Google Scholar]
- Wang, N. An introduction to rock paintings in Yunnan Province, People’s Republic of China. Rock Art Res. 1984, 1, 75–84. [Google Scholar]
- Tang, H. Theory and methods in Chinese rock art studies. Rock Art Res. 1993, 10, 83–90. [Google Scholar]
- Qin, S.; Qin, T.; Lu, M.; Yü, J. The Investigation and Research of the Cliff and Mural Paintings of the Zuojiang River Valley in Guangxi; Guangxi National Printing House: Nanning, China, 1987. [Google Scholar]
- Shao, Q.; Wu, Y.; Pons-Branchu, E.; Zhu, Q.; Dapoigny, A.; Jiang, T. U-series dating of carbonate accretions reveals late Neolithic age for the rock paintings in Cangyuan, southwestern China. Quat. Geochronol. 2021, 61, 101127. [Google Scholar] [CrossRef]
- Tang, H.; Gao, Z. Dating analysis of rock art in the Qinghai-Tibetan Plateau. Rock Art Res. 2004, 21, 161–172. [Google Scholar]
- Tang, H.; Mei, Y. Dating and some other issues on the prehistoric site at Jiangjunya. Southeast Cult. 2008, 202, 11–23. [Google Scholar]
- Bednarik, R.G. A new method to date petroglyphs. Archaeometry 1992, 34, 279–291. [Google Scholar] [CrossRef]
- Bednarik, R.G. Geoarchaeological dating of petroglyphs at Lake Onega, Russia. Geoarchaeology 1993, 8, 443–463. [Google Scholar] [CrossRef]
- Bednarik, R.G. The age of the Coa valley petroglyphs in Portugal. Rock Art Res. 1995, 12, 86–103. [Google Scholar]
- Bednarik, R.G. Microerosion analysis of petroglyphs in Valtellina, Italy. Origini 1997, 21, 7–22. [Google Scholar]
- Bednarik, R.G. Age estimates for the petroglyph sequence of Inca Huasi, Mizque, Bolivia. Andean Past 2000, 6, 277–287. [Google Scholar]
- Bednarik, R.G. About the age of Pilbara rock art. Anthropos 2002, 97, 201–215. [Google Scholar]
- Tang, H.; Kumar, G.; Jin, A.; Wu, J.; Liu, W.; Bednarik, R.G. The 2015 rock art missions in China. Rock Art Res. 2018, 35, 25–34. [Google Scholar]
- Bednarik, R.G. Yanhua Kexue—Yuangu Yishu de Kexue Yanjiu (Rock Art Science: The Scientific Study of Palaeoart); Jin, A., Translator; Shaanxi Xinhua Publishing & Media Group: Xi’an, China, 2020. [Google Scholar]
- Tang, H. New discovery of rock art and megalithic sites in the Central Plain of China. Rock Art Res. 2012, 29, 157–170. [Google Scholar]
- Tang, H.; Kumar, G.; Liu, W.; Xiao, B.; Yang, H.; Zhang, J.; Lu, X.H.; Yue, J.; Li, Y.; Gao, W.; et al. The 2014 microerosion dating project in China. Rock Art Res. 2017, 34, 40–54. [Google Scholar]
- Beaumont, P.B.; Bednarik, R.G. Concerning a cupule sequence on the edge of the Kalahari Desert in South Africa. Rock Art Res. 2015, 32, 162–177. [Google Scholar]
- Bednarik, R.G. Advances in microerosion analysis. Rock Art Res. 2019, 36, 43–48. [Google Scholar]
- Jin, A.; Zhang, J.; Xiao, B.; Tang, H. Microerosion dating of Xianju petroglyphs, Zhejiang Province, China. Rock Art Res. 2016, 33, 3–7. [Google Scholar]
- Bednarik, R.G. The International Centre of Rock Art Dating and Conservation (ICRAD). Rock Art Res. 2016, 33, 111–112. [Google Scholar]
- Tang, H.; Jin, A.; Li, M.; Fan, Z.; Liu, W.; Kumar, G.; Bednarik, R.G. The 2017 rock art mission in Hubei Province, China. Rock Art Res. 2020, 37, 67–73. [Google Scholar]
- Jin, A.; Chao, G. The 2018 expedition to Fangcheng cupule sites in central China. Rock Art Res. 2019, 36, 157–163. [Google Scholar]
- Jin, A.; Chao, G. The 2018 and 2019 rock art expeditions to Lianyungang, east China. Rock Art Res. 2020, 37, 74–81. [Google Scholar]
