Late Quaternary Climate Variability and Change from Aotearoa New Zealand Speleothems: Progress in Age Modelling, Oxygen Isotope Master Record Construction and Proxy-Model Comparisons
Abstract
:1. Introduction
1.1. Focus of This Study
1.2. Physical Geography of New Zealand
2. Materials and Methods
2.1. New Zealand Records in SISAL and Additional Data
2.2. Dating, Age Models and Isotopic Analyses
2.3. Controls on Speleothem Growth and Interpretation of Speleothem Stable Isotope Signals
2.4. Isotope Master Record Approaches
2.5. Time Series Coverage Limitations for Isotope Master Records
2.6. Comparisons of Climate Model Simulation Data to the Waitomo Speleothem δ18O Isotope Master Record
3. Results
3.1. New Zealand Speleothem Coverage and Further Focus on the Holocene (MIS1; ~11 ka–Present)
3.2. Speleothem Isotope Master Record Techniques Using Holocene δ18O Data from Waitomo Caves
3.3. Comparison of Waitomo δ18O Master Record to Climate Model Simulation Data
4. Discussions
4.1. What Can New Zealand Speleothems Gathered for SISAL Tell Us about the Late Quaternary?
4.2. Replicated Isotopic Signals Support Creation of Isotope Master Records
4.3. Waitomo Holocene δ18O Isotope Master Record Temperature Context
4.4. Reconciling Waitomo δ18O Master Record Temperature Interpretations with Marine Records, Terrestrial Records and Model Results
4.4.1. Did Ocean Source Region Variability Consistently Influence Holocene Waitomo δ18O Trends?
4.4.2. Did Regional Ocean/Atmosphere Circulation Consistently Influence Waitomo δ18O Trends?
4.4.3. Caveats for Interpreting δ18O and Reconciling Different Drivers of Holocene Changes
5. Conclusions
6. Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Physical Geography of Karst Terrain of New Zealand
Appendix A.1. Waitomo Karst
Appendix A.2. Whakapunake Karst, Hawkes Bay
Appendix A.3. Paturau Karst
Appendix A.4. Mt. Arthur (Arthur Marble Karst), Kahurangi National Park
Appendix A.5. Punakaiki Karst, North Westland
Appendix A.6. Te Anau, Fiordland
Appendix A.7. Doubtful Sound, Fiordland
Appendix B. Theoretical Basis for Interpreting δ18O and δ13C Signatures in New Zealand Speleothems
Appendix B.1. δ18O in New Zealand Speleothems
Appendix B.2. δ13C in New Zealand Speleothems
Appendix C. Details on Regional Synoptic Weather Types and Weather/Climate Regimes of New Zealand
References
- Neukom, R.; Gergis, J. Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years. Holocene 2011, 22, 501–524. [Google Scholar] [CrossRef]
- Dixon, B.C.; Tyler, J.J.; Lorrey, A.M.; Goodwin, I.D.; Gergis, J.; Drysdale, R.N. Low-resolution Australasian palaeoclimate records of the last 2000 years. Clim. Past 2017, 13, 1403–1433. [Google Scholar] [CrossRef] [Green Version]
- Allan, R.; Lindesay, J.; Parker, D. El Niño Southern Oscillation & Climatic Variability; CSIRO Publishing: Clayton, Australia, 1996. [Google Scholar]
- Power, S.; Casey, T.; Folland, C.; Colman, A.; Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 1999, 15, 319–324. [Google Scholar] [CrossRef]
- Henley, B.J.; Gergis, J.; Karoly, D.J.; Power, S.; Kennedy, J.; Folland, C.K. A Tripole Index for the Interdecadal Pacific Oscillation. Clim. Dyn. 2015, 45, 3077–3090. [Google Scholar] [CrossRef]
- Fauchereau, N.; Pohl, B.; Lorrey, A. Extratropical impacts of the Madden-Julian oscillation over New Zealand from a weather regime perspective. J. Clim. 2016, 29, 2161–2175. [Google Scholar] [CrossRef]
- Lorrey, A.M.; Fauchereau, N.C. Southwest Pacific atmospheric weather regimes: Linkages to ENSO and extra-tropical teleconnections. Int. J. Climatol. 2018, 38, 1893–1909. [Google Scholar] [CrossRef]
- Gallant, A.J.E.; Phipps, S.J.; Karoly, D.J.; Mullan, A.B.; Lorrey, A.M. Nonstationary Australasian teleconnections and implications for paleoclimate reconstructions. J. Clim. 2013, 26, 8827–8849. [Google Scholar] [CrossRef] [Green Version]
- Atsawawaranunt, K.; Comas-Bru, L.; Amirnezhad-Mozhdehi, S.; Deininger, M.; Harrison, S.P.; Baker, A.; Boyd, M.; Kaushal, N.; Ahmad, S.M.; Brahim, Y.A.; et al. The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems. Earth Syst. Sci. Data 2018, 10, 1687–1713. [Google Scholar] [CrossRef] [Green Version]
- Hendy, C.H.; Wilson, A.T. Palaeoclimatic Data from Speleothems. Nature 1968, 219, 48–51. [Google Scholar] [CrossRef]
- Williams, P.W. A 230 ka record of glacial and interglacial events from Aurora Cave, Fiordland, New Zealand. N. Z. J. Geol. Geophys. 1996, 39, 225–241. [Google Scholar] [CrossRef]
- Williams, P.W.; Marshall, A.; Ford, D.C.; Jenkinson, A.V. Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand. Holocene 1999, 9, 649–657. [Google Scholar] [CrossRef]
- Denniston, R.; Wyrwoll, K.-H.; Polyak, V.J.; Brown, J.R.; Asmerom, Y.; Wanamaker, A.D.; Lapointe, Z.; Ellerbroek, R.; Barthelmes, M.; Cleary, D.; et al. A Stalagmite record of Holocene Indonesian–Australian summer monsoon variability from the Australian tropics. Quat. Sci. Rev. 2013, 78, 155–168. [Google Scholar] [CrossRef]
- Denniston, R.; Villarini, G.; Gonzales, A.N.; Wyrwoll, K.-H.; Polyak, V.J.; Ummenhofer, C.C.; Lachniet, M.S.; Wanamaker, A.D.; Humphreys, W.F.; Woods, D.; et al. Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia. Proc. Natl. Acad. Sci. USA 2015, 112, 4576–4581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denniston, R.; Ummenhofer, C.C.; Wanamaker, A.D.; Lachniet, M.S.; Villarini, G.; Asmerom, Y.; Polyak, V.J.; Passaro, K.J.; Cugley, J.; Woods, D.; et al. Expansion and Contraction of the Indo-Pacific Tropical Rain Belt over the Last Three Millennia. Sci. Rep. 2016, 6, 34485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treble, P.; Baker, A.; Ayliffe, L.K.; Cohen, T.J.; Hellstrom, J.C.; Gagan, M.K.; Frisia, S.; Drysdale, R.N.; Griffiths, A.; Borsato, A. Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia’s arid margin interpreted from speleothem records (23–15 ka). Clim. Past 2017, 13, 667–687. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.W. Testing the mid-latitude hydrologic seesaw. Nature 2015, 526, E1–E2. [Google Scholar] [CrossRef]
