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Abstract: We re-evaluated speleothem isotope series from Aotearoa New Zealand that were recently
contributed to the Speleothem Isotopes Synthesis and AnaLysis (SISAL) database. COnstructing
Proxy Records from Age Models (COPRA) software was used to produce Bayesian age models for
those speleothems. The new age modelling helped us examine Late Quaternary temporal coverage
for the national speleothem network, and also supported our exploration of three different isotope
master record generation techniques using Holocene §'80 data from Waitomo. We then applied
the output from one of the isotope master record techniques to test an application case of how
climate transfer functions can be developed using climate model simulated temperatures. Our results
suggest Holocene 5'80 trends at Waitomo capture air temperature variations weighted toward
the primary season of soil moisture (and epikarst) recharge during winter. This interpretation is
consistent with the latest monitoring data from the Waitomo region. Holocene §'80 millennial-scale
trends and centennial-scale variability at Waitomo likely reflect atmospheric circulation patterns that
concomitantly vary with surface water temperature and the isotopic composition of the Tasman
Sea. A climate model simulation context for the Holocene millennial-scale trends in the Waitomo
§180 isotope master record suggest that site is sensitive to changes in the subtropical front (STF) and
the Tasman Front. Our comparison of isotope master record techniques using Waitomo 580 data
indicate that caution is needed prior to merging 5'80 data series from different caves in order to
avoid time series artefacts. Future work should incorporate more high-resolution cave monitoring
and climate calibration studies, and develop new speleothem data from northern and eastern regions
of the country.

Quaternary 2020, 3, 24; doi:10.3390/quat3030024 www.mdpi.com/journal/quaternary


http://www.mdpi.com/journal/quaternary
http://www.mdpi.com
https://orcid.org/0000-0002-1864-5144
https://orcid.org/0000-0001-5250-0144
https://orcid.org/0000-0002-9141-2486
http://www.mdpi.com/2571-550X/3/3/24?type=check_update&version=1
http://dx.doi.org/10.3390/quat3030024
http://www.mdpi.com/journal/quaternary

Quaternary 2020, 3, 24 2 of 41

Keywords: New Zealand; speleothems; age model; 'O isotope master record; palaeoclimate;
atmospheric regimes; proxy-model comparison; temperature reconstruction

1. Introduction

1.1. Focus of This Study

New Zealand provides critical Southern Hemisphere palaeoclimate data and perspectives about
Late Quaternary environmental change [1,2]. Atmospheric circulation regimes that influence this
region produce strong, heterogeneous regional hydroclimate impacts from key modes of variability
like the El Nifio-Southern Oscillation, Madden-Julian Oscillation, the Interdecadal Pacific Oscillation,
and the Southern Annular Mode [3-7]. As such, understanding pre-instrumental climate history from
New Zealand speleothems can help contextualize global change patterns and clarify teleconnections
that operate across a range of spatiotemporal scales [8].

In this study, we provide an overview of New Zealand speleothem data that our team has provided
to the Past Global Changes (PAGES) Speleothem Isotopes Synthesis and AnaLysis (SISAL) initiative [9]
(Table 1). New Zealand speleothem data (see Table 1) comprise a significant proportion of the Southern
Hemisphere mid-latitude data contribution, and fewer than six caves outside of New Zealand located
>30° S were initially included in the SISALv1 database synthesis [9]. Despite speleothem investigations
beginning in the 1960s [10] with extended records produced since the late 1990s [11,12], there are only
a handful of published speleothems from each of the main New Zealand karst areas. New Zealand
speleothems are expected to have different climatic signals from tropical Australia [13-15] and south
Australia [16] speleothems, so their contribution toward understanding regional climate variability
and long-term environmental conditions are important. Moreover, New Zealand hosts a wide range
of natural archives with proxy-based reconstructions that can be compared to speleothem isotope
records, and therefore they can provide a useful counterpart to Northern Hemisphere perspectives of
Quaternary change [17-19].
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Table 1. A summary of records for New Zealand cave sites reviewed for this study. Values for SISAL site id and entity ID entries for data series that are not included in
either the SISALv1 [9] or SISALv2 [20] database are empty. Min year and Max year are mean age model results from COPRA that show the youngest and oldest age
(rounded) of isotopic data pairs (§'3C & §'80) for each time series. All New Zealand data series that are presented here passed screening protocols used for data
accepted in the SISALv1 and v2 databases. BP = before 1950; all speleothem age models were aligned relative to this temporal datum despite being analysed in
different years. See Figure 1 for the locations of SISALv1 and v2 speleothem data contributions and Figure 2 for definition of New Zealand climate regions. NA = Not
yet available. NS = not suitable for palaeoclimate study.

SISAL Climate

Site Name SISAL Site ID Latitude Longitude Entity Name Entity_ID Cave Location Min Year BP Max Year BP . . References
Version Region
Aurora-Te 161 -453 167.7 Au-3 355 Fiordland 1750 7140 vl WsI [21]
Ana-au
Babylon 283 ~41.95 171.47 BN-3 647 North Westland 11,030 63,820 v2 WSI Williams
unpublished
Babylon 283 —41.95 171.47 BN-2 646 North Westland 11,320 22,985 v2 WSI [22]
Babylon 283 —41.95 171.47 BN-1 645 North Westland 1095 10,330 v2 WSI [22]
Calcite 162 —46.02 167.74 Calcite (CAL) 356 Fiordland 1740 9335 vl WSI [21]
Creightons 284 —40.63 172.47 CN-1 648 Paturau 7260 13,955 v2 NSI [22]
Disbelief 285 -38.82 177.52 Disbelief (DIS) 649 Hawkes Bay 662 7720 v2 ENI [21]
Doubtful 169 —4537 167.04 Doubitful (DX) 365 Fiordland 2980 11,265 vl WSl [21]
Xanadu
Exhaleair 150 —-41.28 172.63 ED-1 325 Kahurangi N.P. 340 14,730 vl NSI [23]
Gardner’s Gut 163 -38.25 175.02 GG1 357 Waitomo 180 10,150 vl NNI [12,24]
Gardner’s Gut 163 -38.25 175.02 GG2 358 Waitomo 25 11,825 vl NNI [12,24]
Gardner’s Gut 163 -38.25 175.02 Gardner’s Gut - Waitomo - - NS NNI [10]
Williams
Gardner’s Gut 163 -38.25 175.02 GG5 - Waitomo - - NA NNI unpublished
and [25]
Williams
Gardner’s Gut 163 —-38.25 175.02 GG7 - Waitomo 0 5340 NA NNI unpublished
and [25]
Guillotine 151 —42.31 172.21 GT05-5 326 North Westland 0 8925 vl WSI [26]
North Williams
Hazey Hole - —42.5 173.5 Hazey Hole - Canterbury - - N ESI unpublished

and [25]
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SiteName ~ SISALSiteID  Latitude Longitude EntityName  Entity ID  Cavelocaion  MinYearBP MaxYearBP  onn f{tggf References
Hodges Creek - ~41.16 172.7 HC-15-02 - Kahurangi N.P. 1005 12,590 NA NSI uif&?;i 4
Hollywood 82 —41.95 171.47 I_(II‘_/IVV(\)]?)S 175 North Westland 11,315 73,255 vl WSI [27]
Hollywood 82 —41.95 171.47 HW-1 673 North Westland 5 4190 v2 WSI [22]
Max’s 164 -383 175.6 Max’s 359 Waitomo 3000 6155 vl NNI [12,24]
Metro 272 ~41.93 171.48 M-1 576 North Westland 65 12,175 v2 WSI [28]
Metro 272 ~41.93 171.48 Metro-3 (M-3) - North Westland - - NS WSI [29]
Nettlebed 158 ~41.28 172.63 MD-3 350 Kahurangi N.P. 160 30,895 vl NSI [23,30]
Ruakuri 165 -38.27 175.08 RKC 360 Waitomo 7450 11,140 vl NNI [12,24]
Ruakuri 165 -38.27 175.08 RKA 674 Waitomo 0 12,315 v2 NNI [12,24]
Ruakuri 165 -38.27 175.08 RKB 675 Waitomo 6870 14,320 v2 NNI [12,24]
Ruakuri 165 -38.27 175.08 RKO05-4 678 Waitomo 70,505 76,255 v2 NNI [26]
Ruakuri 165 -38.27 175.08 RKO05-3 677 Waitomo 6110 53,120 v2 NNI [26]
Ruakuri 165 -38.27 175.08 RKO05-2 - Waitomo - - NS NNI [26]
Ruakuri 165 -38.27 175.08 RKO05-1 676 Waitomo 51,290 60,270 v2 NNI [26]
Waipuna - -38.3 175.30 WN1-1 - Waitomo - modern NS NNI [12]
Waipuna - -38.3 175.30 Waipuna - Waitomo - - NS NNI [10]
Te Reinga 166 -38.82 177.52 Te (I}‘Enf)’ A 361 Hawkes Bay 225 9330 vl ENI [21]
Te Reinga 166 -38.82 177.52 Te (I}‘i;r_‘g)a B 362 Hawkes Bay 680 2845 vl ENI [21]
Twin Forks 287 -40.7 172.48 TF-2 653 Paturau 17,730 22,285 v2 NSI [22]
Twin Forks 287 —40.7 172.48 TF-1 - Paturau - - NA NSI [22]
Waiau - —46 167.73 Waiau - Southland 0 1750 NS WSI [21]
Wazapretti 168 -42.1 171.40 WP-1 364 North Westland 4980 13,460 vl WSI [22]
Wet Neck 288 -40.7 172.48 WN-11 655 Paturau 13,770 17,120 v2 NSI [22]
Wet Neck 288 -40.7 172.48 WN-4 654 Paturau 15,515 21,175 v2 NSI [22]
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Previous work on New Zealand speleothems has defined environmental shifts and climate
transitions for the last glacial-interglacial cycle. However, a national-scale speleothem evaluation
has not yet been undertaken using Bayesian age modelling principles. This study re-evaluates New
Zealand speleothem stable isotope series that have recently been generated for SISAL (Figure 1 and
Table 1) using COnstructing Proxy Records from Age Models (COPRA) software [31], which has similar
capabilities to other Bayesian approaches (e.g., BACON, StalAge).

Replication of speleothem isotope signatures within individual caves, between caves located
in close geographic proximity, and between karst blocks in different New Zealand regions remains
challenging. Previous efforts have focused on combining isotopic data into “isotope master records” in
an attempt to follow commonplace practices that replicate patterns at multiple spatial levels, which can
increase confidence in interpreting environmental change signals [32]. In principle, replication provided
from speleothem isotope master records can diminish idiosyncrasies and edaphic factor influences
on cave system drip water supplying any one speleothem. This holds true even for samples that are
located within close proximity [33], as demonstrated recently with dripwater isotopes at Waipuna
Cave, Waitomo [34]. Therefore, one potential benefit of an isotope master record is to enhance common
signals between records that are of climatic origin.

The World Karst Mapping Aquifer Project (WOKAM)
3 Continuous carbonate rocks
b 7 Discontinuous carbonate rocks
N\ . e a1 SISAL v1

SISAL v2

6006 TGOOW

Figure 1. Simplified view of surface currents, fronts, eddies and waters modified from previous
work [18] (stippling indicates no flow associated with the front). EAC—East Australian Current,
EACx—East Australian Current extension, EAUC—East Auckland Current; ECC—East Cape Current,
WCC—Wairarapa Coastal Current, dUC—D’Urville Current, WC—Westland Current, SC—Southland
Current, ACC—Antarctic Circumpolar Current; STW—subtropical waters, STW (TSCW)—Tasman
Sea central waters, SAW—subantarctic waters, AASW—Antarctic surface water, TF—Tasman Front,
STF—Subtropical Front, SAF—Subantarctic Front, PE—Polar Front. (Inset, upper right) Map showing
simplified distribution of carbonate rocks across New Zealand, provided by the World Karst Aquifer
Mapping project (WOKAM,; [35]). Purple circles indicate sites that were included in SISALv1 [9],
and green triangles indicate sites that were included in the SISALv2 database [20]. More details for
New Zealand regional setting and climate conditions are included in Figure 2.
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Using the Waitomo §'80 records recently gathered for SISAL, we demonstrate the utility of COPRA
Monte Carlo age model simulations to explore some isotope master record generation techniques.
These techniques may be applicable for sites where multiple speleothem isotope series are located
in close proximity. A new Waitomo master 5'80 isotope master record spanning the Holocene that
we generated was then evaluated in a direct comparison with climate model simulations in order to
surmount a situation where modern climate calibration data are limited. Our discussion focuses on the
pros and cons of the isotope master record techniques we have tested and contextualises changes in
the Waitomo 5'80 isotope master record using terrestrial, marine and climate model simulation data.
We conclude by suggesting future speleothem research directions, and indicate spatial gaps to target to
improve national-scale speleothem coverage within and beyond the Holocene.

