The Eneolithic/Bronze Age Transition at Tegole di Bovino (Apulia): Geoarchaeological Evidence of Climate Change and Land-Use Shift
Abstract
:1. Introduction
2. General Settings
2.1. Geological, Geomorphological, and Palaeoclimatic Background
2.2. Archaeological Framework
3. Materials and Methods
3.1. Archaeological Excavation
3.2. Thin Sections’ Analysis
3.3. Archaeological and Radiometric Dating
4. Results
4.1. Archaeological Evidence and Dating
4.2. Field Evidence of Investigated Structures
4.2.1. Canals
4.2.2. Pits and Postholes
4.2.3. Current Soil and Bedrock of the Archaeological Site
4.3. Micromorphology of Thin Sections
4.3.1. Canals
4.3.2. Postholes and Pits STR41, B266, B267, B271
4.3.3. Petrocalcic Ck Horizon
5. Discussion
5.1. Formation of the Archaeological Record: Natural vs. Anthropogenic Processes
5.2. Evidence of Climate Change at Tegole di Bovino
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Courty, M.A.; Goldberg, P.; Macphail, R. Soils and Micromorphology in Archaeology; Cambridge Manuals in Archaeology; Cambridge University Press: Cambridge, NY, USA, 1989; ISBN 978-0-521-32419-9. [Google Scholar]
- Mentzer, S.M. Microarchaeological Approaches to the Identification and Interpretation of Combustion Features in Prehistoric Archaeological Sites. J. Archaeol. Method Theory 2012, 21, 616–668. [Google Scholar] [CrossRef]
- Lisá, L.; Komoróczy, B.; Vlach, M.; Válek, D.; Bajer, A.; Kovárník, J.; Rajtár, J.; Hüssen, C.; Šumberová, R. How were the ditches filled? Sedimentological and micromorphological classification of formation processes within graben-like archaeological objects. Quat. Int. 2015, 370, 66–76. [Google Scholar] [CrossRef]
- Nicosia, C.; Stoops, G. Archaeological Soil and Sediment Micromorphology; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-1-118-94105-8. [Google Scholar]
- Morley, M.W.; Goldberg, P.; Sutikna, T.; Tocheri, M.W.; Prinsloo, L.C.; Jatmiko; Saptomo, E.W.; Wasisto, S.; Roberts, R.G. Initial micromorphological results from Liang Bua, Flores (Indonesia): Site formation processes and hominin activities at the type locality of Homo floresiensis. J. Archaeol. Sci. 2017, 77, 125–142. [Google Scholar] [CrossRef] [Green Version]
- Zerboni, A.; Mori, L.; Bosi, G.; Buldrini, F.; Bernasconi, A.; Gatto, M.C.; Mercuri, A.M. Domestic firing activities and fuel consumption in a Saharan oasis: Micromorphological and archaeobotanical evidence from the Garamantian site of Fewet (Central Sahara, SW Libya). J. Arid. Environ. 2017, 144, 123–138. [Google Scholar] [CrossRef]
- Goldberg, P. Micromorphology of sediments from Hayonim Cave, Israel. CATENA 1979, 6, 167–181. [Google Scholar] [CrossRef]
- Goldberg, P.; MacPhail, R.I. Practical and Theoretical Geoarchaeology; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Zerboni, A. Micromorphology reveals in situ Mesolithic living floors and archaeological features in multiphase sites in central Sudan. Geoarchaeology 2011, 26, 365–391. [Google Scholar] [CrossRef]
- Cremaschi, M.; Zerboni, A.; Mercuri, A.M.; Olmi, L.; Biagetti, S.; Di Lernia, S. Takarkori rock shelter (SW Libya): An archive of Holocene climate and environmental changes in the central Sahara. Quat. Sci. Rev. 2014, 101, 36–60. [Google Scholar] [CrossRef]
- Goldberg, P.; Aldeias, V. Why does (archaeological) micromorphology have such little traction in (geo)archaeology? Archaeol. Anthropol. Sci. 2016, 10, 269–278. [Google Scholar] [CrossRef]