- Jin, A.; Chao, G. The 2018 expedition to Anshan cupule sites, northeast China. Rock Art Res. 2021, 38, 3–9. [Google Scholar]
- Bednarik, R.G. The tribology of cupules. Geol. Mag. 2015, 152, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Bednarik, R.G. Tribology in Geology and Archaeology; Nova Science Publishers: New York, NY, USA, 2019. [Google Scholar]
- Li, M.; Lari, J.; Tang, H.; Li, Y.; Bednarik, R.G. The 2019 survey of petroglyphs in the Qinghai-Tibet Plateau, western China. Rock Art Res. 2022, 39. in press. [Google Scholar]
- Li, M.; Shi, L.; Wu, X.; Tang, H. Discovery of new type of cave rock paintings in Guangxi Zhuang Autonomous Region, China. Rock Art Res. 2020, 37, 5–18. [Google Scholar]
- Bednarik, R.G. Die Bedeutung der paläolithischen Fingerlinientradition. Anthropologie 1984, 23, 73–79. [Google Scholar]
- Taçon, P.S.C.; Aubert, M.; Gang, L.; Yang, D.; Liu, H.; May, S.K.; Fallon, S.; Ji, X.; Curnoe, D.; Herries, A.I.R. Uranium-series age estimates for rock art in southwest China. J. Archaeol. Sci. 2012, 39, 492–499. [Google Scholar] [CrossRef]
- Bard, E.; Hamelin, B.; Fairbanks, R.G.; Zindler, A. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature 1990, 345, 405–410. [Google Scholar] [CrossRef]
- Holmgren, K.; Lauritzen, S.-E.; Possnert, G. 230Th/234U and 14C dating of a late Pleistocene stalagmite in Lobatse II cave, Botswana. Quat. Sci. Rev. 1994, 13, 111–119. [Google Scholar] [CrossRef]
- Labonne, M.; Hillaire-Marcel, C.; Ghaleb, B.; Goy, J.L. Multi-isotopic age assessment of dirty speleothem calcite: An example from Altamira Cave, Spain. Quat. Sci. Rev. 2002, 21, 1099–1110. [Google Scholar] [CrossRef]
- Plagnes, V.; Causse, C.; Fontugne, M.; Valladas, H.; Chazine, J.-M.; Fage, L.-H. Cross dating (Th/U-14C) of calcite covering prehistoric paintings in Borneo. Quat. Res. 2003, 60, 172–179. [Google Scholar] [CrossRef]
- Quiles, A.; Fritz, C.; Medina, M.A.; Pons-Branchu, E.; Sanchidrián, J.L.; Tosello, G.; Valladas, H. Chronologies croisées (C-14 et U/Th) pour l’étude de l’art préhistorique dans la grotte de Nerja: Méthodologie. In Sobre Rocas y Huesos: Las Sociedades Prehistóricas y Sus Manifestaciones Plásticas; Medina-Alcaide, M.A., Romero Alonso, A., Ruiz-Márquez, R.M., Sanchidrián Torti, J.L., Eds.; Fundación Cueva de Nerja: Córdoba, Spain, 2014; pp. 420–427. [Google Scholar]
- Sanchidrián, J.L.; Valladas, H.; Medina-Alcaide, M.A.; Pons-Branchu, E.; Quiles, A. New perspectives for 14C dating of parietal markings using CaCO3 thin layers: An example in Nerja Cave (Spain). J. Archaeol. Sci. Rep. 2017, 12, 74–80. [Google Scholar] [CrossRef]
- Valladas, H.; Pons-Branchu, E.; Dumoulin, J.P.; Quiles, A.; Sanchidrián, J.L.; Medina-Alcaide, M.A. U/Th and 14C crossdating of parietal calcite deposits: Application to Nerja Cave (Andalusia, Spain) and future perspectives. Radiocarbon 2017, 59, 1955–1967. [Google Scholar] [CrossRef]
- Zhang, D.D.; Bennett, M.R.; Cheng, H.; Wang, L.; Zhang, H.; Reynolds, S.C.; Zhang, S.; Wang, X.; Li, T.; Urban, T.; et al. Earliest parietal art: Hominin hand and foot traces from the middle Pleistocene of Tibet. Sci. Bull. 2021, in press. [Google Scholar] [CrossRef]