1.2. Physical Geography of New Zealand

Aotearoa New Zealand (referred to here after as New Zealand) is an island archipelago located
in the southern mid latitudes between 35° S and 47° S to the southeast of Australia and adjacent
to the Tasman Sea (Figures 1 and 2). Permanent human presence in this region is limited to the
last 800 years [36], so many long-term New Zealand palaeoarchives were formed in the absence
of anthropogenic landscape modification. Karst terrain is distributed across the length of both
main islands, and confined in narrow bands that are orientated parallel to the strike of prominent
northeast-southwest axial ranges [37,38].

The main axial mountain ranges intersect the prevailing westerly mid-latitude flow [39], which lends
to strong west-east precipitation gradients and pronounced orographic influences on regional climates [40]
that encapsulate a wide range of environments (including subtropical to glacial). The latitudinal range
of both main islands means tropical to polar weather influences impact the country throughout the
year [6,41-45]. Teleconnections to several modes of climate variability results in highly changeable
synoptic systems [40,45] that inter- and intra-annually alter temperatures, rainfall patterns and extreme
environmental states (e.g., soil moisture deficit, drought, etc.).

Regional ocean circulation is complex around New Zealand [18] (Figure 1). Warm subtropical
waters flow into the region at ~32° S along the Tasman Front, which is sourced from the warm waters
of the East Australian Current (EAC). The EAC feeds the East Auckland Current (EAuC), which
flows around the northern edge of the North Island. As the EAuC flows around the eastern tip of
the east coast it forms the East Cape Current, which flows south along the east coast. The Tasman
Sea to the west of the North Island is made up of Tasman Sea Central Water (TSCW). The TSCW is a
combination of subtropical waters that flow to the east in the Tasman Front, to the south as part of the
East Australian Current extension, and the waters associated with the broad subtropical front (STF) in
the south Tasman Sea. The South Island of New Zealand is influenced by the STFE, and also by the cool
subantarctic waters of the Southland Current that flows north along the east coast shelf. This means
New Zealand’s land masses are influenced by both Subtropical and Subantarctic waters.
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Figure 2. (left) Small inset map shown on lower part of this figure indicates New Zealand’s (NZ)

place in Australasia east of Australia (AUS), while main view shows mean annual precipitation and

the distribution of karst terrain, locations where speleothems have been gathered, and boundaries

for homogenous regional climate districts (following the analysis of [40,41]); (right) mean annual

temperature and locations of marine records located proximal to land. 19812010 climatic averages

are shown for terrestrial climate courtesy of National Institute of Water and Atmospheric Research
Ltd. Climate districts: NNI—Northern North Island, ENI—Eastern North Island, SWNI—Southwest
North Island, NSI—Northern South Island, WSI—Western South Island, ESI—Eastern South Island.
Grey dashed lines represent simplified spatial patterns for §'80 of ocean surface water based on gridded
interpolated data [46].

In summary, the combination of geographic position and physical geography makes New Zealand
a useful location for investigating atmospheric and oceanic circulation changes using Quaternary
speleothem archives [22,24,47,48].

2. Materials and Methods

2.1. New Zealand Records in SISAL and Additional Data

The potential of New Zealand speleothem records to extend our understanding of past climate
has been demonstrated for more than a half a century [10]. Since that time, several New Zealand

cave records have provided the basis for glaciation timing [11], evaluating regional environmental
variability [12,24], framing climate event stratigraphy integrations (e.g., [49]), testing inter-hemispheric
change mechanisms [17,22], and reconstructing atmospheric circulation patterns [21,25,27,40,50,51].

These previous studies have also helped to improve the theoretical framework for interpreting New
Zealand speleothem stable isotope records (Figure 3).
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Figure 3. The theoretical framework for New Zealand speleothem calcite 5'80 and 5'3C (modified from
Williams et al. [24]). The influence of the C3/C4 ratio over interglacial/glacial timescales * is expected
to be nominal for New Zealand speleothems because there is only one reported C, plant that is a
coastal sand dune specialist and is not found over cave sites. See Appendix B for details about climatic
conditions and environmental effects that influence §'80 and §!3C in New Zealand speleothems.

For SISAL, New Zealand speleothem data generated from the late 1960s onward were reviewed
(see references in Table 1) and submitted to the working database in multiple steps. A total of
40 speleothems were gathered and screened, and only data series with two or more geochronology
dates were included in this study (Figure 1). A total of 29 unique speleothems from 17 caves with §'80
and '3C records were found to be suitable for further analysis. The locations of these speleothem
records are shown in Figures 1 and 2, and temporal details for each speleothem are summarised in Table 1
and Figure 4. Information about speleothems that were considered unsuitable for palaeoclimatology
using stable isotopes, that do not have geochronology data, or are not yet available for palaeoclimate
analysis are also listed in Table 1. Further details about the regions the speleothems were collected

from are reiterated from previous work [25] in Appendix A.
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Figure 4. Temporal coverage of New Zealand speleothem records submitted and/or prepared for SISAL
(covering MIS4-present) during this study. Note, some records are not currently included in the SISAL
database but remain in preparation (see details in Table 1). Shading denotes the average temporal
resolution for consecutive isotopic samples in years. Groupings of speleothem entities by cave location
are ordered top to bottom by latitude.

2.2. Dating, Age Models and Isotopic Analyses

Use of radiocarbon (*#C) to produce chronologies for New Zealand speleothems was commonplace
through the 1990s [12]. In addition, ?!°Pb analyses were also employed on soda straw calcite formations to
attempt high-resolution isotopic data calibrations for palaeoclimate reconstructions [12]. Geochronology
of speleothems in this study were provided via Uranium-Thorium (U-Th) disequilibrium dating
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following previously outlined methods [21,23,24,52]. All speleothem isotope data that were generated
at NIWA (see Table 1, [21,22,24,25], and Williams unpublished) had associated U-Th analyses
generated using thermal ionisation mass spectrometry (TIMS) at the University of Queensland [53].
Geochronology analyses on speleothem data generated by University of Melbourne (ED1 and MD3)
were established using methods previously described [23,30]. Mean and median errors for all data
used in the age modelling is approximately 1.0% and 0.5%, respectively (N (the number of samples)
= 148; std. dev. = 1.4%), and most of the U-Th dates that have errors >2% come from Waitomo and
Hawke’s Bay.

Both C and U-Th approaches have inherent issues that are recognised for some New Zealand
caves [28]. However, robust numbers of dates in each speleothem helps to minimise this issue,
especially in the context of Bayesian age modelling. For this study, individual speleothem records were
age modelled in COPRA software (version 1.15) inclusive of the depth data, geochronology constraints
(U-Th ages with errors) and stable isotope values [31]. This effort has updated previous work that did
not consistently publish full age modelling data with stable isotope series. All speleothem time series
(except RK05-3 [27]) were age modelled using the Piecewise Cubic Hermite Interpolation Polynomial
(PCHIP) and 1000 Monte Carlo simulations to generate mean and median chronologies with confidence
intervals for each isotopic data point. The 1000 age model iterations were also retained from COPRA
for use in master isotope construction approaches (see Section 2.4).

All of the oxygen isotopic data generated at NIWA and University of Melbourne (the majority of
the data series) used powdered samples of finely milled speleothem CaCOj3 run on Finnigan MAT251
and MAT252 devices equipped with a Kiel automated individual-carbonate reaction chamber (which
were combined with H3POy to derive CO;). All speleothems examined in this study were tested in the
original studies for isotopic equilibrium via analysis of the axial isotopic profile. While we recognise
that these tests are not definitive [54,55], interpretations of isotope records (in particular from Waitomo)
are lent greater veracity by the general agreement of multiple speleothem records within a single
regional setting.

2.3. Controls on Speleothem Growth and Interpretation of Speleothem Stable Isotope Signals

The supply of water to karst bedrock (either regularly or intermittently) is requisite for speleothem
formation [55,56]. Across New Zealand, rainfall events can be frequent for most regions year-round [41]
despite some prolonged, intra-seasonal dry spells. New Zealand speleothem calcite §'80 and §!3C can
be influenced by a range of processes—some of which operate on microscopic scales, and others that
arise from broad environmental influences dictated by global climate variability and change [12,21,24].
Key principles about the drivers of New Zealand speleothem §'30 and §'3C variability on centennial
to orbital time scales, and details about interpreting 5'®0 and §'*C as palaeotemperature and
palaeohydrology proxies, are based on previous work [12,21,22,24,25,30,51]. We provide a summary
diagram below (Figure 3) and additional information from previous work in Appendix B.

Briefly, the primary controls on precipitation 'O values in New Zealand include temperature [57],
moisture sources [58], and rainfall amount [34] (see more details in Appendix B). Data from a network
of precipitation isotope monitoring sites in New Zealand demonstrate a strong control of temperature,
altitude, and precipitation amount on precipitation §'30 values [57]. Highest mean annual 5'80 values
are found at lower latitudes and altitudes and near the coasts, with lowest 580 values in the lee of the
Southern Alps on the South Island where northwesterly air masses experience the greatest fractional
rainout [59]. In the Waikato area near the Waitomo cave sites, seasonal precipitation 'O values are
inversely correlated with rainfall amount, which is consistent with the “amount effect” [34]. In the
Waitomo area, cave infiltration 'O values are similar to mean annual precipitation §'80 values [34].
Waitomo speleothems may therefore be plausibly interpreted to reflect changes in precipitation 5'80,
which can vary due to changes in temperature, rainfall amount, or moisture source on decadal and
longer time scales.
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But what are the primary long-term controls on precipitation 580 changes that are needed to best
interpret Holocene speleothem $'80 variations? One approach to aid speleothem §'80 interpretation
is to establish a calibration based on modern climate and precipitation §'80 variations. This approach
is difficult to achieve in New Zealand because the epikarst overlying the cave smooths the 580
signal of drip waters relative to above-cave precipitation [60] (and in some cases by an undetermined
amount). It may also be unclear which statistical fit between precipitation 580 and climate variables
is most appropriate. Therefore, resulting calibrations are commonly limited to short time periods
of precipitation !0 observations, and stationarity of the climate/5'80 relationship often has to
be assumed. Alternatively, calibration of speleothem §'80 values to modern climate observations
can provide a transfer function (e.g., [61]). However, the speleothems in this study either grew too
slowly or were sampled too coarsely to yield a valid calibration. We have therefore developed a
calibration between the isotope master speleothem 5'80 time series using modelled climate variables.
This approach bypasses the uncertainties of applying calibrations from the limited instrumental
observation period to the speleothem data.