- Lorrey, A.M.; Bostock, H. The Climate of New Zealand Through the Quaternary. In Landscape and Quaternary Environmental Change in New Zealand; Atlantis Press: Paris, France, 2017; pp. 67–139. [Google Scholar] [CrossRef]
- Lorrey, A.M.; Newnham, R.M. Late Quaternary records and chronology of environmental change in the Southern Hemisphere—A contribution to SHAPE. J. Quat. Sci. 2017, 32, 661–664. [Google Scholar] [CrossRef]
- Comas-Bru, L.; Rehfeld, K.; Roesch, C.; Amirnezhad-Mozhdehi, S.; Harrison, S.P.; Atsawawaranunt, K.; Ahmad, S.M.; Ait Brahim, Y.; Baker, A.; Bosomworth, M.; et al. SISALv2: A comprehensive speleothem isotope database with multiple age-depth models. Earth Syst. Sci. Data Discuss. 2020. [Google Scholar] [CrossRef]
- Lorrey, A.; Williams, P.; Salinger, J.; Martin, T.; Palmer, J.G.; Fowler, A.; Zhao, J.-X.; Neil, H. Speleothem stable isotope records interpreted within a multi-proxy framework and implications for New Zealand palaeoclimate reconstruction. Quat. Int. 2008, 187, 52–75. [Google Scholar] [CrossRef]
- Williams, P.W.; King, D.N.T.; Zhao, J.-X.; Collerson, K.D. Late Pleistocene to Holocene composite speleothem 18O and 13C chronologies from South Island, New Zealand—Did a global Younger Dryas really exist? Earth Planet. Sci. Lett. 2005, 230, 301–317. [Google Scholar] [CrossRef]
- Hellstrom, J.C. Late Quaternary Palaeoenvironmental Records from the Geochemistry of Speleothems, North-West Nelson, New Zealand. Ph.D. Thesis, Australia National University, Canberra, Australia, 1998. [Google Scholar]
- Williams, P.W.; King, D.N.T.; Zhao, J.-X.; Collerson, K.D. Speleothem master chronologies: Combined Holocene 18O and 13C records from the North Island of New Zealand and their palaeoenvironmental interpretation. Holocene 2004, 14, 194–208. [Google Scholar] [CrossRef]
- Lorrey, A.M.; Vandergoes, M.; Renwick, J.; Newnham, R.; Ackerley, D.; Bostock, H.; Williams, P.W.; King, D.N.T.; Neil, H.; Harper, S.; et al. A Regional Climate Regime Classification Synthesis for New Zealand Covering Three Critical Periods of the Late Quaternary: The Last 2000 Years, the Mid-Holocene, and the End of the Last Glacial Coldest Period; NIWA Client Report AKL2010-025; National Institute of Water and Atmospheric Research Ltd.: Auckland, New Zealand, 2010. [Google Scholar]
- Whittaker, T.E. High-Resolution Speleothem-Based Palaeoclimate Records from New Zealand Reveal Robust Teleconnection to North Atlantic during MIS 1-4. Ph.D. Thesis, University of Waikato, Hamilton, New Zealand, 2008. [Google Scholar]
- Whittaker, T.E.; Hendy, C.H.; Hellstrom, J.C. Abrupt millennial-scale changes in intensity of Southern Hemisphere westerly winds during marine isotope stages 2–4. Geology 2011, 39, 455–458. [Google Scholar] [CrossRef]
- Logan, A.J. A New Palaeoclimate Record for North Westland, New Zealand, with Implications for the Interpretation of Speleothem Based Palaeoclimate Proxies. Unpublished. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2011. [Google Scholar]
- Haynes, L.L.; Horton, T.W.; Sulenes, L. Stable Isotope Record of a Metro Cave Speleothem from Westland, New Zealand for the Analysis of Regional Pleistocene and Holocene Climate Change. 2012. Available online: https://www.semanticscholar.org/paper/Stable-Isotope-record-of-a-Metro-Cave-speleothem-%2C-Haynes-Horton/e9f1cf621b685bbf4d994834165240b22fe2ecc5 (accessed on 25 May 2018).
- Hellstrom, J.; McCulloch, M.; Stone, J. A Detailed 31,000-Year Record of Climate and Vegetation Change, from the Isotope Geochemistry of Two New Zealand Speleothems. Quat. Res. 1998, 50, 167–178. [Google Scholar] [CrossRef]
- Breitenbach, S.F.; Rehfeld, K.; Goswami, B.; Baldini, J.U.; Ridley, H.E.; Kennett, D.J.; Prufer, K.M.; Aquino, V.V.; Asmerom, Y.; Polyak, V.J.; et al. COnstructing Proxy Records from Age models (COPRA). Clim. Past 2012, 8, 1765–1779. [Google Scholar] [CrossRef] [Green Version]
- Marwan, N.; Koethur, P.; Witt, C.; Breitenbach, S.F.M.; Sips, M. Analysing the degree of replication of palaeoclimate records. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Benson, A.; Hoffmann, D.L.; Bella, P.; Drury, A.J.; Hercman, H.; Atkinson, T.C. Building robust age models for speleothems—A case-study using coeval twin stalagmites. Quat. Geochronol. 2018, 43, 83–90. [Google Scholar] [CrossRef]
- Nava-Fernandez, C.; Hartland, A.; Gázquez, F.; Kwiecien, O.; Marwan, N.; Fox, B.; Hellstrom, J.; Pearson, A.; Ward, B.; French, A.; et al. Pacific climate reflected in Waipuna Cave dripwater hydrochemistry. Hydrol. Earth Syst. Sci. 2020, 24, 3361–3380. [Google Scholar] [CrossRef]
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Richts, A.; Stevanovic, Z.; et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Wilmshurst, J.M.; Hunt, T.L.; Lipo, C.P.; Anderson, A.J. High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proc. Natl. Acad. Sci. USA 2011, 108, 1815–1820. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.W. Karst in New Zealand. In Landforms of New Zealand; Soons, J.M., Selby, M.J., Eds.; Longman Paul: Auckland, New Zealand, 1992; pp. 186–209. [Google Scholar]
- Williams, P. New Zealand Landscape: Behind the Scene; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Sturman, A.P.; Tapper, N.J. The Weather and Climate of Australia and New Zealand; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Lorrey, A.; Fowler, A.; Salinger, J. Regional climate regime classification as a qualitative tool for interpreting multi-proxy palaeoclimate data spatial patterns: A New Zealand case study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 253, 407–433. [Google Scholar] [CrossRef]