- Karkanas, P. Micromorphological studies of Greek prehistoric sites: New insights in the interpretation of the archaeological record. Geoarchaeology 2002, 17, 237–259. [Google Scholar] [CrossRef]
- Tsatskin, A.; Nadel, D. Formation processes at the Ohalo II submerged prehistoric campsite, Israel, inferred from soil micromorphology and magnetic susceptibility studies. Geoarchaeology 2003, 18, 409–432. [Google Scholar] [CrossRef]
- Cremaschi, M.; Zerboni, A.; Charpentier, V.; Crassard, R.; Isola, I.; Regattieri, E.; Zanchetta, G. Early–Middle Holocene environmental changes and pre-Neolithic human occupations as recorded in the cavities of Jebel Qara (Dhofar, southern Sultanate of Oman). Quat. Int. 2015, 382, 264–276. [Google Scholar] [CrossRef]
- Cremaschi, M.; Mercuri, A.M.; Torri, P.; Florenzano, A.; Pizzi, C.; Marchesini, M.; Zerboni, A. Climate change versus land management in the Po Plain (Northern Italy) during the Bronze Age: New insights from the VP/VG sequence of the Terramara Santa Rosa di Poviglio. Quat. Sci. Rev. 2016, 136, 153–172. [Google Scholar] [CrossRef]
- Maritan, L.; Iacumin, P.; Zerboni, A.; Venturelli, G.; Sasso, G.D.; Linseele, V.; Talamo, S.; Salvatori, S.; Usai, D. Fish and salt: The successful recipe of White Nile Mesolithic hunter-gatherer-fishers. J. Archaeol. Sci. 2018, 92, 48–62. [Google Scholar] [CrossRef]
- Goldberg, P. Some micromorphological aspects of prehistoric cave deposits. Cah. D’Archéol. CELAT 2001, 10, 161–175. [Google Scholar]
- Shahack-Gross, R.; Berna, F.; Karkanas, P.; Weiner, S. Bat guano and preservation of archaeological remains in cave sites. J. Archaeol. Sci. 2004, 31, 1259–1272. [Google Scholar] [CrossRef]
- Angelucci, D.E.; Anesin, D.; Susini, D.; Villaverde, V.; Zapata, J.; Zilhão, J. Formation processes at a high resolution Middle Paleolithic site: Cueva Antón (Murcia, Spain). Quat. Int. 2013, 315, 24–41. [Google Scholar] [CrossRef] [Green Version]
- Stahlschmidt, M.; Miller, C.; Kandel, A.; Goldberg, P.; Conard, N. Site formation processes and Late Natufian domestic spaces at Baaz Rockshelter, Syria: A micromorphological perspective. J. Archaeol. Sci. Rep. 2017, 12, 499–514. [Google Scholar] [CrossRef]
- Morley, M.W.; Goldberg, P.; Uliyanov, V.A.; Kozlikin, M.B.; Shunkov, M.V.; Derevianko, A.P.; Jacobs, Z.; Roberts, R.G. Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai Mountains, Russia). Sci. Rep. 2019, 9, 13785–13812. [Google Scholar] [CrossRef]
- Dalrymple, J.B. The Application of Soil Micromorphology to Fossil Soils and Other Deposits from Archaeological Sites. J. Soil Sci. 1958, 9, 199–209. [Google Scholar] [CrossRef]
- Simpson, I.; Dockrill, S.; Bull, I.; Evershed, R.P. Early Anthropogenic Soil Formation at Tofts Ness, Sanday, Orkney. J. Archaeol. Sci. 1998, 25, 729–746. [Google Scholar] [CrossRef] [Green Version]
- Kooistra, M.J.; Kooistra, L.I. Integrated research in archaeology using soil micromorphology and palynology. Catena 2003, 54, 603–617. [Google Scholar] [CrossRef]
- Cremaschi, M.; Nicosia, C. Sub-Boreal aggradation along the Apennine margin of the Central Po Plain: Geomorphological and geoarchaeological aspects. Géomorphol. Relief Process. Environ. 2012, 18, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Mallol, C.; Marlowe, F.W.; Wood, B.M.; Porter, C.C. Earth, wind, and fire: Ethnoarchaeological signals of Hadza fires. J. Archaeol. Sci. 2007, 34, 2035–2052. [Google Scholar] [CrossRef]