The primary factors that control calcite §'80 (Figure 3; further details in Appendix B) indicate
that uncorrected §'80 isotopic data for many New Zealand speleothems that extend beyond the
mid-Holocene contain a global ice volume signature [22,47]. Continental ice sheet expansion and
corresponding sea level lowering resulted in isotopic enrichment of 5§'80 in sea water (5'8Ogy) which
influences élgoprecipitaﬁon. As such, an ice volume correction needs to be applied to New Zealand
5180 alcite speleothem records that are older than the mid-Holocene. This correction is applied under
the assumption that precipitation 5§80 values tracked the change to '8y, and that it is required
before palaeoenvironmental interpretations are made from 5180 a1cite. In this synthesis, we choose an
existing relative sea level model [62] that includes a sea level nadir estimate of 123m below present
day during the global last glacial maximum (LGM), and follow the assumption that 1.2 +/— 0.1%o
represented the average §!'80s,, change over the last four terminations [63]. Isotopic enrichment of
5180 41cite Was also assumed to relate linearly to sea level change. An extant sea level record [62]
was linearly interpolated using those assumptions to derive an annually-resolved ice-volume 50
correction factor, which was then applied to uncorrected isotope master record 580 to derive a
corrected series, denoted §'80;,..

2.4. Isotope Master Record Approaches

We used COPRA age model data and multiple approaches to demonstrate how master isotope
records can be constructed, with a specific focus on Holocene 5180 trends and variability at Waitomo
Caves. Waitomo has many caverns in close proximity that have yielded speleothems used in
palaeoclimate reconstructions [12,24]. We focused on the Waitomo data specifically due to the
abundance of individual speleothems that were available for isotopic data comparisons (and other
reasons discussed below). Putting microscale conditions aside, we treat the climate of the Waitomo
region as a homogenous entity, because it is a small area and therefore we expect isotopic trends
between speleothem records will be similar [64]. Previous work demonstrates the potential to replicate
regional palaeoclimate signals [12,24] and emphasise common patterns using isotope master records
developed from Waitomo speleothem isotopic series [47,48]. However, little work has been reported on
comparing different methods that combine isotopic series into master records, which we address here.

First, median age models derived from COPRA were applied to individual speleothem 830 time
series from the COPRA output, which accounts for age model uncertainty. Then, all isotopic data
points from all series were interleaved in chronological order, plotted together, and fitted with a 5-point
running mean. This approach was essentially used by Williams et al. [22,24,47]. The depiction of this
type of master series, however, does not distinguish the independent age uncertainty estimates related
to individual isotopic data points from each speleothem during the process of combining all the data
into one record.
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Second, we used 2.5th and 97.5th percentile uncertainty bands for the COPRA age output that
was derived via a Monte Carlo simulation and 1000 age models produced for each speleothem isotopic
series to create a “binned” isotope master record. Original §'80 values with a modelled age that fell
within a 100-year time span were collated and averaged for individual speleothems using arithmetic
mean and equal weighting, independent of isotopic value distance from central bin age. 100-year bin
averages were iteratively calculated in 50-year overlapping steps for all of the individual speleothem
8180 series. Discrete 100-year binned §'80 values for all individual speleothems were then adjusted
via normalisation to the Gardner’s Gut 2 (GG2) speleothem series, and then all data were averaged into
an isotope master record. As such, this type of isotope master record inherently includes consideration
of the dating uncertainty for each speleothem.

Last, we used a Monte Carlo Empirical Orthogonal Function (MCEOF) approach to evaluate
common low-frequency millennial-scale trends in coeval speleothem records. The MCEOF uses Monte
Carlo-derived age model simulations constrained by geochronology uncertainties with Empirical
Orthogonal Function analysis. It generates a mean time series that captures maximum common
variance for independent speleothems with different age models that overlap in time. We also
consider that the MCEOF approach could be used as a mechanism to merge speleothem isotope
records, and we evaluated whether mean isotopic value shifts can occur with the introduction and
omission of individual speleothem isotopic data series through time during master record construction.
We harnessed the 1000 Monte Carlo age models produced in COPRA that were used to estimate
the chronologic uncertainty of each isotopic series (see “binned” approach above). The results from
the Monte Carlo age modelling for each speleothem and the common period of overlap between
different speleothems also dictated a minimum time coverage for each MCEOF series. This approach
was applied using all 1000 age model iterations between coeval speleothems, including as few as
two and as many as five speleothem series at one time to create a MCEOF master record. During
this process, each resulting EOF was rescaled to be compatible with original 'O values common to
each speleothem archive. The MCEOF technique, like the second one described above, includes full
considerations of dating uncertainties for the isotopic values in each speleothem.

2.5. Time Series Coverage Limitations for Isotope Master Records

Multi-millennial overlaps for speleothem coverage guided pre-screening of samples for isotope
master record generation. The region with the most samples is Waitomo, followed by North Westland;
the fewest come from Paturau and Hawke’s Bay. As such, we focused on Waitomo and North Westland
as initial candidate regions to evaluate isotope master record techniques because they have the greatest
data coverage.

As a data screening mechanism, we first examined §'3C and §'80 correlations from Waitomo
and North Westland speleothems. We relied on first-order principles of interpreting those data
conjointly (Figure 3; Appendix B) to assess whether the oxygen isotopic signal may be strongly
impacted by local water balance (the flow of water into and out of the epikarst/karst, and by way of
association with effective precipitation). This assumption relies on accepting §'3C is a proxy for water
balance (and effective precipitation) following previous work (see Appendix B). We observe a lack of
correlation between 5§13C and §180 for Waitomo series (n =7, mean r = —0.07; max v = —0.2; min r = 0.0;
no significance above the 95% confidence level), suggesting the §'80 signal in speleothems gathered
from that region may only be weakly influenced by water balance changes (see Table 2).

For North Westland, the situation is very different, with a majority of speleothems showing
significant 3180-513C correlation coefficients > 0.3 (1 = 7, mean r = 0.35; max r = 0.72, min r = 0.0;
five of seven p-values < 0.01)) (see Table 2). This suggests a strong potential imprint of water balance
on §!80 in North Westland speleothems (if previous theoretical assertions about '3C hold true for this
location). When North Westland and Waitomo climates are compared, the former area receives about
twice as much rainfall as the latter (Figure 2). It is therefore not surprising that a potential rainfall
amount effect (and water balance surplus) might have a more significant impact on speleothem 580



Quaternary 2020, 3, 24 13 of 41

in North Westland where precipitation is greater. We note that there could be an important component
of rainfall source region seasonality for North Westland that may also contribute to speleothem §'80
signatures there. For those reasons, only a master 5'0 series from Waitomo was pursued in this
study, and we express caution for drawing temperature interpretations from North Westland primary
§180 data.

Table 2. 513C and 5180 intra-speleothem correlations for Waitomo and North Westland series based on
measured values.

Waitomo r N p <0.05 p <0.01
GG1 -0.01 66 No -
GG2 -0.15 142 No -
RKA -0.2 63 No -
RKB 0 35 No -
RKC -0.16 33 No -

RKO05-3 -0.07 485 No -
Max 0 61 No -
North Westland r N p <0.05 p <0.01
BN-1 0.57 43 Yes Yes
BN-2 0.04 73 No -
BN-3 0.3 103 Yes Yes
Waz 0 85 No -
HW1 0.61 138 Yes Yes
HW3 0.72 718 Yes Yes
M1 0.21 489 Yes Yes

2.6. Comparisons of Climate Model Simulation Data to the Waitomo Speleothem 'O Isotope Master Record

Speleothem §'80 in a mid-latitude (and mostly maritime) temperate climate like Waitomo should
reflect, in-part, temperature biased toward the season of main hydrologic recharge [65]. Preliminary
climate response function analyses that have compared limited modern Waitomo §'80 data to local
instrumental data supports this assertion [25]. We attempted a transfer function approach that
compared speleothem 80 to modelled climate simulation temperatures. This approach also presents
a way to bypass some of the complexities of interpreting the competing influences on speleothem
180 and allows a consideration of the functional §'80;,. response to large-scale climate change in the
pre-instrumental period. We also assumed that a constant cave temperature does not affect speleothem
8180 via variations in the calcite-water 80 fractionation, which should be small relative to changes in
the 8180 values of precipitation.

To evaluate the 580 ,cite relationship to temperature through time, we compared the 100-year
binned Waitomo §'80;y. isotope master record to time-equivalent surface temperature series compiled
from several transient Holocene climate model simulations (CCSM3-TracCE-21k [66]; EC-Bilt-Clio [67];
ECHO-G [68]; MPI-ESM1.2 [69]). Annually-resolved mean monthly temperature data from the grid
cell closest to Waitomo (~38° S and ~175° E) were obtained from each model; three-month averages
(e.g., June-July—-August, JJA; July-August-September, JAS; August-September—October, ASO; etc.)
were also generated from the monthly climate model data. Modelled temperatures were then binned
into 100-year averages staggered through time every 50 years (i.e., the same way the Waitomo
5180 isotope master record was constructed). The 100-year binned modelled temperatures were
chronologically aligned to the Waitomo §'80jy. isotope master record using 1950 CE as a starting point
to enable correlations with each climate simulation data series.

Linear regressions were then used to derive a transfer function that converted Waitomo 3180)yc
(in per mille) to modelled centennial-average JJA temperatures (austral winter). Twice the standard
deviation of the average residual for the linear regression was employed as the 95% confidence bound
for converting §'80;, to temperature. In order to compare §'80-derived Holocene temperature changes
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based on different transfer functions that were developed from each unique climate model simulation
(which have different absolute temperatures), each temperature-transformed isotope master record
was converted further to a JJA temperature anomaly relative to the last 4 ka (Late Holocene) average.

3. Results

3.1. New Zealand Speleothem Coverage and Further Focus on the Holocene (MIS1; ~11 ka—Present)

For New Zealand speleothem isotopic data series that were reviewed and age modelled for SISAL,
only 10 records extended beyond the late glacial, and half of those limited records extended prior
to the LGM (Table 1 and Figure 4). Holocene speleothem coverage includes series from both main
islands (six series from Waitomo, three from Hawke’s Bay, one from Paturau, three from Kahurangi,
three from North Westland and three from Fiordland-Southland.) Each of these regions has a minimum
of three speleothems that cover all or part of the Holocene, with sample resolution widely varying
from sub-decadal to multi-centennial scales (Figure 4). Many of these speleothems were previously
used in palaeoclimate reconstructions for the Late Holocene (4 ka—present; [21]), the mid-Holocene
(~7-5 ka), the last 2000 years [25], and the last glacial-interglacial cycle [38]. In this analysis using
COPRA age modelling, temporal coverage for isotopic data spanning the Holocene (~11 ka—present,
with all data binned at centennial resolution) ranges from a high of 100% (i.e., all speleothems covered
an interval) to a low of 17% (mean = 46%; STD = 21%).

Our choice to focus in more detail on Holocene speleothem data is due to greater similarity of
intra-cave 5'%0 isotopic signatures, in addition to greater data depth and better spatial density of
regional coverage during the Holocene. MIS2-MIS54 data, as well as more detailed interpretations of
§13C, will be described elsewhere. All dates reported below are equivalent to calendar years before
present (1950). We note that the isotopic profiles of speleothems collected from different locations in
each cave can differ on sub-millennial time scales, possibly from different sensitivities of drip waters
to surface 5'80 variations, kinetic isotope effects, growth rate and sampling resolution differences,
and/or age model uncertainties. Nevertheless, the millennial-scale 'O signals observed for some
closely spaced Holocene records (including the Waitomo speleothem data) appear robust (Figure 5).

3.2. Speleothem Isotope Master Record Techniques Using Holocene 58O Data from Waitomo Caves

Inter-speleothem correlations for the 100-year binned Waitomo §'80 data were derived for all
overlapping series using a matrix containing two sets of 10> COPRA age modelled results. This data
pre-screening approach produced 10° inter-series correlations that indicate most of the §'®0 records
have a common signal (see Table 2). However, we rejected Max’s Cave from further consideration
in constructing a master 5180 record due to poor overall median inter-series correlations (r = 0.19).
Rejection of Max’s Cave 5180 is one difference from previous work for Waitomo [12,24,47], which had
included those data in a isotope master record.