- Kidson, J.W. An analysis of New Zelaand synoptic types and their use in defining weather regimes. Int. J. Climatol. 2000, 20, 299–316. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; England, M.H. Interannual Extremes in New Zealand Precipitation Linked to Modes of Southern Hemisphere Climate Variability. J. Clim. 2007, 20, 5418–5440. [Google Scholar] [CrossRef]
- Kidston, J.; Renwick, J.A.; McGregor, J. Hemispheric-Scale Seasonality of the Southern Annular Mode and Impacts on the Climate of New Zealand. J. Clim. 2009, 22, 4759–4770. [Google Scholar] [CrossRef] [Green Version]
- Lorrey, A.; Griffiths, G.; Fauchereau, N.; Diamond, H.J.; Chappell, P.R.; Renwick, J. An ex-tropical cyclone climatology for Auckland, New Zealand. Int. J. Climatol. 2014, 34, 1157–1168. [Google Scholar] [CrossRef]
- Jiang, N.; Griffiths, G.; Lorrey, A. Influence of large-scale climate modes on daily synoptic weather types over New Zealand. Int. J. Climatol. 2013, 33, 499–519. [Google Scholar] [CrossRef]
- LeGrande, A.N.; Schmidt, G.A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 2006, 33, L12604. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.; Neil, H.; Zhao, J.-X. Age frequency distribution and revised stable isotope curves for New Zealand speleothems: Palaeoclimatic implications. Int. J. Speleol. 2010, 39, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.W.; McGlone, M.; Neil, H.; Zhao, J.-X. A review of New Zealand palaeoclimate from the Last Interglacial to the global Last Glacial Maximum. Quat. Sci. Rev. 2015, 110, 92–106. [Google Scholar] [CrossRef]
- Alloway, B.V.; Lowe, D.; Barrell, D.J.A.; Newnham, R.M.; Almond, P.C.; Augustinus, P.; Bertler, N.A.; Carter, L.; Litchfield, N.J.; McGlone, M.S.; et al. Towards a climate event stratigraphy for New Zealand over the past 30,000 years (NZ-INTIMATE project). J. Quat. Sci. 2007, 22, 9–35. [Google Scholar] [CrossRef]
- Lorrey, A.; Fauchereau, N.; Stanton, C.; Chappell, P.; Phipps, S.J.; Mackintosh, A.N.; Renwick, J.A.; Goodwin, I.; Fowler, A. The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: A synoptic type approach. Clim. Dyn. 2014, 42, 3039–3060. [Google Scholar] [CrossRef]
- Lorrey, A.M.; Vandergoes, M.; Almond, P.; Renwick, J.; Stephens, T.; Bostock, H.; Mackintosh, A.; Newnham, R.; Williams, P.W.; Ackerley, D.; et al. Palaeocirculation across New Zealand during the last glacial maximum at ∼21 ka. Quat. Sci. Rev. 2012, 36, 189–213. [Google Scholar] [CrossRef]
- Hellstrom, J.; McCulloch, M. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem. Earth Planet. Sci. Lett. 2000, 179, 287–297. [Google Scholar] [CrossRef]
- Zhao, J.; Xia, Q.; Collerson, K.D. Timing and duration of the Last Interglacial inferred from high resolution U-series chronology of stalagmite growth in Southern Hemisphere. Earth Planet. Sci. Lett. 2001, 184, 635–644. [Google Scholar] [CrossRef]
- Dorale, J.A.; Liu, Z. Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. J. Cave Karst Stud. 2009, 71, 73–80. [Google Scholar]
- Fairchild, I.J.; Baker, A. Speleothem Science: From Process to Past Environments; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 3. [Google Scholar]
- Markowska, M.; Cuthbert, M.O.; Baker, A.; Treble, P.C.; Andersen, M.S.; Adler, L.; Griffiths, A.; Frisia, S. Modern speleothem oxygen isotope hydroclimate records in water-limited SE Australia. Geochim. Cosmochim. Acta 2020, 270, 431–448. [Google Scholar] [CrossRef]
- Baisden, W.T.; Keller, E.D.; Van Hale, R.; Frew, R.D.; Wassenaar, L.I. Precipitation isoscapes for New Zealand: Enhanced temporal detail using precipitation-weighted daily climatology. Isotopes Environ. Health Stud. 2016, 52, 343–352. [Google Scholar] [CrossRef]
- Purdie, H.; Bertler, N.; Mackintosh, A.; Baker, J.; Rhodes, R. Isotopic and Elemental Changes in Winter Snow Accumulation on Glaciers in the Southern Alps of New Zealand. J. Clim. 2010, 23, 4737–4749. [Google Scholar] [CrossRef]
- Kerr, T.; Srinivasan, M.S.; Rutherford, J. Stable Water Isotopes across a Transect of the Southern Alps, New Zealand. J. Hydrometeorol. 2015, 16, 702–715. [Google Scholar] [CrossRef]
- Williams, P.W.; Fowler, A. Relationship between oxygen isotopes in rainfall, cave percolation waters and speleothem calcite at Waitomo, New Zealand. J. Hydrol. N. Z. 2002, 41, 53–70. [Google Scholar]
- Lachniet, M.S.; Asmerom, Y.; Polyak, V.; Bernal, J.P. Two millennia of Mesoamerican monsoon variability driven by Pacific and Atlantic synergistic forcing. Quat. Sci. Rev. 2017, 155, 100–113. [Google Scholar] [CrossRef]
- Waelbroeck, C.; Labeyrie, L.; Michel, E.; Duplessy, J.; McManus, J.; Lambeck, K.; Balbon, E.; Labracherie, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 2002, 21, 295–305. [Google Scholar] [CrossRef]
- Lea, D.; Pak, D.; Spero, H. Climate impact of late quaternary equatorial pacific sea surface temperature variations. Science 2000, 289, 1719–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappell, P.R. The Climate and Weather of Waikato, 2nd ed.; NIWA Science and Technology Series: Wellington, New Zealand, 2013. [Google Scholar]
- Baker, A.; Hartmann, A.; Duan, W.; Hankin, S.; Comas-Bru, L.; Cuthbert, M.O.; Treble, P.C.; Banner, J.; Genty, D.; Baldini, L.; et al. Global analysis reveals climatic controls on the oxygen isotope composition of cave drip water. Nat. Commun. 2019, 10, 2984. [Google Scholar] [CrossRef] [PubMed]
- Feng, H. Simulating Transient Climate Evolution of the Last Deglaciation with CCSM3. Ph.D. Thesis, University of Wisconsin-Madison, Madison, MI, USA, 2011. [Google Scholar]
- Timm, O.; Timmermann, A. Simulation of the Last 21 000 Years Using Accelerated Transient Boundary Conditions. J. Clim. 2007, 20, 4377–4401. [Google Scholar] [CrossRef]
- Wagner, S.; Widmann, M.; Jones, J.; Haberzettl, T.; Lücke, A.; Mayr, C.; Ohlendorf, C.; Schäbitz, F.; Zolitschka, B. Transient simulations, empirical reconstructions and forcing mechanisms for the Mid-Holocene hydrological climate in Southern Patagonia. Clim. Dyn. 2007, 29, 333–355. [Google Scholar] [CrossRef] [Green Version]
