Anatomy, Age and Origin of an Intramontane Top Basin Surface (Sorbas Basin, Betic Cordillera, SE Spain)
Abstract
:1. Introduction
2. Geological and Geomorphological Background
3. Methods
3.1. Surface Morphology
3.2. Surface Reconstruction and Erosion Quantification
3.3. Surface Dating
4. Results
4.1. Surface Morphology and Erosion
4.2. Surface Age and Erosion
5. Discussion
5.1. Controls on Surface Formation
5.2. Timing of Surface Formation
5.3. Basin Erosion
6. Conclusions
- Despite a fragmentary nature, the top Sorbas Basin surface can be reconstructed using GIS interpolation (IDW var) where a sufficiently high-resolution DEM is available;
- The surface is an erosional pediment (glacis) form and not the depositional surface of the Gochar Formation;
- The surface is an Early Pleistocene feature, developed onto deformed basin fill;
- The surface reconstruction approach used here could be used to inform on sampling strategy for dating or could help clarify local surface erosion for age modelling purposes;
- The basin wide configuration of the surface suggests surface formation by autogenic processes that are operating within a stable landscape characterized by a sustained dryland climate and fixed base-level;
- The relict fan-morphology picked out by the surface remnants suggests the surface was autogenically eroded by undissected radiating mountain front streams that formed fan-shaped bodies;
- The Early Pleistocene surface age helps stratigraphically bracket the underlying Gochar Formation to the Pliocene. This clarifies the degraded pediment surface as a Quaternary landscape feature and not a Mio-Pliocene fan delta abandonment surface linked to the post Messinian salinity crisis recovery;
- Surface abandonment took place during the Middle Pleistocene with preferential incision along interfan drainage lines, resulting in capture to preserve the relict fan morphologies;
- Early Pleistocene surfaces are evident throughout Betic Cordillera intramontane basins as either (1) well developed pediments, developed onto Neogene marine basin fill sediments (e.g., Tabernas, Vera Basins) or (2) degraded pediments developed onto Plio-Pleistocene continental alluvial basin fill sediments (Sorbas Basin). Collectively these pediments are regionally and temporally significant, with formation occurring during a stable phase that post-dates deformation of the Plio-Pleistocene continental sediments that form the final basin infill. The deformation and subsequent surface formation probably correspond to the most recent major uplift and relief building phase of the Betic Cordillera;
- Surface form reflects differences in substrate lithology, passive basin tectonic configuration and depositional setting (e.g., lake vs fan);
- Regional variations in surface preservation and differences in formation timing relates to base-level connectivity with the Mediterranean coastal margins of the Betic Cordillera;
- Surface lowering and erosion amounts, and rates are low, comparing well with other denudation techniques (e.g., 10Be) and are in keeping with the Betic Cordillera as a low uplift rate mountain range. The base-level lowering since surface formation is probably an ongoing response to the low uplift rates and basin scale capture events.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kingston, D.R.; Dishroon, C.P.; Williams, P.A. Global basin classification system. AAPG Bull. 1983, 67, 2175–2193. [Google Scholar]
- Sanz De Galdeano, C.; Vera, J.A. Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Res. 1992, 4, 21–35. [Google Scholar] [CrossRef]
- Sobel, E.R.; Hilley, G.E.; Strecker, M.R. Formation of internally drained contractional basins by aridity-limited bedrock incision. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Calvache, M.L.; Viseras, C. Long-term control mechanisms of stream piracy processes in southeast Spain. Earth Surf. Process. Landf. 1997, 22, 93–105. [Google Scholar] [CrossRef]