Several methods were then tested to combine speleothems into an isotope master record, which
produced subtly different results (Figure 5). Use of the median age model from COPRA and a 100-year
bin technique produced time series with variability and structure that is similar to the 5-point running
mean technique of Williams et al. [24,47,48]. We note, however, that some 100-year time steps have
no data coverage due to the constraints arising from dating uncertainties and sampling resolution
incorporated within the COPRA age modelling.
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Figure 5. Comparison of different 'O isotope master record results for Waitomo caves covering
the Holocene using GG1, GG2, RKA, RKB, and RKC speleothems. Master 5180 record resulting
from different combinations of the COPRA output of Waitomo speleothems using a 5-point running

mean (first panel), 100-year binned isotope master record using COPRA age model error estimates
(second panel), and Monte Carlo EOF (MCEOF) isotope master records (third panel). In the MCEOF
panel, the dotted line shows average local level for all EOFs, illustrating at least two step-changes
(black arrows at ~8200 cal BP and ~9000 cal BP) for mean 5180 values when the composition of the
speleothems used in each MCEOF changes. The bottom panel shows the 5-point mean record, 100-year
binned record, and the MCEOF record (GG1_GG2_RK-A MCEOF from the third panel) together to
illustrate common trends and differences in variability. Isotopic data for each of these master records

are unadjusted for ice volume effects.
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The MCEOF technique that used temporally-overlapping COPRA simulated age models produced
more emphasis on common low-frequency signals between speleothems (see Figure 5; >85% variance
explained in each MCEOF iteration). MCEOF isotope master record coverage is always limited to
the period of common overlap for the series incorporated into each master record. Because there is
a blend of 1000 iterations of each series into the master, the result also has much smoother trends
and reduced variability relative to the original data. The MCEOF technique also shows the influence
of how individual isotope series affect the average 5'80 value in an isotope master record (Figure 5,
third panel).

The unadjusted Waitomo §'80 isotope master records that span the mid-to-late Holocene
(e.g., 8 ka—present) show millennial-scale trends that are confined well within a ~1%o span. The 5-point
running mean and 100-year binned records retain centennial structure, typically on the order of up to
~0.2 to 0.5%o fluctuations from the local mean that show episodic excursions and, occasionally, more or
less pronounced variability. More positive mean §'80 values are generally observed for most of the
early Holocene (10.8-6.5 ka) and part of the Common Era (last 2 ka; including a Late Holocene peak
between 1.2 and 0.8 ka) for all of the Waitomo isotope master records. This assertion holds even when
the Waitomo §'80 isotope master records are adjusted for ice volume effects (see Figure 6). The most
consistently negative isotopic levels across millennial scales, representative of the mean climate state,
are observed at ~3 ka. There is less isotopic variability across most of the early-to-mid Holocene, but this
is potentially an artefact of fewer speleothem isotope series and fewer data points that contribute to
each isotope master record during that time. When there are an elevated number of isotopic data
points that contribute to each isotope master record during the early Holocene, the variability appears
equivalent to the mid-to-late Holocene (Figure 5). In the next section, we adopt the 100-year binned
isotope master record for further analysis after adjusting it for ice volume changes (and we explain
further in the discussion why this record may be best to use).

3.3. Comparison of Waitomo 6'80 Master Record to Climate Model Simulation Data

Correlations between transient climate model simulated monthly temperatures and Waitomo
§'80j,c master series binned at 100-year increments indicate a significant positive §'80 relationship
during most of the austral winter months (JJA) for three out of four models, which aligns to the
season of main hydrologic recharge (late autumn-winter-early spring [34,64]). JJA average modelled
temperatures (austral winter) improved the strength of correlations between the climate model output
and the Waitomo 5'80;, master series (see Table 3).

Table 3. Correlations of transient simulation surface temperature with Waitomo 5'80 isotope master
record. N/A = monthly model results not available. Positive correlation significance: Bold p =< 0.01;
italic p =< 0.05; plain text, p => 0.05.

Model TraCE 21k  EC-Bilt CLIO Echo-G MPI-ESM1.2

Jan -0.56 N/A 0.12 ~0.59
Feb —0.42 N/A 0.32 ~0.29
Mar —0.27 N/A 0.35 -0.19
Apr -0.10 N/A 0.39 ~0.09
May 0.14 N/A 0.44 0.12
Jun 0.44 N/A 0.52 0.17
Jul 0.66 N/A 0.56 0.18
Aug 0.64 N/A 0.59 0.03
Sep 0.50 N/A 0.50 -0.07
Oct 0.27 N/A 0.27 -0.18
Nov ~0.59 N/A 0.05 -0.35
Dec —0.64 N/A -0.10 —0.54

JJA 0.67 0.55 0.57 0.17
N= 239 239 137 156
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The most negative Holocene §'80;,. values largely occur during the mid-to-late Holocene between
3 and 5 ka, when modelled JJA temperatures are the coolest. The least negative values occur during
the early Holocene, and within the last 2 ka when modelled temperatures were warmest (Figure 6).
One of the models (MPI-ESM1.2) used to transform the Waitomo 580 isotope master record to
palaeotemperature shows little temperature change through the Holocene. Each of the remaining
climate model simulations show a different scale of low frequency change, and a distinct relationship
between §'80 and temperature, that ranges from 0.23 °C to 0.7 °C per mille.

The common millennial-scale trend for the Waitomo 5'80;y. isotope master record and modelled
JJA temperature (Figure 6) shows some close associations between Holocene temperature changes at
Waitomo and solar irradiance flux [70] for a portion of the Holocene (addressed in the discussion in more
detail). While JJA millennial-scale temperature trends across the Holocene are prominent, there are
also clear centennial-scale temperature departures (collectively indicated by the transformation of 580
to temperature) of up to +/-0.3 °C relative to the millennial-scale trends. Although we interpret these
centennial-scale variations of 5'80;,. as related to temperature, the more abrupt shifts may also be
plausibly related to temperature-independent shifts linked to atmospheric circulation or changes in
rainfall amount. We note that inter-annual to multi-decadal variability for JJA seasonal temperatures
of up to +/-2 to 3 °C, relative to the evolving millennial-scale average, are also exhibited by the
transient climate model simulations. These patterns are not expected to be observed in the Waitomo
8180 isotope master record because of how it was constructed, in addition to the (coarse) sampling
resolution relative to the deposition rate for the speleothem materials analysed.

Time slice simulation output for 6 ka from PMIP2 [71] are more numerous than available transient
Holocene simulations. They collectively show near-average or slightly below average temperatures
for June-September (Figure 6) in the North Island and the Tasman Sea west of Waitomo. The PMIP2
multi-model ensemble average and spread for 6 ka temperature anomalies (Figure 6 inset) overlaps the
transient simulation results. The temperatures derived for the Waitomo §'80; master series appear
displaced slightly higher than the transient model output for 6 ka. However, the spread for the (related)
PMIP2 models and the scale of associated uncertainty from the transfer function application suggest
the temperature-transformed isotope master record and a range of independent models agree during
this time.
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Figure 6. (Top panel) Ice volume-adjusted Waitomo 3180 isotope master record (8180jy¢) transformed
to JJA (austral winter) temperature anomaly (bold solid lines) using transient climate model simulated
temperature results (light dashed lines). All of the time series are plotted as anomalies relative to the
last 4 ka average. Error bars for each 31805 isotope master record transformation (vertical bars) are
two standard deviations of the residuals based on linear regression undertaken between the 100-year
binned §'80;, record and 100-year binned modelled temperatures. Gaps in the Waitomo 5'80 isotope
master records are times where the COPRA age modelling indicated no data were temporally available.
The black box within the top panel highlights the time period for the data in the inset panel (5500-6500
BP). The left side of the inset panel shows the transformed Waitomo 5180 isotope master records and
transient model data that overlap with PMIP2 June-September time slice results for the mid-Holocene
(shown on the right side of the inset panel). The 6 ka PMIP2 experiment model name (right side
of lower right inset panel) is shown to the left of the mean temperature and spread for each model.
PMIP2 data were obtained from archived temperature map contours [71] covering the western North
Island and the eastern Tasman Sea regions.

4. Discussions

4.1. What Can New Zealand Speleothems Gathered for SISAL Tell Us about the Late Quaternary?

The isotopic signatures evaluated in previous New Zealand speleothem studies [47,48] have
been compared with Late Quaternary vegetation and marine climate records [72-80]. Contemporary
ecology studies that support Late Quaternary pollen interpretations establish an intimate link between
New Zealand plant ecosystems and multiple climate variables [81]. During the LGM between ~32
and 18 ka, previous work shows more negative speleothem §'80 isotopic values [24,25,49] occur
alongside some of the most positive §'3C values. This suggests those dual proxies reflect colder and
drier conditions, respectively, using theoretical understanding of speleothem cave calcite deposition
(Figure 3). LGM isotopic signatures for some New Zealand speleothems show anomalously negative
8180 and positive §!3C values. These signatures align with widespread grass/herb expansion and
tall tree/thermophilous plant reduction [78,79] at a time when offshore sea surface temperatures were
as much as 5 °C cooler than the Holocene [82]. There is also evidence of near-maximally expanded
glaciers on the North and South Islands [83,84] during the LGM, which required a combination of both
colder and drier conditions to achieve geometries that best match moraine limits [85]. Conversely,
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speleothem §'80 isotopic values equivalent to or less negative than modern levels (e.g., during the
early Holocene interglacial) occur when conditions as warm or warmer than present are expected.

The correspondence between speleothem isotopes and palaeoproxy evidence over glacial-interglacial
scales supports assertions that cave calcite !0 and 5'>C both have utility as environmental variability
and climate change records [12,21,22,24,27 48]. In addition, New Zealand speleothem isotopic data can
define climatic intervals and key transitions during the last glacial-interglacial cycle that other proxies
cannot. One obvious benefit using speleothems comes from the ability to provide secure geochronology
with U-Th beyond the limit of radiocarbon, when long lake/bog pollen records are difficult to date
accurately. In a similar sense, long marine sediment records beyond the range of radiocarbon are also
dependent on wiggle-matching oxygen isotope data from foraminifera to global oxygen isotope curves
or Antarctic temperature records.

4.2. Replicated Isotopic Signals Support Creation of Isotope Master Records

Merging different isotopic data series together into master records can potentially provide a longer
view than what can be achieved from one speleothem archive. In New Zealand, where significant
seismic, volcanic, and glacial activity has occurred in proximity to some caves (potentially causing
abrupt speleothem growth rate changes), there may be benefits with isotope master records that can
surmount deposition inconsistencies and hiatuses.

The isotope master record approaches we tried are not exhaustive, but expand on previous
work that applied a 5-point running mean through all available data [24,47,48]. The 100-year
binned isotope master record ensures even sampling through each individual series is adhered to.
Subsequently, direct comparisons between speleothems from within a karst block using this method
inherently retains sample depth metadata that can be directly linked to Bayesian age modelling.
The 100-year binned approach does not introduce any chronology or interpolation artefacts, and it
diminishes the possibility of spurious inter-data point trend interpretations. In addition, some bins
are dominated by a lone isotopic measurement. Caution is warranted for interpreting any extreme
conditions in those instances; however, the retention of sample depth information using the 100-year
binned approach means these situations can be clearly identified.

The MCEOF approach shows how mean isotopic value shifts can occur when certain speleothems
are introduced into an isotope master record composed of multiple data series. While some previous
techniques that have merged isotopic series together (e.g., 5-point running mean) probably contain
minor statistical artefacts, the MCEOF approach highlights the potential for evaluating the severity of
that type data inhomogeneity. Therefore, the MCEOF method has useful application for re-evaluating
the validity of transfer functions and the interpretation of quantitative climate reconstructions from
older master records where previously low sample depths have been recently improved. The MCEOF
method also has potential application in situations when a “master” series to adjust all others to cannot
be decided on. A conservatively re-scaled MCEOF isotope master record could be used to adjust
overlapping isotopic data via matching isotopic means and slopes. Variance differences that arise
between each adjusted series in that situation, however, would still need to be attended to using other
techniques before the data are combined into an isotope master record.