- Balbo, A.L.; Madella, M.; Vila, A.; Estévez, J. Micromorphological perspectives on the stratigraphical excavation of shell middens: A first approximation from the ethnohistorical site Tunel VII, Tierra del Fuego (Argentina). J. Archaeol. Sci. 2010, 37, 1252–1259. [Google Scholar] [CrossRef]
- Friesem, D.; Zaidner, Y.; Shahack-Gross, R. Formation processes and combustion features at the lower layers of the Middle Palaeolithic open-air site of Nesher Ramla, Israel. Quat. Int. 2014, 331, 128–138. [Google Scholar] [CrossRef]
- Zerboni, A.; Bernasconi, A.; Gatto, M.C.; Ottomano, C.; Cremaschi, M.; Mori, L. Building on an oasis in Garamantian times: Geoarchaeological investigation on mud architectural elements from the excavation of Fewet (Central Sahara, SW Libya). J. Arid. Environ. 2018, 157, 149–167. [Google Scholar] [CrossRef]
- Cremaschi, M.; Trombino, L.; Zerboni, A. Palaeosoils and Relict Soils. In Interpretation of Micromorphological Features of Soils and Regoliths; Elsevier BV: Amsterdam, The Netherland, 2018; pp. 863–894. [Google Scholar]
- ISPRA Carta Geologica D’Italia alla Scala 1: 50.000, Foglio 421 “Ascoli Satriano”; Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italy, 2011.
- Ciaranfi, N.; Gallicchio, S.; Loiacono, F. Note Illustrative della Carta Geologica D’Italia alla Scala 1: 50.000, Foglio 421 “Ascoli Satriano”; Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italy, 2011.
- Caldara, M.A.; Pennetta, L. Nuovi dati per la conoscenza geologica e morfologica del Tavoliere di Puglia. Bonifica 1993, 8, 25–42. [Google Scholar]
- Giraudi, C.; Magny, M.; Zanchetta, G.; Drysdale, R.N. The Holocene climatic evolution of Mediterranean Italy: A review of the continental geological data. Holocene 2011, 21, 105–115. [Google Scholar] [CrossRef]
- Mercuri, A.M.; Sadori, L.; Ollero, P.U. Mediterranean and north-African cultural adaptations to mid-Holocene environmental and climatic changes. Holocene 2011, 21, 189–206. [Google Scholar] [CrossRef]
- Sadori, L.; Jahns, S.; Peyron, O. Mid-Holocene vegetation history of the central Mediterranean. Holocene 2011, 21, 117–129. [Google Scholar] [CrossRef]
- Magny, M.; Peyron, O.; Sadori, L.; Ortu, E.; Zanchetta, G.; Vannière, B.; Tinner, W. Contrasting patterns of precipitation seasonality during the Holocene in the south- and north-central Mediterranean. J. Quat. Sci. 2011, 27, 290–296. [Google Scholar] [CrossRef]
- Di Rita, F.; Magri, D. Holocene drought, deforestation and evergreen vegetation development in the central Mediterranean: A 5500 year record from Lago Alimini Piccolo, Apulia, southeast Italy. Holocene 2009, 19, 295–306. [Google Scholar] [CrossRef]
- Fiorentino, G.; Caldara, M.; De Santis, V.; D’Oronzo, C.; Muntoni, I.M.; Simone, O.; Primavera, M.; Radina, F. Climate changes and human–environment interactions in the Apulia region of southeastern Italy during the Neolithic period. Holocene 2013, 23, 1297–1316. [Google Scholar] [CrossRef]
- Primavera, M.; D’Oronzo, C.; Muntoni, I.; Radina, F.; Fiorentino, G. Environment, crops and harvesting strategies during the II millennium BC: Resilience and adaptation in socio-economic systems of Bronze Age communities in Apulia (SE Italy). Quat. Int. 2017, 436, 83–95. [Google Scholar] [CrossRef]