- Dallmeyer, A.; Claussen, M.; Lorenz, S.J.; Shanahan, T. The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Clim. Past 2020, 16, 117–140. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.; Loutre, M.F. Insolation values for the climate of last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317. [Google Scholar] [CrossRef]
- Braconnot, P.; Otto-Bliesner, B.; Harrison, S.; Joussaume, S.; Peterchmitt, J.Y.; Abe-Ouchi, A.; Crucifix, M.; Driesschaert, E.; Fichefet, T.; Hewitt, C.D.; et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Clim. Past 2007, 3, 261–277. [Google Scholar] [CrossRef] [Green Version]
- Newnham, R.M. A 30,000 Year Pollen, Vegetation and Climate Record from Otakairangi (Hikurangi), Northland, New Zealand. J. Biogeogr. 1992, 19, 541–554. [Google Scholar] [CrossRef]
- McGlone, M.S.; Turney, C.S.M.; Wilmshurst, J.M. Late-glacial and Holocene vegetation and climatic history of the Cass Basin, central South Island, New Zealand. Quat. Res. 2004, 62, 267–279. [Google Scholar] [CrossRef]
- Sandiford, A.; Newnham, R.; Alloway, B.; Ogden, J. A 28 000–7600 cal yr BP pollen record of vegetation and climate change from Pukaki Crater, northern New Zealand. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 201, 235–247. [Google Scholar] [CrossRef]
- Vandergoes, M.J.; Newnham, R.M.; Preusser, F.; Hendy, C.H.; Lowell, T.V.; Fitzsimons, S.J.; Hogg, A.G.; Kasper, H.U.; Schlüchter, C. Regional insolation forcing of late Quaternary climate change in the Southern Hemisphere. Nature 2005, 436, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Newnham, R.M.; Lowe, D.J.; Giles, T.; Alloway, B.V. Vegetation and climate of Auckland, New Zealand, since ca. 32 000 cal. yr ago: Support for an extended LGM. J. Quat. Sci. 2007, 22, 517–534. [Google Scholar] [CrossRef]
- Li, X.; Rapson, G.L.; Flenley, J.R. Holocene vegetational and climatic history, Sponge Swamp, Haast, south-western New Zealand. Quat. Int. 2008, 184, 129–138. [Google Scholar] [CrossRef]
- McGlone, M.S.; Newnham, R.M.; Moar, N.T. The vegetation cover of New Zealand during the Last Glacial Maximum: Do pollen records under-represent woody vegetation? In Terra Australis; Haberle, S., Stevenson, J., Prebble, M., Eds.; ANU Press: Canberra, Australia, 2010; Volume 32, pp. 49–68. [Google Scholar]
- McGlone, M.S.; Richardson, S.J.; Burge, O.R.; Perry, G.L.W.; Wilmshurst, J.M. Palynology and the Ecology of the New Zealand Conifers. Front. Earth Sci. 2017, 5, 94. [Google Scholar] [CrossRef] [Green Version]
- Newnham, R.; Alloway, B.V.; Holt, K.; Butler, K.; Rees, A.; Wilmshurst, J.M.; Dunbar, G.; Hajdas, I. Last Glacial pollen-climate reconstructions from Northland, New Zealand. J. Quat. Sci. 2017, 32, 685–703. [Google Scholar] [CrossRef]
- McGlone, M.S.; Salinger, M.J.; Moar, M.N. Paleovegetation studies of New Zealand’s climate since the Last Glacial Maximum. In Global Climates since the Last Glacial Maximum; Wright, H.E., Kutzbach, J.E., Webb, T., Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J., Eds.; University of Minnesota Press: Minneapolis, MN, USA, 1993; pp. 294–317. [Google Scholar]
- Barrows, T.; Juggins, S.; De Deckker, P.; Calvo, E.; Pelejero, C. Long-term sea surface temperature and climate change in the Australian-New Zealand region. Paleoceanography 2007, 22. [Google Scholar] [CrossRef] [Green Version]
- Putnam, A.E.; Schaefer, J.M.; Denton, G.H.; Barrell, D.J.; Birkel, S.D.; Andersen, B.G.; Kaplan, M.R.; Finkel, R.C.; Schwartz, R.; Doughty, A.M. The Last Glacial Maximum at 44°S documented by a 10Be moraine chronology at Lake Ohau, Southern Alps of New Zealand. Quat. Sci. Rev. 2013, 62, 114–141. [Google Scholar] [CrossRef]
- Eaves, S.R.; Winckler, G.; Mackintosh, A.N.; Schaefer, J.M.; Townsend, D.B.; Doughty, A.M.; Jones, R.S.; Leonard, G.S. Late-glacial and Holocene glacier fluctuations in North Island, New Zealand. Quat. Sci. Rev. 2019, 223, 105914. [Google Scholar] [CrossRef]
- Golledge, N.R.; Mackintosh, A.; Anderson, B.M.; Buckley, K.M.; Doughty, A.M.; Barrell, D.J.A.; Denton, G.H.; Vandergoes, M.J.; Andersen, B.G.; Schaefer, J.M. Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield. Quat. Sci. Rev. 2012, 46, 30–45. [Google Scholar] [CrossRef]
- Frisia, S.; Borsato, A.; Spötl, C.; Villa, I.M.; Franco, C. Climate variability in the SE Alps of Italy over the past 17 000 years reconstructed from a stalagmite record. Boreas 2005, 34, 445–455. [Google Scholar] [CrossRef]
- Lancashire, A.K.; Flenley, J.R.; Harper, M. Late Glacial beech forest: An 18,000–5000-BP pollen record from Auckland, New Zealand. Glob. Planet. Chang. 2002, 33, 315–327. [Google Scholar] [CrossRef]
- Newnham, R.M.; Lowe, D.J. Holocene vegetation and volcanic activity, Auckland Isthmus, New Zealand. J. Quat. Sci. 1991, 6, 177–193. [Google Scholar] [CrossRef]
- Stephens, T.; Atkin, D.; Augustinus, P.; Shane, P.; Lorrey, A.; Street-Perrott, A.; Nilsson, A.; Snowball, I. A late glacial Antarctic climate teleconnection and variable Holocene seasonality at Lake Pupuke, Auckland, New Zealand. J. Paleolimnol. 2012, 48, 785–800. [Google Scholar] [CrossRef]
- Stephens, T.; Atkin, D.; Cochran, U.A.; Augustinus, P.; Reid, M.; Lorrey, A.; Shane, P.; Street-Perrott, A. A diatom-inferred record of reduced effective precipitation during the Last Glacial Coldest Phase (28.8–18.0 cal kyr BP) and increasing Holocene seasonality at Lake Pupuke, Auckland, New Zealand. J. Paleolimnol. 2012, 48, 801–817. [Google Scholar] [CrossRef]
- Duncan, R.P.; Fenwick, P.; Palmer, J.G.; McGlone, M.S.; Turney, C.S.M. Non-uniform interhemispheric temperature trends over the past 550 years. Clim. Dyn. 2010, 35, 1429–1438. [Google Scholar] [CrossRef]
- Ahmed, M.; Anchukaitis, K.J.; Asrat, A.; Borgaonkar, H.P.; Braida, M.; Buckley, B.M.; Büntgen, U.; Chase, B.M.; Christie, D.A.; Cook, E.R.; et al. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 2013, 6, 339–346. [Google Scholar]