4.3. Waitomo Holocene 5’80 Isotope Master Record Temperature Context

We calibrated and transformed the 100-year binned Waitomo §'80;,. isotope master record using
transient climate model simulated temperatures, after recognising there were similar low-frequency
millennial-scale trends in both datasets. This is not the first time that a speleothem §'30 series has
been calibrated using palaeoclimate model information [86]. Waitomo 5180,y shows the least negative
values during the early Holocene (10.8-6.5 ka) and between 1.2 and 0.8 ka. The calibration we have
used, in addition to theoretical understanding, suggests these periods may have been warmer than
late Holocene pre-industrial times (150-250 BP).
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Early Holocene pollen records suggest tall trees were more expansive along with increased
presence of frost-tender and drought-intolerant taxa, relative to the hardier species that were formerly
more dominant during the LGM [81,87]. This implies the early Holocene was warm, with reduced
frost and drought incidence [88] and increased humidity [73]. In addition, previous pollen work has
asserted the early Holocene conditions reflect influences on the mean climate state from diminished
seasonality [89,90]. The most negative Waitomo 5180,y values occur in the mid-to-late Holocene
(after ~4 ka) and suggest this was the interval with the coolest winter temperatures in the present
interglacial. Mean 5'80 values for the last 1000 years suggest winter temperatures at Waitomo
were warm at ~0.9 ka, followed by near normal conditions through the late pre-industrial period
(~0.5-0.1 ka) inclusive of a small downward trend to more negative values between ~0.5 and 0.2 ka.
While inter-annual to multi-decadal temperature variations are not captured by our isotope master
record, high resolution tree-ring data capture that type of activity [91-96], and suggest sub-centennial
variability was an important climate component across the last millennium. Winter palaeotemperatures
inferred from Waitomo 880 isotope master record values for the last few hundred years do not appear
as cold as the ~2.2-5.8 ka time span (Figure 6).

New Zealand’s glaciers are acutely sensitive to summer temperatures [97,98]. Negative temperature
anomalies inferred from moraine-constrained glacier modelling [99,100] and alpine glacier
palaeoequilibrium line altitudes [50,84,101] concur with tree-ring evidence [91] to suggest mean
summer climate over the last few hundred years was cooler than present. Moraine evidence also
suggests summer temperatures during significant portions of the Holocene may have been colder
than the present day and the late pre-industrial average [21,84,99,102-106]. The juxtaposition of two
different proxy types (speleothems and glaciers) that reflect opposite seasonal sensitivities (winter vs.
summer) independently reinforces assertions about reduced seasonality influences during the early
Holocene (with warmer winters and cooler summers) that have been conceptually made using
palynology [73,107].

Assertions about early Holocene warmth from the Waitomo 31805 isotope master record are
also supported by Holocene marine sediment proxy records of oxygen isotopes and sea surface
temperatures around northern New Zealand and the Tasman Sea. Oxygen isotopes from the east coast
of Australia indicate increased southward flow of the EAC from around 11 ka [108]. EAC influences on
Tasman Sea temperatures during the Holocene were also likely to have been transferred by the Tasman
Front to the east of New Zealand, and further propagated around the North Island via the EAC and
then the East Cape Current (see Figure 1 for ocean current locations). Northeast of the North Island,
SST are slightly warmer during the early Holocene and display a subtle temperature decline through
the Holocene (H214 [109,110]; JP87 [111]). The 680 of planktic foraminifera Globigerina bulloides for
this area show lowest values between 10 and 8 ka and then higher values throughout the rest of the
Holocene (H214 [109]; JP125 [110,112]). The consistent offset between the 5§80 of G. bulloides (a mixed
layer (100 m) foraminifera) and Globorotalia inflata (a deeper dwelling planktic foraminifera) indicates a
well-stratified water column during the early Holocene.

Warmer temperatures also existed at ~9 ka to the southeast of the North Island, followed by a
steady decline of ~1 °C by 4.5 ka (MD97-2121 [110,113]). The §'80 of G. bulloides are variable, but show
a decrease around 8 ka [114], while the §180 of Globigerinoides ruber (surface dwelling foraminifera) and
G. inflata (which lives in the thermocline, deeper in the water column) indicate waters in this region
were well-stratified throughout the Holocene [114]. Nearby, radiocarbon dates that constrain mangrove
(Avicennia marina [115]) presence south of East Cape in Gisborne (south of modern limit) have also
suggested warmer winter temperatures (and reduced frost) existed in the nearshore environment at
the onset of the early Holocene.

West of the South Island, peak early Holocene warmth is also observed, followed by a relatively
steady temperature decline, evident from a decrease in alkenones SST proxy and an increase in §'80
G. bulloides during the last 10 ka (5O136-11 [116]). Foraminiferal assemblages and alkenones from the
South Tasman Rise (south of Tasmania) also indicate slightly warmer temperatures during the early
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Holocene, likely linked to the extension of the EAC and the southward shift of the STF. Cooling occurred
after 8 ka, reflected in G. bulloides 5'80 values that were achieved between 6 and 4 ka (RS147-GC7 [117]).
The STF (Figure 1) was also shifted south during the early Holocene by ~1° latitude bathing the South
Island of New Zealand in warmer waters [117,118], and then it rebounded to its modern position
between 8 and 6 ka.

4.4. Reconciling Waitomo 5'80O Master Record Temperature Interpretations with Marine Records, Terrestrial
Records and Model Results

Continent-ocean temperature contrasts and differences between low-to-mid latitude and
high-latitude Pacific and Southern Ocean temperature anomalies are obvious in both time slice
and transient Holocene simulation experiments (Figure 7). They indicate New Zealand’s maritime
climate setting may exhibit unique signatures of change relative to other southern mid-latitude
landmasses and oceanic sites. In addition, pan-oceanic spatial differences for proxy and modelled
climate trends may arise, in-part, because ocean currents and marine climate inertia blend inter-seasonal
temperature anomalies, and because models are coarsely resolved. Some location-specific issues,
including the intricacies of ocean currents and gyres and some potential seasonal biases for proxies,
can further confound direct and consistent onshore-offshore evidence comparisons for proxy-model
syntheses. As such, regional-scale proxy-model comparisons are recommended [68]. The initial
focus on SSTs proximal to New Zealand and regional data interpretations are therefore justified as a
conservative starting point to contextualize the Waitomo 5180y isotope master record. Below, we
discuss the evidence for millennial-scale climate changes in the New Zealand region, and interpret
trends for the Waitomo 8'80, isotope master record in two parts.

4.4.1. Did Ocean Source Region Variability Consistently Influence Holocene Waitomo 5'80 Trends?

Early Holocene marine climate proxy evidence indicates warmer-than-modern temperatures
existed around the Tasman Sea, which then cooled into the mid-Holocene (see Section 4.3). The air
temperature change inferred from the model-calibrated Waitomo 'O, isotope master record shows
millennial-scale trends and centennial variability was constrained within +/-1 °C of modern conditions.

Prevailing westerly atmospheric flow that delivers rainfall to the North Island would impart
Tasman Sea source water physical traits onto Waitomo’s cave drip water pool held in the epikarst [34].
The early-to-mid Holocene shift toward more negative 580 values at Waitomo may reflect Tasman
Sea §'80 changes, particularly if the ocean source effect dominates over the cave temperature effect.
For Waitomo speleothems, fed by drip water in a maritime climate setting where relatively unimpeded
atmospheric transport pathways to the adjacent ocean upwind exist, this possibility is realistic [119].
Alternatively, the §'80 decrease from the early-to-mid Holocene may represent an influence of cooler
temperatures on precipitation §!80 values, a greater contribution of high-latitude moisture masses
from the Tasman Sea, or a larger precipitation amount effect. In addition, a larger component of Pacific
moisture that experienced more 80 depletion upon traverse of the North Island could explain a §'80
decrease; however, this mechanism is unlikely because Waitomo is located near the Tasman Sea coast.

A shift in Tasman Sea §'80 between the early- and mid-Holocene could have also arisen
from contraction of the STF southern boundary to its present position by the mid-Holocene.
However, modern ocean chemistry isotopic maps indicate a ~1° of latitude northward shift of the STF
equates to only about —0.1%o for §'80 of Tasman Sea ocean source waters (Figure 2). This suggests the
early-to-mid Holocene STF rebound may have not been sufficient as the sole mechanism for influencing
Waitomo 580 ycite Via the drip water source pool.
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Figure 7. CCSM3 (left), ECHO-G (centre) and ECBilt-CLIO-VECODE (right) transient model simulation
trends for mid-Holocene to pre-industrial, showing zonal wind (top row) and surface temperature
(bottom row) (modified from [120]). These results are from model counterparts of CCSM3-TraCE 21k,
Echo-G, and ECBilt-CLIO models, respectively, noted in Figure 6.

Reduced EAC subtropical water inflow (warm, isotopically less negative) and weakening of
Tasman Front influences between the early Holocene and mid-Holocene may be another key component
to consider for Tasman Sea marine climate changes (and downwind connections to Waitomo).
Modern ocean chemistry spatial relationships show a ~0.2%o northwest-southeast %0 gradient
for sea water situated between Australia and the North Island. Enhanced southward EAC transport
during the early Holocene, with an expanded and invigorated Tasman Front, may have pushed
isotopically less negative 580 waters to the south that normally are positioned to the northwest of the
North Island and adjacent to Australia’s east coast. In this situation, isotopically less negative ocean
waters could have been advected via westerly drift into the central Tasman Sea. When the EAC and
inflow along the Tasman Front relaxed by the mid-Holocene, this subtropical isotopic influence on
central Tasman Sea surface water 5'80 could have diminished.

Taken together, a reduction in EAC/Tasman Front influences and increased STF influence by the
mid-Holocene may have conjointly shifted central Tasman Sea §'8Oy,, signatures by about —0.2 to —0.3%o.
That shift is close to the scale of change observed for Waitomo 5'80 master values (early Holocene at
10-9 ka is —3.79%o0; mid-Holocene at 6.5-5.5 ka is —4.07%o) when the speleothem data are averaged
at a similar resolution as the marine evidence. This hypothesis suggests ocean source effects may
have contributed to Waitomo 580 ,cite changes between the early Holocene and mid-Holocene.
An additional, intertwined component that may have helped to drive this type of ocean source region
change is that the delivery of meteoric waters came from increased frequency of northerly quadrant
airflow across lower latitude maritime ocean sources (particularly on a seasonal basis; discussed below).

Two of three available transient model counterparts (CCSM3 and ECHO-G; Figure 7, bottom row)
that we examined cover the mid-to-late Holocene and show a winter Tasman Sea SST warming
trend set within a wider southwest Pacific temperature rise. This trend suggests regional conditions
during the mid-Holocene were locally cooler than pre-industrial times [120]. Regional downscaling
of global climate models show mid-Holocene multi-centennial scale surface air temperatures for
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New Zealand were also at least 0.2 °C cooler in DJF through to JJA, due to circulation changes and
reduced insolation [121]. SSTs were also 0.2-0.5 °C cooler in the Tasman Sea west of the North Island,
and cooler temperatures existed over most of the North Island in the mid-Holocene [122].

The climate model-calibrated Waitomo 8'80;, . winter temperature warming trend from ~5 ka to the
present appears different from marine proxy evidence that suggests continuation of stable temperatures,
or development of cooler temperatures up to the pre-industrial period (see Section 4.3). Putting any
seasonal proxy sensitivities aside, the divergence between the marine and terrestrial data implies
oceanic source region influences (as described above) on §!'80 trends in the Waitomo isotope master
record may have diminished relative to other drivers that took hold from the mid-Holocene onward.