- Tunzi, A.M. Tegole. In Venti del Neolitico, Uomini del Rame. Preistoria della Puglia Settentrionale; Tunzi, A.M., Ed.; Claudio Grenzi Editore: Foggia, Italy, 2015. [Google Scholar]
- Murphy, C.P. Thin Section Preparation of Soils and Sediments; A B Academic Pub.: Berkhamsted, UK, 1986. [Google Scholar]
- Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections; Soil Science Society of America, Inc.: Madison, WI, USA, 2003. [Google Scholar]
- Stoops, G.; Marcelino, V.; Mees, F. Interpretation of Micromorphological Features of Soils and Regoliths, 2nd ed.; Elsevier: Amsterdam, The Netherland, 2018; ISBN 978-0-444-63542-6. [Google Scholar]
- Ramsey, C.B.; Lee, S. Recent and Planned Developments of the Program OxCal. Radiocarbon 2013, 55, 720–730. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; E Buck, C.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Tunzi, A.M.; Lozupone, M.; Bubba, D.; Martino, F.M.; Diomede, G.; Malorgio, M. L’insediamento neo-eneolitico di Tegole (Bovino–Fg). AttiDaunia 2012, 32, 75–99. [Google Scholar]
- Tunzi, A.M.; Lo Zupone, M.; Bubba, D.; Gasperi, N. Strutture di abitato e aree produttive dell’età del Rame nella Puglia settentrionale. In Preistoria e Protostoria della Puglia; Radina, F., Ed.; Istituto Italiano di Preistoria e Protostoria, Via della Pergola: Firenze, Italy, 2017; pp. 397–402. [Google Scholar]
- Muntoni, I.M.; Zerboni, A. Le strutture insediative di Tegole (Bovino): Analisi geoarcheologiche dei riempimenti. In Preistoria e Protostoria della Puglia; Radina, F., Ed.; Studi di Preistoria e Protostoria; Istituto Italiano di Preistoria e Protostoria: Firenze, Italy, 2017; pp. 829–834. ISBN 978-88-6045-060-9. [Google Scholar]
- Wright, V. A Micromorphological Classification of Fossil and Recent Calcic and Petrocalcic Microstructures. In Developments in Soil Science; Elsevier BV: Amsterdam, The Netherland, 1990; Volume 19, pp. 401–407. [Google Scholar]
- Achyuthan, H. Petrologic analysis and geochemistry of the Late Neogene-Early Quaternary hardpan calcretes of Western Rajasthan, India. Quat. Int. 2003, 106, 3–10. [Google Scholar] [CrossRef]
- Shankar, N.; Achyuthan, H. Genesis of calcic and petrocalcic horizons from Coimbatore, Tamil Nadu: Micromorphology and geochemical studies. Quat. Int. 2007, 175, 140–154. [Google Scholar] [CrossRef]
- Sasso, G.D.; Zerboni, A.; Maritan, L.; Angelini, I.; Compostella, C.; Usai, D.; Artioli, G. Radiocarbon dating reveals the timing of formation and development of pedogenic calcium carbonate concretions in Central Sudan during the Holocene. Geochim. Cosmochim. Acta 2018, 238, 16–35. [Google Scholar] [CrossRef] [Green Version]
- Magaldi, D. Calcareous crust (caliche) genesis in some Mollisols and Alfisols from southern Italy: A micromorphological approach. In Soil Micromorphology, 2nd ed.; Berkhamsted, Herts Academic: Hertfordshire, UK, 1983; pp. 623–636. [Google Scholar]
- Carnicelli, S.; Ferrari, G.; Magaldi, D. Les accumulations carbonatées de type “calcrete” dans les sols et formations superficielles d’Italie méridionale. Méditerranée 1989, 68, 51–59. [Google Scholar] [CrossRef]
- Magaldi, D.; Giammatteo, M. Microstrutture della crosta calcarea laminare (orizzonte petrocalcico) di due paleo suoli pleistocenici nell’agro di Cerignola (Foggia). II Quat. Ital. J. Quat. Sci. 2008, 21, 423–432. [Google Scholar]