- Cook, E.R.; Buckley, B.M.; Palmer, J.; Fenwick, P.; Peterson, M.J.; Boswijk, G.; Fowler, A. Millennia-long tree-ring records from Tasmania and New Zealand: A basis for modelling climate variability and forcing, past, present and future. J. Quat. Sci. 2006, 21, 689–699. [Google Scholar] [CrossRef]
- D’Arrigo, R.D.; Cook, E.R.; Salinger, M.J.; Palmer, J.G.; Krusic, P.J.; Buckley, B.M.; Villalba, R. Tree-ring records from New Zealand: Long-term context for recent warming trend. Clim. Dyn. 1998, 14, 191–199. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Cook, E.; Villalba, R.; Buckley, B.; Salinger, J.; Palmer, J.G.; Allen, K. Trans-Tasman Sea climate variability since ad 1740 inferred from middle to high latitude tree-ring data. Clim. Dyn. 2000, 16, 603–610. [Google Scholar] [CrossRef]
- Cook, E.R.; Palmer, J.G.; D’Arrigo, R.D. Evidence for a ‘Medieval Warm Period’ in a 1,100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef] [Green Version]
- Mackintosh, A.N.; Anderson, B.M.; Lorrey, A.M.; Renwick, J.A.; Frei, P.; Dean, S.M. Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nat. Commun. 2017, 8, 14202. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.; Mackintosh, A. Temperature change is the major driver of late-glacial and Holocene glacier fluctuations in New Zealand. Geology 2006, 34, 121–124. [Google Scholar] [CrossRef]
- Schaefer, J.M.; Denton, G.H.; Kaplan, M.; Putnam, A.E.; Finkel, R.C.; Barrell, D.J.A.; Andersen, B.G.; Schwartz, R.; Mackintosh, A.N.; Chinn, T.; et al. High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 2009, 324, 622–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doughty, A.M.; Mackintosh, A.; Anderson, B.M.; Dadic, R.; Putnam, A.; Barrell, D.J.A.; Denton, G.H.; Chinn, T.J.; Schaefer, J.M. An exercise in glacier length modeling: Interannual climatic variability alone cannot explain Holocene glacier fluctuations in New Zealand. Earth Planet. Sci. Lett. 2017, 470, 48–53. [Google Scholar] [CrossRef]
- Putnam, A.; Schaefer, J.M.; Denton, G.H.; Barrell, D.J.A.; Finkel, R.C.; Andersen, B.G.; Schwartz, R.; Chinn, T.J.H.; Doughty, A.M. Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene. Nat. Geosci. 2012, 5, 627–630. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, M.; Schaefer, J.M.; Denton, G.; Doughty, A.M.; Barrell, D.J.A.; Chinn, T.J.; Putnam, A.; Andersen, B.G.; Mackintosh, A.; Finkel, R.C.; et al. The anatomy of long-term warming since 15 ka in New Zealand based on net glacier snowline rise. Geology 2013, 41, 887–890. [Google Scholar] [CrossRef]
- Winkler, S. The ‘Little Ice Age’ maximum in the Southern Alps, New Zealand: Preliminary results at Mueller Glacier. Holocene 2000, 10, 643–647. [Google Scholar] [CrossRef]
- Winkler, S. Investigation of late-Holocene moraines in the western Southern Alps, New Zealand, applying Schmidt-hammer exposure-age dating. Holocene 2014, 24, 48–66. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Kerschner, H.; Maisch, M.; Christl, M.; Kubik, P.W.; Schlüchter, C. Latest Pleistocene and Holocene glacier variations in the European Alps. Quat. Sci. Rev. 2009, 28, 2137–2149. [Google Scholar] [CrossRef]
- Dowling, L.H. The Holocene Glacial History of Dart Glacier, Southern Alps, New Zealand. Master’s Thesis, Victoria University Wellington, Wellington, New Zealand, 2019. [Google Scholar]
- McGlone, M.S.; Hall, G.M.J.; Wilmshurst, J.M. Seasonality in the early Holocene: Extending fossil-based estimates with a forest ecosystem process model. Holocene 2011, 21, 517–526. [Google Scholar] [CrossRef]
- Bostock, H.C.; Opdyke, B.N.; Gagan, M.K.; Kiss, A.E.; Fifield, L.K. Glacial/interglacial changes in the East Australian current. Clim. Dyn. 2006, 26, 645–659. [Google Scholar] [CrossRef]
- Samson, C.R.; Sikes, E.L.; Howard, W.R. Deglacial paleoceanographic history of the Bay of Plenty, New Zealand. Paleoceanography 2005, 20. [Google Scholar] [CrossRef] [Green Version]
- Prebble, J.G.; Bostock, H.C.; Cortese, G.; Lorrey, A.; Hayward, B.W.; Calvo, E.C.; Northcote, L.C.; Scott, G.H.; Neil, H.L. Evidence for a Holocene Climatic Optimum in the southwest Pacific: A multiproxy study. Paleoceanography 2017, 32, 763–779. [Google Scholar] [CrossRef] [Green Version]
- Sikes, E.L.; Schiraldi, B.; Williams, A. Seasonal and Latitudinal Response of New Zealand Sea Surface Temperature to Warming Climate Since the Last Glaciation: Comparing Alkenones to Mg/Ca Foraminiferal Reconstructions. Paleoceanogr. Paleoclimatol. 2019, 34, 1816–1832. [Google Scholar] [CrossRef]
- Schiraldi, B.; Sikes, E.L.; Elmore, A.C.; Cook, M.S.; Rose, K.A. Southwest Pacific subtropics responded to last deglacial warming with changes in shallow water sources. Paleoceanography 2014, 29, 595–611. [Google Scholar] [CrossRef] [Green Version]
- Pahnke, K.; Sachs, J.P. Sea surface temperatures of southern midlatitudes 0–160 kyr B.P. Paleoceanography 2006, 21, PA2003. [Google Scholar] [CrossRef]
- Carter, L.; Manighetti, B.; Ganssen, G.; Northcote, L. Southwest Pacific modulation of abrupt climate change during the Antarctic Cold Reversal–Younger Dryas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 260, 284–298. [Google Scholar] [CrossRef]
- Mildenhall, D.C.; Brown, L.J. An early Holocene occurrence of the mangrove Avicennia marina in Poverty Bay, North Island, New Zealand: Its climatic and geological implications. N. Z. J. Bot. 1987, 25, 281–294. [Google Scholar] [CrossRef]
- Barrows, T.T.; Lehman, S.J.; Fifield, L.K.; De Deckker, P. Absence of Cooling in New Zealand and the Adjacent Ocean During the Younger Dryas Chronozone. Science 2007, 318, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Sikes, E.L.; Howard, W.R.; Samson, C.R.; Mahan, T.S.; Robertson, L.G.; Volkman, J.K. Southern Ocean seasonal temperature and Subtropical Front movement on the South Tasman Rise in the late Quaternary. Paleoceanography 2009, 24. [Google Scholar] [CrossRef]