4.4.2. Did Regional Ocean/Atmosphere Circulation Consistently Influence Waitomo §'80 Trends?

Early Holocene winter warmth and reduced subpolar influences around northern New Zealand
that were succeeded by cooler conditions by the mid-Holocene may be explained by previous work
that promoted “two circulation modes” [110]. An early Holocene mode has been characterized by
increased penetration of subtropical flow and southward expansion of the STF that coincided with
reduced subantarctic water influence on the South Island of New Zealand. A hypothesis for these
early Holocene marine conditions (in addition to caveats about seasonal biases for marine climate
reconstructions) is that they existed due to weaker southern hemisphere westerly winds (SWW),
arising from a reduced latitudinal temperature gradient. Diminished westerly winds with an expanded
southward position and increased strength of the subtropical high could have helped to push the
EAC more vigorously at the same time as the STF was displaced further south. Evidence for a more
southern position for the subtropical high is supported by well-stratified waters east of New Zealand,
which may have been promoted by less vigorous mixing and lighter surface winds with increased
passive penetration of warm subtropical waters bathing the northern North Island (see details in
Section 4.3). The circulation pattern that followed and that was established by the mid-Holocene was
characterized by progressive strengthening of the SWW with an increased influx of subantarctic waters,
cooling south of the STF, and rebound of the southern margin of the STF due to an increased latitudinal
gradient across the New Zealand sector [110].

Holocene insolation changes that influenced SSTs via enhanced southern mid-latitude surface
meridional temperature gradients are proposed as a driver of a poleward shift and intensification of
the SWW [123-125]. The tropospheric meridional temperature gradient and the surface meridional
temperature gradient are also significantly correlated over the New Zealand sector [25]. This means
upper atmosphere circulation shifts driven by latitudinal insolation variations can propagate through
to the near-surface environment to produce surface temperature anomalies. Mid-Holocene orbital
forcing of atmospheric circulation, via steepened tropospheric meridional temperature gradients,
also include narrowing and intensification of the winter southern subtropical jet over parts of the
southern lower middle latitudes with spatially variable SWW impacts (Figure 7).

Transient model simulations indicate negligible change or a weakening trend for austral winter
westerly flow across New Zealand from the mid-to-late Holocene (based on CCSM3, Echo G,
and LOVECLIM; 3 of 4 transient models used in this study [120]). That evidence is congruent
with regional-scale climate model analysis for New Zealand that evaluated winds, synoptic types, and
climate regimes for the mid-Holocene relative to pre-industrial conditions [121,122] (see Figure A1l in
Appendix C for synoptic types and climate regime details). Regional atmospheric circulation patterns
across the hemisphere also show important longitude- and season-specific idiosyncrasies that arise
from a wider SWW response to tropospheric temperature gradient changes [68].

A SWW strengthening and poleward shift can arise from a CO, increase, which has been
demonstrated over the late 20th and early 21st century under a warming climate (e.g., [126,127]).
Ice core evidence indicates increased atmospheric CO, from the mid-to-late Holocene occurred [128].
A mid-to-late Holocene central Tasman Sea climate state change may have therefore been partly driven
by both greenhouse gas forcing and regional atmospheric circulation impacts on the surface climate.
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Some of the associated regional changes in the transient model data also appears heterogeneous
at larger spatial scales over the Southern Hemisphere through the Holocene, but these differences
can be reconciled via understanding longitude-specific responses to SWW. We also note a subtle
La Nifia/positive SAM-like SST spatial pattern in models across the Pacific basin for the mid-to-late
Holocene [120]. That type of climate pattern is typically associated with more frequent northerly and
easterly quadrant flow with warmer regional temperatures across the North Island, which is consistent
with tightening and strengthening of SWW to the south of New Zealand and an increase in subtropical
inflow (at least on a seasonal basis). This pattern may suggest the increased importance of (and/or
influence from) specific modes of variability that New Zealand is sensitive to (including ENSO [129],
SAM [130] and Zonal Wave 3 [131]) that are known to work in conjunction [45,97]. However, further
work with more finely resolved proxies would be required to investigate the potential role those climate
modes had in guiding any observed changes during the Holocene.

4.4.3. Caveats for Interpreting 5180 and Reconciling Different Drivers of Holocene Changes

Spatially heterogeneous atmospheric circulation features across the Southern Hemisphere for
the mid-Holocene, as seen climate model simulations, indicate reduced zonal flow across South
American and Australian sectors of the high-middle and polar latitudes [68,132]. As a consequence,
extratropical westerlies may have been weaker during the mid-Holocene over certain parts of the
southern hemisphere, for certain seasons, despite a more intense overall upper tropospheric southern
jet stream at times [68]. This example highlights different outcomes can arise from simultaneous
SWW structural changes, and it emphasizes longitude- and latitude-dependent responses to prevailing
atmospheric circulation changes (e.g., some places experience relative SWW weakening when other
areas experienced relative SWW strengthening; see supporting data summarized in [110]).

Significant spatial differences that are observed for models and field evidence reinforces caveats
from drawing broad conclusions about large scale processes (or about climate modes) from proxy
records that capture local scale (or longitudinally constrained) conditions. This consideration reiterates
commonly known limitations for proxy-model comparisons that can be surmounted by wider data
networks. It also reemphasizes caution in drawing direct comparisons between Waitomo and other
Southern Hemisphere sites further afield.

Nevertheless, Waitomo appears to be an important location within the wider Southern Hemisphere
proxy network that records possible impacts from regional atmospheric circulation and Tasman Sea
surface climate changes. Along with other New Zealand evidence, the new Waitomo 8'80jy. isotope
master record can help to test hypothetical models of Quaternary climate change that consider how
synoptic systems [21] and oceanographic boundaries are interconnected at the hemispheric scale via
the SWW.

5. Conclusions

New Zealand speleothem data were age modeled using Bayesian principles with COPRA [31],
and these new data are now held in the SISAL database for future use by the palaeoclimate research
community. We briefly reviewed the national spatial and temporal coverage of isotopic series from New
Zealand speleothem records now held in the SISAL database. The majority of our effort then focused
on using COPRA and other techniques to develop a 5'0 isotope master record for Waitomo that
covered the Holocene, and interpreting that record within a proxy-model context. Several strengths
and weaknesses exist for different master record construction approaches (see Section 4.2). From our
findings, we suggest evaluating several master record methods in parallel while considering a range of
factors (including the environments the speleothems grew in, the amount of local data replication,
and the timespan speleothem collections cover) can help to determine whether the intended application
of an isotope master record is appropriate.

Leading hypotheses for the millennial-scale trends in the Waitomo §'80 isotope master record
suggests it reflects temperature (and isotopic) traits from different climatic sub-regions within and
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around the Tasman Sea. A key factor in our interpretation of this record is that the latitudinal
temperature gradient and associated fluctuations in the SWW winds produce dynamic subpolar and
subtropical impacts on regional atmospheric circulation, which in turn drive Tasman Sea and Waitomo
surface climate conditions.

During the early Holocene, a reduced latitudinal temperature gradient may have led to several
impacts (including diminished SWW near New Zealand, displaced the STF southern boundary,
increased Tasman Front influences, and enhanced EAC flow along the western Tasman Sea) that
produced warmer winter temperatures, which are reflected in the model-calibrated Waitomo %0
isotope master record.

The transition from the early-to-mid Holocene suggests the associated cooling of the southern high
latitudes steepened the latitudinal gradient to the east of New Zealand [110]. Increased upper level and
surface SWW brought a range of changes (including increased upper ocean mixing, increased northward
penetration of SAF waters east of New Zealand, a northward rebound of the STF, and reduction of
EAC inflow into the North Tasman Sea) that diminished subtropical water influences around northern
New Zealand, and produced a cooling winter temperature trend for Waitomo.

During the mid-Holocene, we observe lowest 5180, values, which we interpret as the coolest
temperatures for JJA at Waitomo based on how we calibrated our record. Strong seasonality,
and exclusion of frost tender taxa with increased frosts during winter (and flanking months) at
this time are suggested from other New Zealand evidence [18]. Then, from the mid-to-late Holocene,
CO; concentrations increased, which likely contributed toward a stronger and poleward-shifted SWW
belt. Impacts from that atmospheric circulation change would have led to more mixing, coinciding
with strong surface climate heterogeneities over portions of the mid-and-high latitudes and an increase
in subtropical ridge presence over parts of the lower middle latitudes (2540° S).

The Waitomo Holocene §'80 isotope master record exhibits millennial-scale temperature trends
with distinct periods of centennial-scale variability that can be corroborated using a range of available
higher-resolution proxy evidence. However, we also recognize that the conceptual model of Holocene
climate change offered in this study would greatly benefit from more detailed palaeoproxy data
transects on the eastern (Pacific) and western (Tasman Sea) sides of New Zealand, in addition to a
better understanding of the controls on precipitation §!80 variations over space and through time.

6. Future Work

New Zealand speleothems significantly contribute to palaeodata coverage for the Southern
Hemisphere mid-latitudes. They offer a unique resource for defining a wide range of Late Quaternary
natural climate and environmental variations. Regional richness of other proxy records in New Zealand
also helps to support large-scale spatial interpretations from the karst record. Archived speleothems
that are well-dated provide a valuable legacy resource for the palaeoclimatology community that
can be re-assessed with new analyses (e.g., trace element and physical properties) to complement
interpretations from extant stable isotope records. Potential to build on the extant stable isotope data
foundation requires ongoing stewardship of speleothem samples and the ability for researchers to
access them.

Based on the New Zealand data lodged with SISAL so far, and what is forthcoming, it is clear many
caves can be revisited in order to augment sample depth, apply new and more precise dating approaches,
and improve climate-proxy calibrations. Enhancing our understanding of New Zealand speleothems
that cover the last glacial cycle and beyond also requires high-resolution, long-term cave monitoring to
support the development of quantitative climate transfer functions. Application of recent advances
that have applied synchrotron-derived layer counting [133] paired with high-precision radiometric
dating appear to be critical for this effort. Re-expansion of cave climate monitoring experiments where
speleothems can be collected will help to evaluate how inter-annual to decadal-scale climate variability
and extreme events (droughts, pluvials, fires) may be imprinted during carbonate deposition.
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Northland (northern North Island), Hawke’s Bay (eastern North Island), and north Canterbury
(eastern South Island) are high priority for development of new speleothem data to fill current spatial
gaps. The area north of Auckland including the cave systems near Waipu (both in northern North Island)
have potential to provide speleothem material for palaeoclimatology. Notably, this region also has many
palaeoproxies, including annually-resolved sub-fossil kauri tree rings that cover parts of the Holocene,
the late glacial, most of MIS3, and also parts of MIS5 [134]. However, LGM depositional hiatuses or
unconformities in some sedimentary records there are noted [135]. Thus, Northland speleothems may
be able to provide continuous evidence of environmental changes spanning the last glacial-interglacial
cycle relative to what has currently been reported from that region. Several Hawke’s Bay speleothems
are already archived, and additional replication from that area is warranted because of regional impacts
from westerly circulation [21,40] variability and apparent drought sensitivity. For north Canterbury,
which is also a relatively dry region in the lee of the Southern Alps, the situation is similar; but the
challenge may be to find suitable speleothems (especially those that are in isotopic equilibrium with
the local environment).

Application of COPRA for consistent age modelling aided our comparison of isotope master
record techniques. Success or failure for splicing speleothem time series into a long master record is
likely related to the amount of data available at a sub-regional level. This assertion is supported by
our efforts to combine isotopic data starting within a cavern and working outward to additional data
from neighboring caves within the same karst block. While data aggregation processes used to create
isotope master records could introduce data artefacts when combining or adjusting series, increased
replication has benefits for evaluating the timing and scale of relative trends and changes through
time. Additional proxies (e.g., trace elements) derived from well-dated speleothems that are aligned
on a common time scale would provide more temporally-specific details that could enhance isotope
master record construction practices, in addition to aiding the re-assessment of individual speleothem
sensitivities to climate (and in particular, hydroclimate).

Future upgrades to the wider Australasian speleothem data network are expected to enhance
understanding of heterogeneous patterns of change driven by global climate teleconnections.
Demonstrable links for many Australasian caves to convergence zone activity, temperature, and rainfall
processes means they remain important pre-instrumental resources for interrogating planetary
ocean-atmosphere circulation dynamics. Given the limited instrumental data coverage for much of
Australasia, including New Zealand, it is clear speleothem perspectives can provide highly valuable,
idiosyncratic information that addresses spatiotemporal biases or gaps for past environmental histories
that are not covered in the literature.
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Appendix A. Physical Geography of Karst Terrain of New Zealand

Regions covered in this work have been previously described by some of the authors in a technical
report [47]. We reiterate that material for the benefit of researchers who wish to understand more
about the local geology, climates, and past speleological investigations.