- Hoffmann, D.L.; Standish, C.D.; García-Diez, M.; Pettitt, P.B.; Milton, J.A.; Zilhã, J.; Alcolea-Gonzalez, J.J.; Cantalejo-Duarte, P.; Collado, H.; De Balbin, R.; et al. U–Th dating of carbonate crusts reveal Neanderthal origin of Iberian cave art. Science 2018, 359, 912–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, D.L.; Standish, C.D.; García-Diez, M.; Pettitt, P.B.; Milton, J.A.; Zilhão, J.; Alcolea-González, J.J.; Cantalejo-Duarte, P.; Collado, H.; De Balbín, R.; et al. Response to Comment on ‘U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art’. Science 2018, 362, eaau1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, D.L.; Standish, C.D.; Pike, A.W.; García-Diez, M.; Pettitt, P.B.; Angelucci, D.E.; Villaverde, V.; Zapata, J.; Milton, J.A.; Alcolea-González, J.; et al. Dates for Neanderthal art and symbolic behaviour are reliable. Nat. Ecol. Evol. 2018, 2, 1044–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bednarik, R.G. U–Th analysis and rock art: A response to Pike et al. Rock Art Res. 2012, 29, 244–246. [Google Scholar]
- Clottes, J. U-series dating, evolution and Neandertal. Int. Newsl. Rock Art 2012, 64, 1–6. [Google Scholar]
- Pike, A.W.G.; Hoffmann, D.L.; García-Diez, M.; Pettitt, P.B.; Alcolea, J.; De Balbin, R.; González-Sainz, C.; De Las Heras, C.; Lasheras, J.-A.; Montes, R.; et al. U-series dating of Paleolithic art in 11 caves in Spain. Science 2012, 336, 1409–1413. [Google Scholar] [CrossRef] [Green Version]
- Pons-Branchu, E.; Bourrillon, R.; Conkey, M.W.; Fontugne, M.; Fritz, C.; Gárate, D.; Quiles, A.; Rivero, O.; Sauvet, G.; Tosello, G.; et al. Uranium-series dating of carbonate formations overlying Paleolithic art: Interest and limitations. Bull. Soc. Préh. Franç. 2014, 111, 211–224. [Google Scholar]
- Sauvet, G.; Bourrillon, R.; Conkey, M.; Fritz, C.; Garate-Maidagan, D.; Rivero Vila, O.; Tosello, G.; White, R. Answer to ‘Comment on uranium-thorium dating method and Palaeolithic rock art’ by Pons-Branchu et al. Quat. Int. 2017, 432, 96–97. [Google Scholar] [CrossRef]
- Hoffmann, D.L.; Utrilla, P.; Bea, M.; Pike, A.W.G.; García-Diez, M.; Zilhão, J.; Domingo, R. U-series dating of Palaeolithic rock art at Fuente del Trucho (Aragón, Spain). Quat. Int. 2016, 432, 50–58. [Google Scholar] [CrossRef]
- Hoffmann, D.L.; Pike, A.W.G.; García-Diez, M.; Pettitt, P.B. Methods for U-series dating of CaCO3 crusts associated with Palaeolithic cave art and application to Iberian sites. Quat. Geochron. 2016, 36, 104–116. [Google Scholar] [CrossRef]
- Pike, A.W.G.; Hoffmann, D.L.; Pettitt, P.B.; García-Diez, M.; Zilhão, J. Dating Palaeolithic cave art: Why U–Th is the way to go. Quat. Int. 2017, 432, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Aubert, M.; Brumm, A.; Huntley, J. Early dates for ‘Neanderthal cave art’ may be wrong. J. Hum. Evol. 2018, 125, 215–217. [Google Scholar] [CrossRef]
- White, R.; Bosinski, G.; Bourrillon, R.; Clottes, J.; Conkey, M.W.; Corchón Rodriguez, S.; Cortés-Sánchez, M.; de la Rasilla Vives, M.; Delluc, B.; Delluc, G.; et al. Still no archaeological evidence that Neanderthals created Iberian cave art. J. Hum. Evol. 2019, 144, 102640. [Google Scholar] [CrossRef]
- Lachniet, M.S.; Bernal, J.P.; Asmerom, Y.; Polyal, V. Uranium loss and aragonite-calcite age discordance in a calcitized aragonite stalagmite. Quat. Geochron. 2012, 14, 26–37. [Google Scholar] [CrossRef]