- Bostock, H.C.; Hayward, B.W.; Neil, H.L.; Sabaa, A.T.; Scott, G.H. Changes in the position of the Subtropical Front south of New Zealand since the last glacial period. Paleoceanography 2015, 30, 824–844. [Google Scholar] [CrossRef]
- Lachniet, M.S. Climatic and environmental controls on speleothem oxygen-isotope values. Quat. Sci. Rev. 2009, 28, 412–432. [Google Scholar] [CrossRef]
- Varma, V.; Prange, M.; Merkel, U.; Kleinen, T.; Lohmann, G.; Pfeiffer, M.; Renssen, H.; Wägner, A.; Wagner, S.; Schulz, M. Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Clim. Past 2012, 8, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Ackerley, D.; Lorrey, A.; Renwick, J.A.; Phipps, S.J.; Wagner, S.; Dean, S.; Singarayer, J.; Valdes, P.; Abe-Ouchi, A.; Ohgaito, R.; et al. Using synoptic type analysis to understand New Zealand climate during the Mid-Holocene. Clim. Past Discuss. 2011, 7, 1301–1337. [Google Scholar] [CrossRef]
- Ackerley, D.; Lorrey, A.; Renwick, J.A.; Phipps, S.J.; Wagner, S.; Fowler, A. High-resolution modelling of mid-Holocene New Zealand climate 6000 yr BP. Holocene 2013, 23, 1272–1285. [Google Scholar] [CrossRef] [Green Version]
- Brayshaw, D.J.; Hoskins, B.; Blackburn, M. The Storm-Track Response to Idealized SST Perturbations in an Aquaplanet GCM. J. Atmos. Sci. 2008, 65, 2842–2860. [Google Scholar] [CrossRef]
- Lu, J.; Chen, G.; Frierson, D.M.W. The Position of the Midlatitude Storm Track and Eddy-Driven Westerlies in Aquaplanet AGCMs. J. Atmos. Sci. 2010, 67, 3984–4000. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Plumb, R.A.; Lu, J. Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua-planet model. Geophys. Res. Lett. 2010, 37, L12701. [Google Scholar] [CrossRef]
- Arblaster, J.M.; Meehl, G.A. Contributions of External Forcings to Southern Annular Mode Trends. J. Clim. 2006, 19, 2896–2905. [Google Scholar] [CrossRef]
- Toggweiler, J.R.; Russell, J. Ocean circulation in a warming climate. Nature 2008, 451, 286–288. [Google Scholar] [CrossRef]
- Monnin, E.; Steig, E.J.; Siegenthaler, U.; Kawamura, K.; Schwander, J.; Stauffer, B.; Stocker, T.F.; Morse, D.L.; Barnola, J.-M.; Bellier, B.; et al. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet. Sci. Lett. 2004, 224, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Fowler, A.; Boswijk, G.; Lorrey, A.M.; Gergis, J.; Pirie, M.; McCloskey, S.P.J.; Palmer, J.; Wunder, J. Multi-centennial tree-ring record of ENSO-related activity in New Zealand. Nat. Clim. Chang. 2012, 2, 172–176. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Sen Gupta, A.; England, M.H. Causes of Late Twentieth-Century Trends in New Zealand Precipitation. J. Clim. 2009, 22, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Raphael, M.N. A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett. 2004, 31, L23212. [Google Scholar] [CrossRef]
- Ackerley, D.; Reeves, J.; Barr, C.; Bostock, H.; Fitzsimmons, K.; Fletcher, M.-S.; Gouramanis, C.; McGregor, H.V.; Mooney, S.; Phipps, S.J.; et al. Evaluation of PMIP2 and PMIP3 simulations of mid-Holocene climate in the Indo-Pacific, Australasian and Southern Ocean regions. Clim. Past 2017, 13, 1661–1684. [Google Scholar] [CrossRef]
- Wynn, P.M.; Fairchild, I.J.; Spötl, C.; Hartland, A.; Mattey, D.; Fayard, B.; Cotte, M. Synchrotron X-ray distinction of seasonal hydrological and temperature patterns in speleothem carbonate. Environ. Chem. 2014, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Lorrey, A.; Boswijk, G.; Hogg, A.G.; Palmer, J.G.; Turney, C.S.M.; Fowler, A.; Ogden, J.; Woolley, J.-M. The scientific value and potential of New Zealand swamp kauri. Quat. Sci. Rev. 2018, 183, 124–139. [Google Scholar] [CrossRef]
- Newnham, R.M.; Lowe, D.; Green, J.D.; Turner, G.; A Harper, M.; McGlone, M.S.; Stout, S.L.; Horie, S.; Froggatt, P.C. A discontinuous ca. 80 ka record of Late Quaternary environmental change from Lake Omapere, Northland, New Zealand. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 207, 165–198. [Google Scholar] [CrossRef]
- Wardle, P. Vegetation of New Zealand; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Van Beynen, P. Paleo-Environmental Analysis of Speleothems. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 1993. [Google Scholar]
- Salmon, J.T. The Native Trees of New Zealand; Reed Methuen: Wellington, New Zealand, 1980. [Google Scholar]
- Crossley, P.C. The New Zealand Cave Atlas—North Island; New Zealand Speleological Society: Christchurch, New Zealand, 1988; p. 311. [Google Scholar]
- Williams, P.W. The evolution of the mountains of New Zealand. In Mountain Geomorphology; Owens, P.N., Slaymaker, O., Eds.; Edward Arnold Publishers Ltd.: London, UK, 2004; pp. 89–108. [Google Scholar]
- Williams, P.W. Tectonic geomorphology, uplift rates and geomorphic response in New Zealand. Catena 1991, 18, 439–452. [Google Scholar] [CrossRef]
- Crossley, P.C. The New Zealand Cave Atlas—South Island; New Zealand Speleological Society: Christchurch, New Zealand, 1990. [Google Scholar]
- Hellstrom, J.; Sniderman, K.; Drysdale, R.; Couchoud, I.; Hartland, A.; Pearson, A.; Bajo, P. Speleothem growth intervals reflect New Zealand montane vegetation response to temperature change over the last glacial cycle. Sci. Rep. 2020, 10, 2492. [Google Scholar] [CrossRef] [Green Version]
- Dean, S.M.; Stott, P.A. The Effect of Local Circulation Variability on the Detection and Attribution of New Zealand Temperature Trends. J. Clim. 2009, 22, 6217–6229. [Google Scholar] [CrossRef]
- Taylor, C.B. Stable Isotope Compositions of Monthly Precipitation samples Collected in New Zealand and Rarotonga; Physical Science Rep. 3; Dept. of Scientific and Industrial Research: Lower Hutt, New Zealand, 1990. [Google Scholar]
- Bowen, G.J. The Online Isotopes in Precipitation Calculator, Version 3.1. Available online: http://www.waterisotopes.org (accessed on 1 May 2018).