Appendix A.1. Waitomo Karst

The Waitomo district is located at latitude 38.3° S about 35 km inland from the west coast of the
central North Island. Karst in this district (sometimes referred to as King Country karst) is principally
in Orahiri Limestone of Oligocene age and Otorohanga Limestone of Oligocene-Miocene age, and
rests unconformably on an impervious basement that is overlain by relatively silty and sandy clastic
beds [24,37]. The karstified limestone is discontinuous and covers an estimated 800 km? in subcrop
and outcrop. The area has a temperate oceanic climate with a mean annual temperature of about 13 °C
and an annual rainfall averaging 1618 mm at Waitomo, although this increases to over 2300 mm some
10 km to the west. The average annual temperature of caves in the Waitomo area is about 12.8 °C.
Podocarp-hardwood evergreen forest formerly covered the district [136], but much has been cleared for
agricultural grassland in the last 100 years. Further background details and information on the regional
context of the site are provided in previous work [12]. Speleogenesis is understood to have started
mainly in the Pleistocene. Hence the upper levels of the longest cave in the region (Gardner’s Gut) have
speleothems dating from the Last Interglacial. However, it is likely that the formation of most caves
in the area has taken place within the last half million years and often much more recently although
some caves are >1.0 Ma. The six Waitomo speleothem chronologies used in this synthesis report for
the Holocene analysis include two from Gardner’s Gut Cave (GG1, GG2), three from Ruakuri cave
(RK-A, RK-B, RK-C) and one from Max’s Cave (Max’s). Gardner’s Gut Cave has a total passage length
of 12.2 km and is located 3.5 km west of Waitomo village beneath an undulating karst surface varying
from 120 to 180 m above sea level. Max’s Cave is located about 8 km west of Waitomo. The Gardner’s
Gut speleothems were all obtained from approximately the same elevation (ca. 100 m above sea level),
whereas the speleothem from Max’s Cave was obtained somewhat higher (ca. 325 m above sea level).

Appendix A.2. Whakapunake Karst, Hawkes Bay

The Whakapunake area is approximately 29 km north-east of Wairoa in the Hawkes Bay District.
Limestone landforms are well distributed along this eastern side of the country and are mainly of
Pliocene to early Pleistocene age [37]. Typically, these limestones are young and poorly cemented,
so caves and sampling opportunities are relatively limited, though these young porous limestones still
contain caves. However, the limestone at Whakapunake is dense and crystalline [137]. Streams have
intensely dissected the coverbeds and soils over the limestones. Overlying vegetation is mixed
podocarp, broadleaf and hardwood forest and includes many tall trees species [138], although on
Whakapunake most natural forest has been cleared and has been replaced by pine plantations.
Steep terrain in this region has developed due to regional tectonic uplift along the western side of the
Hikurangi-Tongan trench subduction zone. Annual rainfall averages some 1550 mm, with average
annual temperatures about 12.5 °C. The speleothem chronologies from the district used in this synthesis
report comprise speleothems from Disbelief and Te Reinga caves. Both these caves are located in the
Wairoa River catchment near the town of Te Reinga [139]. Disbelief Cave is at an elevation of about
600 m and is approximately 120 m long. Te Reinga Cave is 2690 m long and 134 m deep (labelled Te
Ranga in [139]). Speleothems were sampled in Te Reinga at about 100 m above sea level (asl).
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Appendix A.3. Paturau Karst

The Paturau district is located in the northwest corner of the South Island. Karst in the area is
principally Oligocene age to Miocene age and is discontinuously spread along a 20 km coastal strip of
the NWSI—also reaching inland in places where they have been uplifted 290 m asl. These limestones
tend to be of variable thickness and lithology—ranging from thin and sandy to crystalline [140].
These Tertiary rocks are similar to those found at Punakaiki and drop in elevation from north to
south. The coastal region of the northwest South Island has a mild maritime climate with mean
annual temperatures from Punakaiki and Nelson ranging 12.3 °C to 13.7 °C. Sea surface temperatures
range between a mean winter minimum of 13.3 °C and a mean summer maximum of 18.4 °C.
Prevailing onshore westerly winds convey a strong moderating effect on coastal air temperatures.
Mean annual precipitation averages 1776 mm at Paturau but increases inland with altitude on seaward
slopes. The Paturau district has been subject to forest clearance over the last 60 years or so and
much has been replaced by grassland [141]. Two speleothem chronologies from the Paturau district
were used in this synthesis—Twin Forks 2 (TF2) and Wet Neck 4 (WN4). The Twin Forks Cave is
approximately 1300 m long and is located about 2 km south of Paturau River mouth, whereas Wet
Neck Cave is located about 1 km north of the river. Its resurgence entrance is at about 60 m above sea
level and the cave is approximately 1600 m long [142] ascending to 120 m asl. Initial development of
the cave inferred from dated marine gravels that were injected into Wet Neck Cave during a high sea
level stand is estimated at 1.2 million years ago [141]. Speleothem samples from Twin Forks and Wet
Neck Caves were obtained about 80 m asl.

Appendix A.4. Mt. Arthur (Arthur Marble Karst), Kahurangi National Park

Mt Arthur on the Arthur Range of the Southern Alps is a major alpine karst area covering some
80 km?. Karst across this district/region is developed in Upper Ordovician Arthur Marble [37] which
extends discontinuously some 90 km southwards from Collingwood (Golden Bay) in the north to
Mt Owen in the south. An extensive subterranean system underlies the Arthur Range with the
underlying geology often dipping steeply as well as beneath sea level. Thick sequences of poorly
bedded to massive, pure calcite marble, alternating marble and quartzite, and interbedded marble and
dark, carbonaceous calcareous siltstone comprise the formations. The local climate is dominated by
westerly weather from the Tasman Sea, 50 km to the west, and is essentially maritime [52]. Previous
workers [52] reported a summer temperature at 390 m in Nettlebed Cave on Mt. Arthur (Figure 2) as
8.3 °C; the surface over the cave site rising to over 1000 m. This compares to an external mean annual
temperature nearby of 8.4 °C at 823 m (Cobb Dam). Nettlebed Cave (889 m) is located beneath Mt
Arthur (1778 m). This cave is one of the longest and deepest in the country with >38 km of surveyed
passageway (with much more passageway unexplored beneath the water table) [38]. The upper most
caves passages are more than 350 m above the present water table. Some of these passages which
were formed below the water table date to at least 700 ka BP. This indicates the passages beneath this
elevation are younger than this age. Speleothem formation in Nettlebed is itself a sensitive temperature
proxy, being controlled by the movement of surface vegetation on the slopes of Mt Arthur [143].
Guillotine cave is recently described [26] and it is situated northeast of Springs Junction on the eastern
side of the Maruia Valley and set within Ordovician limestone (Sluice Box Formation) nested within an
outcrop of black marble. It is a member of the Mount Arthur Group that also holds Nettlebed and
Exhaleair speleothems [30]. The cave is more than 200 m long over a vertical ascent of 80 m from the
entrance, with abandoned passages above the current stream level containing speleothem formations.
It is also a site that is located in close proximity to the Alpine Fault.

Appendix A.5. Punakaiki Karst, North Westland

The Punakaiki district is located along the steep northwest coast of the South Island. Underlying
limestone in this area is principally Oligocene age to Miocene age and is sometimes referred to as
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Westland karst [140]. The limestones tend to be of variable thickness and lithology—ranging from
thin and sandy to crystalline [140]. Between Charleston and Punakaiki the karst extends inland for
several km’s uplifted in places to 430 m asl. The West Coast has a mild maritime climate with offshore
waters being transitional between subtropical and sub-Antarctic. Sea surface temperatures range
between a mean winter minimum of 13.3 °C and a mean summer maximum of 18.4 °C. Punakaiki
and Westport have mean annual temperatures of 13.7 °C and 12.3 °C respectively, but temperatures in
nearby caves have been measured at 10-10.1 °C. Mean annual precipitation is 2346 mm at Punakaiki,
but increases inland with altitude on seaward slopes. Most precipitation falls as rain, but at sites
above 400 m precipitation can fall as snow in winter. Prevailing onshore westerly winds convey a
strong moderating effect on coastal air temperatures. The area is covered with rainforest dominated by
podocarp and evergreen hardwood-broadleaf species. Three stalagmites near Punakaiki were used in
this synthesis report—one from Babylon Cave (BN1), one from Hollywood Cave (HW1) and another
from Wazpretti Cave (WP1). Hollywood Cave is 4.3 km long. It is located near Charleston on the West
Coast of the South Island, between Westport and Punakaiki. The entrance to the cave is 5 km inland
from the coast and is located at the bottom of a doline (~130 m) set in an undulating plateau with
summits to 380 m above sea level. HW1 speleothem is a stalagmite of simple elongate morphology and
is just over 500 mm long. It was situated in a link passage between Streamway One and Streamway
Two about 200 m into the cave beyond the restricted entrance passage and at least 50 m below the
undulating epikarst surface. Babylon Cave is located near to Fox River and is approximately 800 m
long. Wazpretti Cave is located about 6 km inland along Bullock Creek and at 90 m asl. Speleothem
samples were obtained in Babylon Cave at 175 m and in Wazpretti at 95 m asl.

Appendix A.6. Te Anau, Fiordland

Karst in the Te Anau area is developed in Tunnel Burn Formation, an Oligocene bioclastic limestone
30-80 m thick [37]. The Aurora Cave system is located along the western side of Lake Te Anau,
the largest lake in South Island. It comprises an upstream section called Aurora Cave separated
by a sump from a shorter downstream resurgence section named Te Ana-au Cave (a tourist cave).
Aurora Cave was formed by the stream draining Lake Orbell, in a hanging tributary of Lake Te
Anau [11]. The Lake Orbell outflow stream (Tunnel Burn) descends 267 m through the cave to Lake Te
Anau [11]. Aurora Cave has 6.4 km of passages. Speleothem deposits in Aurora Cave are particularly
important because they have shed light on the timing of glacial advances and interstadial periods [11].
Aurora 3 speleothem was obtained from about 260 m above sea level in a downstream part of the cave.
Calcite Cave is located some 13 km south-west of Aurora Cave at 1025 m elevation on Mt. Luxmore.
It is above the tree-line and beneath alpine herb-field. The cave ascends from its entrance and samples
were obtained at about 1035 m. The cave is within the Tunnel Burn Formation and approximately
200 m long. Climate of this south-western area of the country is temperate and dominated by the
prevailing westerlies. Air masses from the tropics and polar regions can reach this region, with heavy
rainfalls and cold showery conditions not uncommon. At an elevation of 215 m asl the Te Anau climate
station has a mean annual temperature of 9.3 °C, although clearly elevation, exposure and proximity to
the sea will affect the temperature of particular localities across this area. Mean annual precipitation is
1180 mm at Te Anau, with a sharp westward increase in rainfall.