- Brewer, R. Fabric and Mineral Analysis of Soils. Soil Sci. 1965, 100, 73. [Google Scholar] [CrossRef]
- Boschian, G. Soil Micromorphology of the Ripa Tetta Neolithic Village (Lucera, South Eastern Italy). In Proceedings of the UISPP Forlì, ABACO, Lucera, Italy, 8–14 September 1996; pp. 69–80. [Google Scholar]
- Bertran, P.; Texier, J.-P. Facies and microfacies of slope deposits. Catena 1999, 35, 99–121. [Google Scholar] [CrossRef]
- Leopold, M.; Völkel, J. Colluvium: Definition, differentiation, and possible suitability for reconstructing Holocene climate data. Quat. Int. 2007, 162, 133–140. [Google Scholar] [CrossRef]
- Mücher, H.; Van Steijn, H.; Kwaad, F. Colluvial and Mass Wasting Deposits. In Interpretation of Micromorphological Features of Soils and Regoliths; Elsevier BV: Amsterdam, The Netherland, 2018; pp. 21–36. [Google Scholar]
- Cioni, R.; Levi, S.; Sulpizio, R. Apulian Bronze Age pottery as a long-distance indicator of the Avellino Pumice eruption (Vesuvius, Italy). Geol. Soc. London Spéc. Publ. 2000, 171, 159–177. [Google Scholar] [CrossRef]
- Corrado, G.; Di Leo, P.; Giannandrea, P.; Schiattarella, M. Constraints on the dispersal of Mt. Vulture pyroclastic products: Implications to mid-Pleistocene climate conditions in the foredeep domain of southern Italy. Géomorphol. Relief Process. Environ. 2017, 23, 23. [Google Scholar] [CrossRef]
- Paterne, M.; Guichard, F.; Labeyrie, J. Explosive activity of the South Italian volcanoes during the past 80,000 years as determined by marine tephrochronology. J. Volcanol. Geotherm. Res. 1988, 34, 153–172. [Google Scholar] [CrossRef]
- Narcisi, B. Tephrochronology of a late quatternary lacustrine record from the monticchio maar (vulture volcano, southern Italy). Quat. Sci. Rev. 1996, 15, 155–165. [Google Scholar] [CrossRef]
- Watts, W.; Allen, J.; Huntley, B.; Fritz, S. Vegetation history and climate of the last 15,000 years at Laghi Di Monticchio, southern Italy. Quat. Sci. Rev. 1996, 15, 113–132. [Google Scholar] [CrossRef]
- Durand, N.; Monger, H.C.; Canti, M.G.; Verrecchia, E.P. Calcium Carbonate Features. In Interpretation of Micromorphological Features of Soils and Regoliths; Elsevier BV: Amsterdam, The Netherland, 2018; pp. 205–258. [Google Scholar]
- Fedoroff, N.; Courty, M.-A.; Guo, Z. Palaeosoils and Relict Soils. In Interpretation of Micromorphological Features of Soils and Regoliths; Elsevier BV: Amsterdam, The Netherland, 2018; pp. 821–862. [Google Scholar]
- Verrecchia, E.P. L’origine biologique et superficielle des croûtes zonaires. Bull. Soc. Géol. Fr. 1994, 165, 583–592. [Google Scholar]
- Tandon, S.K.; Kumar, S. Semi-arid/arid zone calcretes: A review. In Palaeoenvironmental Reconstruction in Arid Lands; Singhvi, A.K., Derbyshire, E., Eds.; Oxford and IBH Publishing Co: New Delhi, India, 1999; pp. 109–152. [Google Scholar]
- Cremaschi, M.; Nicosia, C. Corso di Porta Reno, Ferrara (Northern Italy): A study in the formation processes of Urban Deposits. II Quat. Ital. J. Quat. Sci. 2010, 23, 395–408. [Google Scholar]
- Peña-Monné, J.; Rubio-Fernández, V.; González-Pérez, J.; Rodanés, J.; Picazo, J.; Médina, J.; Vazquez, M.; Sampietro-Vattuone, M.M.; Pérez-Lambán, F. Geoarchaeology of defensive moats: Its importance for site localization, evolution and formation process reconstruction of archaeological sites in NE Spain. J. Archaeol. Sci. 2014, 50, 383–393. [Google Scholar] [CrossRef]