- Craddock, W.H.; Kirby, E.; Harkins, N.W.; Zhang, H.; Shi, X.; Liu, J. Rapid fluvial incision along the Yellow River during headward basin integration. Nat. Geosci. 2010, 3, 209–213. [Google Scholar] [CrossRef]
- Soria, J.M.; Fernández, J.; Viseras, C. Late Miocene stratigraphy and palaeogeographic evolution of the intramontane Guadix Basin (Central Betic Cordillera, Spain): Implications for an Atlantic–Mediterranean connection. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 151, 255–266. [Google Scholar] [CrossRef]
- Benvenuti, M.; Bonini, M.; Moroni, A. Tectonic control on the Late Quaternary hydrography of the Upper Tiber Basin (Northern Apennines, Italy). Geomorphology 2016, 269, 85–103. [Google Scholar] [CrossRef]
- Watchman, A.L.; Twidale, C.R. Relative and ‘absolute’dating of land surfaces. Earth-Sci. Rev. 2002, 58, 1–49. [Google Scholar] [CrossRef]
- Viseras, C.; Fernández, J. Sedimentary basin destruction inferred from the evolution of drainage systems in the Betic Cordillera, southern Spain. J. Geol. Soc. 1992, 149, 1021–1029. [Google Scholar] [CrossRef]
- Stokes, M.; Mather, A.E.; Harvey, A.M. Quantification of river-capture-induced base-level changes and landscape development, Sorbas Basin, SE Spain. Geol. Soc. Lond. Spec. Publ. 2002, 191, 23–35. [Google Scholar] [CrossRef]
- García-Tortosa, F.J.; Alfaro, P.; de Galdeano, C.S.; Galindo-Zaldívar, J. Glacis geometry as a geomorphic marker of recent tectonics: The Guadix–Baza basin (South Spain). Geomorphology 2011, 125, 517–529. [Google Scholar] [CrossRef]
- Harvey, A.M.; Whitfield, E.; Stokes, M.; Mather, A. The Late Neogene to Quaternary drainage evolution of the uplifted Neogene sedimentary Basins of Almería, Betic Chain. In Landscapes and Landforms of Spain; Gutiérrez, F., Gutiérrez, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 37–61. ISBN 978-94-017-8628-7. [Google Scholar]
- Harvey, A.M.; Stokes, M.; Mather, A.; Whitfield, E. Spatial characteristics of the Pliocene to modern alluvial fan successions in the uplifted sedimentary basins of Almería, SE Spain: Review and regional synthesis. Geol. Soc. Lond. Spec. Publ. 2018, 440, SP440-5. [Google Scholar] [CrossRef]
- Stokes, M.; Nash, D.J.; Harvey, A.M. Calcrete ‘fossilisation’ of alluvial fans in SE Spain: The roles of groundwater, pedogenic processes and fan dynamics in calcrete development. Geomorphology 2007, 85, 63–84. [Google Scholar] [CrossRef]
- Rodés, Á.; Pallàs, R.; Braucher, R.; Moreno, X.; Masana, E.; Bourlés, D.L. Effect of density uncertainties in cosmogenic 10Be depth-profiles: Dating a cemented Pleistocene alluvial fan (Carboneras Fault, SE Iberia). Quat. Geochronol. 2011, 6, 186–194. [Google Scholar] [CrossRef]
- Geach, M.R.; Thomsen, K.J.; Buylaert, J.P.; Murray, A.S.; Mather, A.E.; Telfer, M.W.; Stokes, M. Single-grain and multi-grain OSL dating of river terrace sediments in the Tabernas Basin, SE Spain. Quat. Geochronol. 2015, 30, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.; Braga, J.C. Messinian events in the Sorbas Basin in southeastern Spain and their implications in the recent history of the Mediterranean. Sediment. Geol. 1994, 90, 257–268. [Google Scholar] [CrossRef]
- Haughton, P.D. Deposits of deflected and ponded turbidity currents, Sorbas Basin, southeast Spain. J. Sediment. Res. 1994, 64, 233–246. [Google Scholar] [CrossRef]
- Mather, A.E. Cenozoic Drainage Evolution of the Sorbas Basin SE Spain. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 1991. [Google Scholar]
- Mather, A.E.; Harvey, A.M. Controls on drainage evolution in the Sorbas basin, southeast Spain. In Mediterranean Quaternary River Environments; Lewin, J., Macklin, M.G., Woodward, J.C., Eds.; Balkema: Rotterdam, The Netherlands, 1995; pp. 65–75. ISBN 9054101911. [Google Scholar]
- IGME. Mapa Geológico de España, 1:200 000. Almería-Garrucha, 84–85, 2nd ed.; IGME: Madrid, Spain, 1980. [Google Scholar]
- IGME. Mapa Geológico de España, 1:200 000. Baza, 78, 2nd ed.; IGME: Madrid, Spain, 1983. [Google Scholar]
- IGME. Mapa Geológico de España, 1:200 000. Murcia, 78, 2nd ed.; IGME: Madrid, Spain, 1983. [Google Scholar]