Appendix A.7. Doubtful Sound, Fiordland

Doubtful Xanadu Cave is located above Kellard Point in Doubtful Sound, Fiordland to
the northwest of Lake Chamberlain. The stream-sink cave entrance (960 m above sea level) is
situated immediately above tree line, with overlying vegetation mainly comprised of alpine tussock.
Glacial geomorphic features in close proximity to the cave clearly indicate a landscape history deeply
intertwined with extensive glacial activity. Local bedrock is composed of a salmon pink marble that is
interbedded with dark grey to black schist, which gives an unusual horizontal striped appearance to
the country rock that comprises this cave. Meta-sedimentary strata dip toward Kellard Point. There is
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approximately 700-800 m of passage in Doubtful Xanadu, but the main passage distance is 360 m
long with a vertical descent of 50 m. Regional tectonic activity has fractured the country rock into
multiple sets of joints that have been exploited by groundwater to form passages with an average of
1-3 m in width for this cave system. The speleothem sample was obtained from a passage at about
950 m altitude. There are no climate stations in Doubtful Sound, and the closest meteorological record
is from Milford Sound, which extends back to 1927 AD. There are significant altitude and latitude
gradients in precipitation due to mountainous terrain in this region. The New Zealand virtual climate
station network (which estimates climate conditions based on interpolations within a network of
stations) suggests the Doubtful Sound long-term median rainfall exceeds 4 m per year, with more
precipitation during summer and autumn than winter and spring. Median annual temperature is close
to 7 °C, with a summer median of 11 °C and a winter median of ~4 °C. The area receives approximately
1450 bright sunshine hours per year, and has a median annual wind speed of ~6 m/s [25].

Appendix B. Theoretical Basis for Interpreting 580 and 5!3C Signatures in
New Zealand Speleothems

Appendix B.1. §'80 in New Zealand Speleothems

Influences on New Zealand speleothem calcite §'80 composition have been partitioned into drip
water (seepage water) effects and cave temperature effects (related to thermodynamic fractionation) [25].
In the context of New Zealand speleothem environmental monitoring [60], few observations are
published on infiltration, precipitation residence time in the epikarst, karst aquifer storage processes,
mixing of groundwater and subterranean flow styles (diffuse flow vs. fracture flow; e.g., [16]), but a
recent contribution has significantly expanded our understanding of these factors in the Waitomo
region [34]. All of those local aspects can potentially contribute toward enrichment or depletion of 0
of seepage water and therefore speleothem calcite §'80 composition. It is likely that some of those
processes also cause variations between speleothem §'80 within the same cavern and between caves
in the same region.

Rainfall amount effects on 8180 of precipitation (5'80p) shows a seasonal effect exists across the
year [12], with less negative 5180p during summer when rainfall is reduced and more negative 618Op
when rainfall is higher during winter [60]. Precipitation amount effects on 5'80 is expected to be larger
for warmer climates than cooler temperate climates, and all data in this synthesis are drawn from
sites with mean annual temperatures below 15 °C [60], though evidence from the Waitomo region
suggests an amount effect in seasonal precipitation §'80 variations [34]. In addition, rainfall amount
effects on §'80,, from distinct storms (with increased negative values arising from Raleigh distillation)
are expected to be smoothed out in low-frequency speleothem analyses (>10 y), which are typical
resolutions for New Zealand speleothem time series (see Table 1).

The Tasman Sea region (upwind of prevailing flow that blankets both main islands) is also expected
to influence local §'80 signatures in New Zealand speleothems [47]. Within New Zealand, terrestrial
temperature regimes reflect the traits of proximal oceanic waters that air passes over for 1000 s of
kilometers before it arrives at a site [144]. On glacial-interglacial time scales, there were latitudinal shifts
of the Subtropical and Subantarctic Fronts (STF, SAF) that impacted on regional sea surface water traits
(Figure 1). The location of oceanic fronts west of New Zealand can impart a significant influence on
terrestrial air temperature patterns [82,110]. Sea surface temperature and sea water salinity attributes
of the subtropical and subpolar water sources that characterise the STF and SAF are intertwined in
5'804y, which influences 5!80y,. Thus, palaeoceanographic studies are useful complementary data that
can assist interpretations of 50 in New Zealand speleothems. Because of the relatively slow inertia of
oceanic changes, we recognise that important glacial-interglacial changes for New Zealand speleothem
§!80 may have apparent regional differences due to oceanic circulation (and marine front boundary
location changes). It is also for these reasons that pushing a Holocene-based transfer function in to the
late glacial and the LGM has not been attempted in this study.



Quaternary 2020, 3, 24 31 of 41

Precipitation 5!80 analyses [145] show increasingly more negative 'O from northern to southern
New Zealand based on annual average 5'%0,,. Analyses on modern straw calcite from caves reflects
this latitudinal gradient [12,22]. Modelling of precipitation isotopes on a global scale [146] also shows
New Zealand has a slightly larger intra-annual range (termed the seasonal effect [12]) for §'¥0,, in
the north (annual mean of about 5.5%o at Kaitaia; —2.3%o0 in January to —7.8%o in July) relative to the
south (annual mean of about 4.5%o at Invercargill; —5.1%o in February to —9.7%o in July). Based on
the mean annual temperatures for both these sites, there is a positive relationship between %0, and
temperature on the order of 0.47%o0/°C [12], but these relationships are slightly different through the
year for Tmax, Tmin and Tmean. A check of that assertion using Online Isotopes in Precipitation
Calculator [146] closely agrees (0.41%0/°C). Monthly isotopic information based on OIPC [146] and
local Waitomo temperature data, however, show a relationship of 0.54%0/°C which is situated more
inland than Kaitaia or Invercargill. This relationship has a shallower slope for winter (June-August
0.32%0/°C) when data from Kaitaia, Waitomo and Invercargill are examined in combination, but overall
reiterates the point that 5'®Op, and temperature for New Zealand are positively correlated.

Previous work sampling rainwater and dripwater at Waitomo has shown 6180p intra-seasonal
isotopic ranges can be large (>6%o) but variability for temporally-aligned cave dripwater §'0 samples
is very small (<0.5%o) [34,60]. This finding suggests cave seepage waters at Waitomo are thoroughly
mixed before they reach the cave drip point, and also that the drip water source above the cave is
potentially of sufficient size to attenuate intra-seasonal variability. Therefore, there should be a minimal
influence for precipitation seasonality on low frequency signals that are the focus of the Waitomo
speleothems examined in this study, and the 5'80 of drip water at that site likely represents the mean
annual precipitation value. We refer readers to the most recent work for additional details [34].

Along with different precipitation source regions, the regional temperature anomalies that
arise from inter-seasonal synoptic weather variability [21,40,41,45] can impact on cave climates.
The 5'80 measurements from speleothems that are taken to represent average climatological conditions
(with resolution dictated by sampling intensity, speleothem deposition rate and chronology constraints)
may also contain an aspect about the persistence of regional climate regimes that convolve specific
source region 58Oy and also the temperature conditions of those source areas.

Speleothem §'80 variability that arises from the regional atmospheric circulation may dominate
the second-order oxygen isotope trends at multi-decadal to centennial scale [21]. However, it has been
noted that there are competing, opposite effects on speleothem §'80 from a range of sources [12,147]
that can mute or reinforce the isotopic signal related to ambient temperature fluctuations. In the
New Zealand situation, the cave temperature effect has been shown to influence the 5180 signal in
speleothem calcite [22]. Previous work has indicated opposite signs exist for the cave temperature effect
(negative) and the relationship between ambient temperatures and 5'0,, (positive). The equilibrium
fractionation factor (the cave temperature effect) for speleothems examined in this study is expected
to range between —0.23%0/°C near Waitomo and —0.26%o/°C in Fiordland based on the mean annual
temperature of each site. In a maritime climate like New Zealand, depending on what basis one starts
from for the isotopic composition of seasonal recharge waters (which may strongly influence the §'80
signal following recent assertions [65]) and the equilibrium fractionation factor, the directionality of
past climate change from §'80 will be similar and should be positive (i.e., less negative 5'80 is likely
to be warmer, more negative cooler), but the absolute scale of temperature reconstructions may be
different. Tests of temperature reconstruction efficacy with and without the equilibrium fractionation
factor used and held within a multiproxy framework may therefore be warranted.

When the counteracting effects of equilibrium fractionation (ca. —0.23%0/°C) and temperature
(0.4 to +0.54%0/°C) on precipitation are summed (+0.17 to 0.31%0/°C), a range of +/—1.5%o in speleothem
calcite §'80 relative to millennial-scale base climate state average conditions is probably realistic to
attribute to temperature variability driven by regional atmospheric circulation operating on decadal to
multi-centennial scales.
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Appendix B.2. §'3C in New Zealand Speleothems

Quantitative transfer functions between 5'>C and meteorological data are not numerous or based
on long observation series [60], so many relationships for New Zealand speleothems are theoretical.
It has been postulated that soil CO, influences speleothem §'C variability via C3 vegetation and
forest productivity changes [30]. This assertion follows previous work that suggests diminished water
flow rates enrich §'3C, and explains why more negative Holocene 8'C values that contrast with
more positive LGM values (~8%o difference) arise from interglacial-glacial differences in dryness and
vegetation cover [87,148].

Nettlebed cave speleothem trace element chemistry, ultraviolet luminescence intensity (UVL),
and Uranium isotopic data support the interpretation of 5'>C as a palaeohydrology proxy. Millennial-scale
UVL variations closely mimic coeval '3C patterns and have been hypothetically linked to seepage water
organic acid content flux that impacts speleothem fluid inclusion density, an assertion now supported
by experimental evidence [149]. In this situation, increased (or decreased) speleothem growth rates
that contribute to calcite formation should align to increases (or decreases) in percolation water flow
rates, elevated (or reduced) biological activity in and above the epikarst, and warmer (or cooler)
temperatures. It has also been outlined by previous workers [52] how increased groundwater residence
driven by reduced effective precipitation above the cave drives elevated magnesium concentrations
in speleothems [150]. From this result, and because reduced changes in magnesium and other trace
elements closely parallel §13C patterns, both types of records are interpreted as driven by effective
precipitation changes on glacial-interglacial timescales [150].

Williams et al. [22] concurred that §'3C variations capture the combined effects of biological
activity and local water balance changes. More positive 5'°C values that coincide with the global
LGM are associated with dry conditions, while more negative values after the last termination are
associated with elevated biological activity and wetter conditions [22]. Interpretation of a network of
speleothem §!3C signals across New Zealand’s heterogeneous climatic regions using an atmospheric
circulation regime paradigm also suggests the water balance link of 5!3C to effective precipitation is
plausible [25,40]. In periods when precipitation is high, the flushing rate in the epikarst has higher
potential to increase in frequency, and therefore the residence time of water above the cave is expected
to decrease [24]. This decreases the potential for inorganic §13C enrichment of §'3Cy1cite, suggesting
wetter periods should have more negative 'C values. With this in mind, this interpretive framework
could be validated using a combined §'3C, 1*C approach [151].

Water balance in the epikarst, atmospheric CO,, and vegetation composition changes over the
cave (C3/C4 pathways; see comments in Figure 3) are important to also consider for interpreting New
Zealand speleothem §'3C. This type of proxy record may also have more important links to local
or global temperature change in certain situations. Some §'>C signatures may not reflect only one
aspect of climate strongly, or be affiliated with only one environmental element (like vegetation type),
so interpretations within a multi-proxy framework are recommended [21]. It is clear that determining
the relative importance of global and local factors (CO,, local vegetation type changes, whether a
system is open or closed, climate conditions, epikarst processes like flushing) at any site are required to
evaluate what §!3C controls are most prevalent.
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Appendix C. Details on Regional Synoptic Weather Types and Weather/Climate Regimes of
New Zealand
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Figure Al. (Top) New Zealand synoptic weather types related to three key regimes (Trough, Zonal,
Blocking; figure modified from [21,25,40,41,50]). Synoptic weather types associated with each regime
are as follows: Trough group—T, SW, TNW, TSW; Zonal Group—H, HNW, W; Blocking group—HSE,
HE, NE, HW, R (percentages indicate climatological occurrences in a twice daily k-means clustering of
MSLP using the NCEP1 reanalysis. (middle) Example spatial patterns for three weather/climate regimes
used to group the New Zealand synoptic types via similar rainfall and temperature outcomes (bottom).



Quaternary 2020, 3, 24 34 of 41

Details for New Zealand average associated spatial conditions arising from the synoptic types in each of
the regimes for rainfall and temperature, and association with modes of variability. Top row—Trough;
middle row—Zonal; Bottom row—Blocking. Applications on the use of these patterns for climate
regime classification and are provided in [21,40].
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