- Gebhardt, A. Impact of charcoal production activities on soil profiles: The micromorphological point of view. ArchéoSciences 2007, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Adderley, W.P.; Wilson, C.; Simpson, I.A.; Davidson, D.A. Anthropogenic Features. In Interpretation of Micromorphological Features of Soils and Regoliths; Elsevier BV: Amsterdam, The Netherland, 2018; pp. 753–777. [Google Scholar]
- Kemp, R.A. Role of micromorphology in paleopedological research. Quat. Int. 1998, 51, 133–141. [Google Scholar] [CrossRef]
- Compostella, C.; Mariani, G.S.; Trombino, L. Holocene environmental history at the treeline in the Northern Apennines, Italy: A micromorphological approach. Holocene 2014, 24, 393–404. [Google Scholar] [CrossRef]
- Canti, M. Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. Catena 2003, 54, 339–361. [Google Scholar] [CrossRef]
- Francis, G.; Cameron, K.C.; Kemp, R. A comparison of soil porosity and solute leaching after six years of direct drilling or conventional cultivation. Soil Res. 1988, 26, 637–649. [Google Scholar] [CrossRef]
- Barker, P. Techniques of Archaeological Excavation; Routledge: London, UK, 2003. [Google Scholar]
- Regattieri, E.; Isola, I.; Zanchetta, G.; Tognarelli, A.; Hellstrom, J.C.; Drysdale, R.N.; Boschi, C.; Milevski, I.; Temovski, M. Middle Holocene climate variability from a stalagmite from Alilica cave (southern Balkans). Alp. Mediterr. Quat. 2019, 32, 1–16. [Google Scholar]
- Zanchetta, G.; Drysdale, R.N.; Hellstrom, J.; Fallick, A.E.; Isola, I.; Gagan, M.; Pareschi, M. Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: Stalagmite evidence from Corchia cave (Central Italy). Quat. Sci. Rev. 2007, 26, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.; Jones, M.D.; Benkaddour, A.; Eastwood, W.; Filippi, M.; Frogley, M.; Lamb, H.F.; Leng, M.J.; Reed, J.M.; Stein, M.; et al. Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: The ISOMED synthesis. Quat. Sci. Rev. 2008, 27, 2426–2441. [Google Scholar] [CrossRef]
- Vannière, B.; Power, M.; Roberts, N.; Tinner, W.; Carrion, J.; Magny, M.; Bartlein, P.; Colombaroli, D.; Daniau, A.-L.; Finsinger, W.; et al. Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500-2500 cal. BP). Holocene 2011, 21, 53–73. [Google Scholar] [CrossRef] [Green Version]
- Regattieri, E.; Zanchetta, G.; Isola, I.; Zanella, E.; Drysdale, R.N.; Hellstrom, J.C.; Zerboni, A.; Dallai, L.; Tema, E.; Lanci, L.; et al. Holocene Critical Zone dynamics in an Alpine catchment inferred from a speleothem multiproxy record: Disentangling climate and human influences. Sci. Rep. 2019, 9, 17829–17839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchegiano, M.; Francke, A.; Gliozzi, E.; Wagner, B.; Ariztegui, D. High-resolution palaeohydrological reconstruction of central Italy during the Holocene. Holocene 2018, 29, 481–492. [Google Scholar] [CrossRef]
- Magny, M.; Vannière, B.; Zanchetta, G.; Fouache, E.; Touchais, G.; Petrika, L.; Coussot, C.; Walter-Simonnet, A.-V.; Arnaud, F.; Zanchetta, G. Possible complexity of the climatic event around 4300—3800 cal. BP in the central and western Mediterranean. Holocene 2009, 19, 823–833. [Google Scholar] [CrossRef]
- Pelfini, M.; Leonelli, G.; Trombino, L.; Zerboni, A.; Bollati, I.M.; Merlini, A.; Smiraglia, C.; Diolaiuti, G.A. New data on glacier fluctuations during the climatic transition at ~4,000 cal. year BP from a buried log in the Forni Glacier forefield (Italian Alps). Rend. Lincei 2014, 25, 427–437. [Google Scholar] [CrossRef]