- Bajo, P.; Hellstrom, J.; Frisia, S.; Drysdale, R.; Black, J.; Woodhead, J.; Borsato, A.; Zanchetta, G.; Wallace, M.W.; Regattieri, E.; et al. ‘Cryptic’ diagenesis and its implications for speleothem geochronologies. Quat. Sci. Rev. 2016, 148, 17–28. [Google Scholar] [CrossRef]
- Fontugne, M.; Shao, Q.; Frank, N.; Thil, F.; Guidon, N.; Boeda, E. Cross dating (Th/U-14C) of calcite covering prehistoric paintings at Serra da Capivara National Park, Piauí, Brazil. Radiocarbon 2013, 55, 1191–1198. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Bednarik, R.G. Rock art dating by 230Th/234U analysis: An appraisal of Chinese case studies. Archaeol. Anthrop. Sci. 2021, 13, 19. [Google Scholar] [CrossRef]
- Facorellis, Y.; Kiparissi-Apostolika, N.; Maniatis, Y. The cave of Theopetra, Kalambaka: Radiocarbon evidence for 50,000 years of human presence. Radiocarbon 2001, 43, 1029–1048. [Google Scholar] [CrossRef] [Green Version]
- Bednarik, R.G. Antiquity and authorship of the Chauvet Cave rock art. Rock Art Res. 2007, 24, 21–34. [Google Scholar]
- Bednarik, R.G. Palaeoart of the Ice Age; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2017. [Google Scholar]
- Liritzis, I.; Vafiadou, A.; Zacharias, N.; Polymeris, G.; Bednarik, R.G. Advances in surface luminescence dating: Some new data from three selected Mediterranean sites. Medit. Archaeol. Archaeom. 2013, 13, 105–115. [Google Scholar]
- Liritzis, I.; Bednarik, R.G.; Kumar, G.; Polymeris, G.; Iliopoulos, I.; Xanthopoulou, V.; Zacharias, N.; Vafiadou, A.; Bratitsi, M. Daraki-Chattan rock art constrained OSL chronology and multianalytical techniques: A first pilot investigation. J. Cult. Herit. 2018, 37, 29–43. [Google Scholar] [CrossRef]
- Liritzis, I.; Panou, E.; Exarhos, M. Novel approaches in surface luminescence dating of rock art: A brief review. Medit. Archaeol. Archaeom. 2017, 17, 89–102. [Google Scholar]
- Liritzis, I. A new dating method by thermoluminescence of carved megalithic stone building. Comptes Rendus Acad. Sci. Ser. 2 Sci. Terre Planetes 1994, 319, 603–610. [Google Scholar]
- Poulianos, A.N. Petralona Cave dating controversy. Nature 1982, 299, 280–281. [Google Scholar] [CrossRef]
- Liritzis, Y. A critical dating revaluation of Petralona hominid: A caution for patience. Athens Ann. Archaeol. 1984, 15, 285–296. [Google Scholar]
- Liritzis, Y.; Galloway, R.B. The Th230/U234 disequilibrium dating of cave travertines. Nucl. Instr. Methods 1982, 201, 507–510. [Google Scholar] [CrossRef]
- Bednarik, R.G. The dating of rock art and bone by the uranium–thorium method. Rock Art Res. 2022, 39. in press. [Google Scholar]
Sample | MR-1 | HY-1 | YDG-1 | YDG-2 |
---|---|---|---|---|
Laboratory 1 | 1.359 ± 0.179 | 2.362 ± 2.573 | 4.674 ± 5.118 | 20.077 ± 2.742 |
Laboratory 2 | −7 +21/−26 | −20 +26/−35 | −14 +33/−45 | 0.4 ± 7.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednarik, R.G. Direct Dating of Chinese Immovable Cultural Heritage. Quaternary 2021, 4, 42. https://doi.org/10.3390/quat4040042
Bednarik RG. Direct Dating of Chinese Immovable Cultural Heritage. Quaternary. 2021; 4(4):42. https://doi.org/10.3390/quat4040042
Chicago/Turabian StyleBednarik, Robert G. 2021. "Direct Dating of Chinese Immovable Cultural Heritage" Quaternary 4, no. 4: 42. https://doi.org/10.3390/quat4040042
APA StyleBednarik, R. G. (2021). Direct Dating of Chinese Immovable Cultural Heritage. Quaternary, 4(4), 42. https://doi.org/10.3390/quat4040042