- Harvey, A.M.; Wells, S.G. Response of Quaternary fluvial systems to differential epeirogenic uplift: Aguas and Feos river systems, southeast Spain. Geology 1987, 15, 689–693. [Google Scholar] [CrossRef]
- Vázquez, M.; Jabaloy, A.; Barbero, L.; Stuart, F.M. Deciphering tectonic-and erosion-driven exhumation of the Nevado–Filábride Complex (Betic Cordillera, Southern Spain) by low temperature thermochronology. Terra Nova 2011, 23, 257–263. [Google Scholar] [CrossRef]
- Platt, J.P.; Kelley, S.P.; Carter, A.; Orozco, M. Timing of tectonic events in the Alpujárride Complex, Betic Cordillera, southern Spain. J. Geol. Soc. Lond. 2005, 162, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Giaconia, F.; Booth-Rea, G.; Martínez-Martínez, J.M.; Azañón, J.M.; Pérez-Peña, J.V.; Pérez-Romero, J.; Villegas, I. Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain). Geomorphology 2012, 145, 90–106. [Google Scholar] [CrossRef]
- IGME. Mapa Geológico de España, 1:50 000. Sorbas, 1031, 24–42; IGME: Madrid, Spain, 1973. [Google Scholar]
- IGME. Mapa Geológico de España, 1:50 000. Tabernas, 1030, 23–42; IGME: Madrid, Spain, 1973. [Google Scholar]
- Martín-Suárez, E.; Freudenthal, M.; Krijgsman, W.; Fortuin, A.R. On the age of the continental deposits of the Zorreras Member (Sorbas Basin, SE Spain). Geobios 2000, 33, 505–512. [Google Scholar] [CrossRef]
- Clauzon, G.; Suc, J.P.; Do Couto, D.; Jouannic, G.; Melinte-Dobrinescu, M.C.; Jolivet, L.; Quillévéré, F.; Lebret, N.; Mocochain, L.; Popescu, S.M.; et al. New insights on the Sorbas Basin (SE Spain): The onshore reference of the Messinian Salinity Crisis. Mar. Pet. Geol. 2015, 66, 71–100. [Google Scholar] [CrossRef] [Green Version]
- Mather, A.E. Basin inversion: Some consequences for drainage evolution and alluvial architecture. Sedimentology 1993, 40, 1069–1089. [Google Scholar] [CrossRef]
- Griffiths, J.S.; Hart, A.B.; Mather, A.E.; Stokes, M. Assessment of some spatial and temporal issues in landslide initiation within the Río Aguas Catchment, South–East Spain. Landslides 2005, 2, 183–192. [Google Scholar] [CrossRef]
- Mather, A.E.; Stokes, M.; Griffiths, J.S. Quaternary landscape evolution: A framework for understanding contemporary erosion, southeast Spain. Land Degrad. Dev. 2002, 13, 89–109. [Google Scholar] [CrossRef]
- Harvey, A.M.; Miller, S.Y.; Wells, S.G. Quaternary soil and river terrace sequences in the Aguas/Feos river systems: Sorbas basin, southeast Spain. In Mediterranean Quaternary River Environments; Lewin, J., Macklin, M.G., Woodward, J.C., Eds.; Balkema: Rotterdam, The Netherlands, 1995; pp. 263–281. ISBN 9054101911. [Google Scholar]
- Kelly, M.; Black, S.; Rowan, J.S. A calcrete-based U/Th chronology for landform evolution in the Sorbas basin, southeast Spain. Quat. Sci. Rev. 2000, 19, 995–1010. [Google Scholar] [CrossRef]
- Candy, I.; Black, S.; Sellwood, B. U-series isochron dating of immature and mature calcretes as a basis for constructing Quaternary landform chronologies for the Sorbas basin, southeast Spain. Quat. Res. 2005, 64, 100–111. [Google Scholar] [CrossRef]
- Ilott, S.H. Cosmogenic Dating of Fluvial Terraces in the Sorbas Basin, SE Spain. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2013. [Google Scholar]
- García-Meléndez, E.; Goy, J.L.; Zazo, C. Neotectonics and Plio-Quaternary landscape development within the eastern Huércal-Overa Basin (Betic Cordilleras, Southeast Spain). Geomorphology 2003, 50, 111–133. [Google Scholar] [CrossRef]
- Stokes, M. Plio-Pleistocene drainage development in an inverted sedimentary basin: Vera basin, Betic Cordillera, SE Spain. Geomorphology 2008, 100, 193–211. [Google Scholar] [CrossRef]
- Farines, B.; Calvet, M.; Gunnell, Y. The summit erosion surfaces of the inner Betic Cordillera: Their value as tools for reconstructing the chronology of topographic growth in southern Spain. Geomorphology 2015, 233, 92–111. [Google Scholar] [CrossRef]
- Centro Nacional de Información Geográfica. Available online: http://centrodedescargas.cnig.es (accessed on 14 June 2018).