- Treble, P.; Chappell, J.; Gagan, M.; Mckeegan, K.; Harrison, T. In situ measurement of seasonal δ18O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth Planet. Sci. Lett. 2005, 233, 17–32. [Google Scholar] [CrossRef]
- Pillans, B.; McGlone, M.; Palmer, A.; Mildenhall, D.; Alloway, B.; Berger, G.; Pillans, B. The last glacial maximum in central and southern North Island, New Zealand: A paleoenvironmental reconstruction using the Kawakawa Tephra Formation as a chronostratigraphic marker. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1993, 101, 283–304. [Google Scholar] [CrossRef]
- Pearson, A.R.; Hartland, A.; Frisia, S.; Fox, B.R.S. Formation of calcite in the presence of dissolved organic matter: Partitioning, fabrics and fluorescence. Chem. Geol. 2020, 539, 119492. [Google Scholar] [CrossRef]
- Magiera, M.; Lechleitner, F.A.; Erhardt, A.M.; Hartland, A.; Kwiecien, O.; Cheng, H.; Bradbury, H.J.; Turchyn, A.V.; Riechelmann, S.; Edwards, L.; et al. Local and Regional Indian Summer Monsoon Precipitation Dynamics During Termination II and the Last Interglacial. Geophys. Res. Lett. 2019, 46, 12454–12463. [Google Scholar] [CrossRef]
- Fohlmeister, J.; Voarintsoa, N.R.G.; Lechleitner, F.A.; Boyd, M.; Brandtstätter, S.; Jacobson, M.J.; Oster, J.L. Main controls on the stable carbon isotope composition of speleothems. Geochim. Cosmochim. Acta 2020, 279, 67–87. [Google Scholar] [CrossRef]
Site Name | SISAL Site ID | Latitude | Longitude | Entity Name | Entity_ID | Cave Location | Min Year BP | Max Year BP | SISAL Version | Climate Region | References |
---|---|---|---|---|---|---|---|---|---|---|---|
Aurora-Te Ana-au | 161 | −45.3 | 167.7 | Au-3 | 355 | Fiordland | 1750 | 7140 | v1 | WSI | [21] |
Babylon | 283 | −41.95 | 171.47 | BN-3 | 647 | North Westland | 11,030 | 63,820 | v2 | WSI | Williams unpublished |
Babylon | 283 | −41.95 | 171.47 | BN-2 | 646 | North Westland | 11,320 | 22,985 | v2 | WSI | [22] |
Babylon | 283 | −41.95 | 171.47 | BN-1 | 645 | North Westland | 1095 | 10,330 | v2 | WSI | [22] |
Calcite | 162 | −46.02 | 167.74 | Calcite (CAL) | 356 | Fiordland | 1740 | 9335 | v1 | WSI | [21] |
Creightons | 284 | −40.63 | 172.47 | CN-1 | 648 | Paturau | 7260 | 13,955 | v2 | NSI | [22] |
Disbelief | 285 | −38.82 | 177.52 | Disbelief (DIS) | 649 | Hawkes Bay | 662 | 7720 | v2 | ENI | [21] |
Doubtful Xanadu | 169 | −45.37 | 167.04 | Doubtful (DX) | 365 | Fiordland | 2980 | 11,265 | v1 | WSI | [21] |
Exhaleair | 150 | −41.28 | 172.63 | ED-1 | 325 | Kahurangi N.P. | 340 | 14,730 | v1 | NSI | [23] |
Gardner’s Gut | 163 | −38.25 | 175.02 | GG1 | 357 | Waitomo | 180 | 10,150 | v1 | NNI | [12,24] |
Gardner’s Gut | 163 | −38.25 | 175.02 | GG2 | 358 | Waitomo | 25 | 11,825 | v1 | NNI | [12,24] |
Gardner’s Gut | 163 | −38.25 | 175.02 | Gardner’s Gut | - | Waitomo | - | - | NS | NNI | [10] |
Gardner’s Gut | 163 | −38.25 | 175.02 | GG5 | - | Waitomo | - | - | NA | NNI | Williams unpublished and [25] |
Gardner’s Gut | 163 | −38.25 | 175.02 | GG7 | - | Waitomo | 0 | 5340 | NA | NNI | Williams unpublished and [25] |
Guillotine | 151 | −42.31 | 172.21 | GT05-5 | 326 | North Westland | 0 | 8925 | v1 | WSI | [26] |
Hazey Hole | - | −42.5 | 173.5 | Hazey Hole | - | North Canterbury | - | - | N | ESI | Williams unpublished and [25] |
Hodges Creek | - | −41.16 | 172.7 | HC-15-02 | - | Kahurangi N.P. | 1005 | 12,590 | NA | NSI | Hartland unpublished |
Hollywood | 82 | −41.95 | 171.47 | HW05-3 (HW3) | 175 | North Westland | 11,315 | 73,255 | v1 | WSI | [27] |
Hollywood | 82 | −41.95 | 171.47 | HW-1 | 673 | North Westland | 5 | 4190 | v2 | WSI | [22] |
Max’s | 164 | −38.3 | 175.6 | Max’s | 359 | Waitomo | 3000 | 6155 | v1 | NNI | [12,24] |
Metro | 272 | −41.93 | 171.48 | M-1 | 576 | North Westland | 65 | 12,175 | v2 | WSI | [28] |
Metro | 272 | −41.93 | 171.48 | Metro-3 (M-3) | - | North Westland | - | - | NS | WSI | [29] |
Nettlebed | 158 | −41.28 | 172.63 | MD-3 | 350 | Kahurangi N.P. | 160 | 30,895 | v1 | NSI | [23,30] |
Ruakuri | 165 | −38.27 | 175.08 | RKC | 360 | Waitomo | 7450 | 11,140 | v1 | NNI | [12,24] |
Ruakuri | 165 | −38.27 | 175.08 | RKA | 674 | Waitomo | 0 | 12,315 | v2 | NNI | [12,24] |