- Sevink, J.; Bakels, C.C.; Attema, P.A.; A Di Vito, M.; Arienzo, I.; Di Vito, M. Holocene vegetation record of upland northern Calabria, Italy: Environmental change and human impact. Holocene 2019, 29, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Brooks, N. Cultural responses to aridity and increased social complexity in the Middle Holocene. Quat. Int. 2006, 151, 29–49. [Google Scholar] [CrossRef]
- Nicoll, K. Geoarchaeological Perspectives on Holocene Climate Change as a Civilizing Factor In the Egyptian Sahara. In Biogeochemical Cycles; American Geophysical Union (AGU): Washington, DC, USA, 2013; pp. 157–162. [Google Scholar]
- Zerboni, A.; Biagetti, S.; Lancelotti, C.; Madella, M. The end of the Holocene Humid Period in the central Sahara and Thar deserts: Societal collapses or new opportunities? Past Glob. Chang. Mag. 2016, 24, 60–61. [Google Scholar] [CrossRef] [Green Version]
- Nicoll, K.; Zerboni, A. Is the past key to the present? Observations of cultural continuity and resilience reconstructed from geoarchaeological records. Quat. Int. 2019. [Google Scholar] [CrossRef]
- Stephens, L.; Fuller, D.; Boivin, N.; Rick, T.; Gauthier, N.; Kay, A.; Marwick, B.; Armstrong, C.G.; Barton, C.M.; Denham, T.; et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 2019, 365, 897–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boles, O.; Shoemaker, A.; Mustaphi, C.J.C.; Petek, N.; Ekblom, A.; Lane, P.J. Historical Ecologies of Pastoralist Overgrazing in Kenya: Long-Term Perspectives on Cause and Effect. Hum. Ecol. 2019, 47, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Evans, R. The erosional impacts of grazing animals. Prog. Phys. Geogr. Earth Environ. 1998, 22, 251–268. [Google Scholar] [CrossRef]
- Henry, D.O.; E Cordova, C.; Portillo, M.; Albert, R.M.; DeWitt, R.; Emery-Barbier, A. Blame it on the goats? Desertification in the Near East during the Holocene. Holocene 2016, 27, 625–637. [Google Scholar] [CrossRef]
- Zerboni, A.; Mariani, G.S.; Castelletti, L.; Ferrari, E.S.; Tremari, M.; Livio, F.; Amit, R. Was the Little Ice Age the coolest Holocene climatic period in the Italian central Alps? Prog. Phys. Geogr. Earth Environ. 2019, 0309133319881105. [Google Scholar] [CrossRef]
- Zerboni, A.; Perego, A.; Mariani, G.S.; Brandolini, F.; Al Kindi, M.; Regattieri, E.; Zanchetta, G.; Borgi, F.; Charpentier, V.; Cremaschi, M. Geomorphology of the Jebel Qara and coastal plain of Salalah (Dhofar, southern Sultanate of Oman). J. Maps 2020, 16, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.K. Humans as Agents in the Termination of the African Humid Period. Front. Earth Sci. 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Zerboni, A.; Nicoll, K. Enhanced zoogeomorphological processes in North Africa in the human-impacted landscapes of the Anthropocene. Geomorphology 2019, 331, 22–35. [Google Scholar] [CrossRef]
- Liritzis, I.; Laskaris, N.; Vafiadou, A.; Karapanagiotis, I.; Volonakis, P.; Papageorgopoulou, C.; Bratitsi, M. Archaeometry: An Overview. Sci. Cult. 2020, 6, 49–98. [Google Scholar] [CrossRef]
Sample | Laboratory Code | Material | δ13C (‰) | 14C Years BP | 2σ cal. BC |
---|---|---|---|---|---|
Canal A, US 29 | LTL-5407A | charcoal | −20.8 ± 0.2 | 4398 ± 50 | 3330BC (13.7%) 3210BC 3180BC (1.6%) 3150BC 3130BC (80.1%) 2900BC |