Ruakuri | 165 | −38.27 | 175.08 | RKB | 675 | Waitomo | 6870 | 14,320 | v2 | NNI | [12,24] |
Ruakuri | 165 | −38.27 | 175.08 | RK05-4 | 678 | Waitomo | 70,505 | 76,255 | v2 | NNI | [26] |
Ruakuri | 165 | −38.27 | 175.08 | RK05-3 | 677 | Waitomo | 6110 | 53,120 | v2 | NNI | [26] |
Ruakuri | 165 | −38.27 | 175.08 | RK05-2 | - | Waitomo | - | - | NS | NNI | [26] |
Ruakuri | 165 | −38.27 | 175.08 | RK05-1 | 676 | Waitomo | 51,290 | 60,270 | v2 | NNI | [26] |
Waipuna | - | −38.3 | 175.30 | WN1-1 | - | Waitomo | - | modern | NS | NNI | [12] |
Waipuna | - | −38.3 | 175.30 | Waipuna | - | Waitomo | - | - | NS | NNI | [10] |
Te Reinga | 166 | −38.82 | 177.52 | Te Reinga A (TR-A) | 361 | Hawkes Bay | 225 | 9330 | v1 | ENI | [21] |
Te Reinga | 166 | −38.82 | 177.52 | Te Reinga B (TR-B) | 362 | Hawkes Bay | 680 | 2845 | v1 | ENI | [21] |
Twin Forks | 287 | −40.7 | 172.48 | TF-2 | 653 | Paturau | 17,730 | 22,285 | v2 | NSI | [22] |
Twin Forks | 287 | −40.7 | 172.48 | TF-1 | - | Paturau | - | - | NA | NSI | [22] |
Waiau | - | −46 | 167.73 | Waiau | - | Southland | 0 | 1750 | NS | WSI | [21] |
Wazapretti | 168 | −42.1 | 171.40 | WP-1 | 364 | North Westland | 4980 | 13,460 | v1 | WSI | [22] |
Wet Neck | 288 | −40.7 | 172.48 | WN-11 | 655 | Paturau | 13,770 | 17,120 | v2 | NSI | [22] |
Wet Neck | 288 | −40.7 | 172.48 | WN-4 | 654 | Paturau | 15,515 | 21,175 | v2 | NSI | [22] |
Waitomo | r | N | p < 0.05 | p < 0.01 |
GG1 | −0.01 | 66 | No | - |
GG2 | −0.15 | 142 | No | - |
RKA | −0.2 | 63 | No | - |
RKB | 0 | 35 | No | - |
RKC | −0.16 | 33 | No | - |
RK05-3 | −0.07 | 485 | No | - |
Max | 0 | 61 | No | - |
North Westland | r | N | p < 0.05 | p < 0.01 |
BN-1 | 0.57 | 43 | Yes | Yes |
BN-2 | 0.04 | 73 | No | - |
BN-3 | 0.3 | 103 | Yes | Yes |
Waz | 0 | 85 | No | - |
HW1 | 0.61 | 138 | Yes | Yes |
HW3 | 0.72 | 718 | Yes | Yes |
M1 | 0.21 | 489 | Yes | Yes |
Model | TraCE 21k | EC-Bilt CLIO | Echo-G | MPI-ESM1.2 |
---|---|---|---|---|
Jan | −0.56 | N/A | 0.12 | −0.59 |
Feb | −0.42 | N/A | 0.32 | −0.29 |
Mar | −0.27 | N/A | 0.35 | −0.19 |
Apr | −0.10 | N/A | 0.39 | −0.09 |
May | 0.14 | N/A | 0.44 | 0.12 |
Jun | 0.44 | N/A | 0.52 | 0.17 |
Jul | 0.66 | N/A | 0.56 | 0.18 |
Aug | 0.64 | N/A | 0.59 | 0.03 |
Sep | 0.50 | N/A | 0.50 | −0.07 |
Oct | 0.27 | N/A | 0.27 | −0.18 |
Nov | −0.59 | N/A | 0.05 | −0.35 |
Dec | −0.64 | N/A | −0.10 | −0.54 |
JJA | 0.67 | 0.55 | 0.57 | 0.17 |
N = | 239 | 239 | 137 | 156 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorrey, A.M.; Williams, P.W.; Woolley, J.-M.; Fauchereau, N.C.; Hartland, A.; Bostock, H.; Eaves, S.; Lachniet, M.S.; Renwick, J.A.; Varma, V. Late Quaternary Climate Variability and Change from Aotearoa New Zealand Speleothems: Progress in Age Modelling, Oxygen Isotope Master Record Construction and Proxy-Model Comparisons. Quaternary 2020, 3, 24. https://doi.org/10.3390/quat3030024
Lorrey AM, Williams PW, Woolley J-M, Fauchereau NC, Hartland A, Bostock H, Eaves S, Lachniet MS, Renwick JA, Varma V. Late Quaternary Climate Variability and Change from Aotearoa New Zealand Speleothems: Progress in Age Modelling, Oxygen Isotope Master Record Construction and Proxy-Model Comparisons. Quaternary. 2020; 3(3):24. https://doi.org/10.3390/quat3030024
Chicago/Turabian StyleLorrey, Andrew M., Paul W. Williams, John-Mark Woolley, Nicolas C. Fauchereau, Adam Hartland, Helen Bostock, Shaun Eaves, Matthew S. Lachniet, James A. Renwick, and Vidya Varma. 2020. "Late Quaternary Climate Variability and Change from Aotearoa New Zealand Speleothems: Progress in Age Modelling, Oxygen Isotope Master Record Construction and Proxy-Model Comparisons" Quaternary 3, no. 3: 24. https://doi.org/10.3390/quat3030024
APA StyleLorrey, A. M., Williams, P. W., Woolley, J.-M., Fauchereau, N. C., Hartland, A., Bostock, H., Eaves, S., Lachniet, M. S., Renwick, J. A., & Varma, V. (2020). Late Quaternary Climate Variability and Change from Aotearoa New Zealand Speleothems: Progress in Age Modelling, Oxygen Isotope Master Record Construction and Proxy-Model Comparisons. Quaternary, 3(3), 24. https://doi.org/10.3390/quat3030024