Canal C, US 687 | LTL-5408A | charcoal | −18.6 ± 0.3 | 4597 ± 45 | 3520BC (72.1%) 3310BC 3240BC (23.3%) 3100BC |
Well, STR11 | LTL-5409A | charcoal | −28.6 ± 0.4 | 4654 ± 50 | 3630BC (8.2%) 3570BC 3540BC (87.2%) 3340BC |
Well, STR11 | LTL-5410A | charcoal | −39.9 ± 0.2 | 4652 ± 60 | 3640BC (12.2%) 3550BC 3540BC (80.9%) 3330BC 3220BC (1.4%) 3190BC 3160BC (1.0%) 3130BC |
Structure/Unit | Thickness | Color | Texture | Clasts | Anthropogenic Components | Sedimentary Structure | Cementation | Pedofeatures |
---|---|---|---|---|---|---|---|---|
Canal A-top | 50 to 110 | 2.5Y 7/6 | matrix supported gravel | heterometric rounded | rare ceramic fragments | massive | strong | - |
Canal A-bottom | 30 to 90 | 2.5Y 5/4 to 2.5Y 6/4 | silty sand | rare heterometric rounded gravel | rare to frequent charcoals | chaotic | moderate | rare carbonate nodules and coatings; rare clayey pedorelicts |
Canal B | 150 | 2.5Y 7/6 | matrix to clast supported gravel | heterometric rounded | - | massive | moderate | absent |
Canal C-top | 50 | 10YR 3/6 | silty loam | scarce to common heterometric rounded gravel | rare carbonate-encrusted bone fragments; rare ceramic fragments | massive | weak | rare carbonate coatings and impregnations (increasing downwards) |
Canal C-bottom | 90 | 10YR 5/6 | matrix supported gravel | heterometric rounded | - | massive | moderate | - |
Canal 2-top | 15 | 2.5Y 3/2 | silty clay | rare heterometric rounded gravel | - | massive | moderate | frequent carbonate coatings |
Canal 2-bottom | 35 | 2.5Y 3/2 | silty clay | rare heterometric rounded gravel | - | laminated | strong | - |
STR41-top | 35 | 10YR 3/3 | loam | rare heterometric rounded gravel | rare ceramic fragments | massive to laminated downwards | weak | few carbonate coatings; rare carbonate nodules |
STR41-middle | 15 | 10YR 4/3 | clast supported gravel | heterometric rounded | - | massive | weak | - |
STR41-bottom | 20 | 10YR 3/2 to 10YR 3/4 | silty loam | - | - | massive | weak | rare manganese coatings |
B266 | 30 | 10YR 4/2 | silty clay | - | - | massive | - | - |
B267 | 35 | 10YR 4/3 | silty clay | - | rare charcoals | massive | - | rare carbonate coatings and impregnations |
B271 | 35 | 10YR 4/2 | silty clay | - | - | massive | moderate | rare carbonate impregnations (increasing downwards) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariani, G.S.; Muntoni, I.M.; Zerboni, A. The Eneolithic/Bronze Age Transition at Tegole di Bovino (Apulia): Geoarchaeological Evidence of Climate Change and Land-Use Shift. Quaternary 2020, 3, 14. https://doi.org/10.3390/quat3020014
Mariani GS, Muntoni IM, Zerboni A. The Eneolithic/Bronze Age Transition at Tegole di Bovino (Apulia): Geoarchaeological Evidence of Climate Change and Land-Use Shift. Quaternary. 2020; 3(2):14. https://doi.org/10.3390/quat3020014
Chicago/Turabian StyleMariani, Guido S., Italo M. Muntoni, and Andrea Zerboni. 2020. "The Eneolithic/Bronze Age Transition at Tegole di Bovino (Apulia): Geoarchaeological Evidence of Climate Change and Land-Use Shift" Quaternary 3, no. 2: 14. https://doi.org/10.3390/quat3020014
APA StyleMariani, G. S., Muntoni, I. M., & Zerboni, A. (2020). The Eneolithic/Bronze Age Transition at Tegole di Bovino (Apulia): Geoarchaeological Evidence of Climate Change and Land-Use Shift. Quaternary, 3(2), 14. https://doi.org/10.3390/quat3020014