- Boulton, S.J.; Stokes, M. Which DEM is best for analyzing fluvial landscape development in mountainous terrains? Geomorphology 2018, 310, 168–187. [Google Scholar] [CrossRef]
- ESRI. How To: Identify Ridgelines from a DEM. Available online: https://support.esri.com/en/technical-article/000011289 (accessed on 14 June 2018).
- Alexander, R.W.; Calvo-Cases, A.; Arnau-Rosalén, E.; Mather, A.E.; Lázaro-Suau, R. Erosion and stabilisation sequences in relation to base level changes in the El Cautivo badlands, SE Spain. Geomorphology 2008, 100, 83–90. [Google Scholar] [CrossRef]
- Della Seta, M.; Del Monte, M.; Fredi, P.; Miccadei, E.; Nesci, O.; Pambianchi, G.; Piacentini, T.; Troiani, F. Morphotectonic evolution of the Adriatic piedmont of the Apennines: An advancement in the knowledge of the Marche-Abruzzo border area. Geomorphology 2008, 102, 119–129. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Azañón, J.M.; Azor, A.; Tuccimei, P.; Della Seta, M.; Soligo, M. Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix–Baza basin, SE Spain). Geomorphology 2009, 106, 206–218. [Google Scholar] [CrossRef]
- Antón, L.; Muñoz-Martín, A.; De Vicente, G. Quantifying the erosional impact of a continental-scale drainage capture in the Duero Basin, northwest Iberia. Quat. Res. 2018, 1–15. [Google Scholar] [CrossRef]
- Geach, M.R.; Stokes, M.; Telfer, M.W.; Mather, A.E.; Fyfe, R.M.; Lewin, S. The application of geospatial interpolation methods in the reconstruction of Quaternary landform records. Geomorphology 2014, 216, 234–246. [Google Scholar] [CrossRef]
- Rodés, Á.; Pallàs, R.; Ortuño, M.; García-Meléndez, E.; Masana, E. Combining surface exposure dating and burial dating from paired cosmogenic depth profiles. Example of El Límite alluvial fan in Huércal-Overa basin (SE Iberia). Quat. Geochronol. 2014, 19, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Hancock, G.S.; Anderson, R.S.; Chadwick, O.A.; Finkel, R.C. Dating fluvial terraces with 10Be and 26Al profiles: Application to the Wind River, Wyoming. Geomorphology 1999, 27, 41–60. [Google Scholar] [CrossRef]
- Braucher, R.; Merchel, S.; Borgomano, J.; Bourlès, D. Production of cosmogenic radionuclides at great depth: A multi element approach. Earth Planet. Sci. Lett. 2011, 309, 1–9. [Google Scholar] [CrossRef]
- Granger, D.E.; Smith, A.L. Dating buried sediments using radioactive decay and muogenic production of 26Al and 10Be. Nucl. Instrum. Methods Phys. Res. Sect. B 2000, 172, 822–826. [Google Scholar] [CrossRef]
- Granger, D.E.; Muzikar, P.F. Dating sediment burial with in situ-produced cosmogenic nuclides: Theory, techniques, and limitations. Earth Planet. Sci. Lett. 2001, 188, 269–281. [Google Scholar] [CrossRef]
- Balco, G.; Rovey, C.W. An isochron method for cosmogenic-nuclide dating of buried soils and sediments. Am. J. Sci. 2008, 308, 1083–1114. [Google Scholar] [CrossRef]
- Balco, G.; Stone, J.O.H.; Lifton, N.; Dunai, T. A complete and easily accessible means of calculating surface exposure ages or erosion rates from Be and Al measurements. Quat. Geochronol. 2008, 3, 174–195. [Google Scholar] [CrossRef]
- Lal, D. Cosmic ray labelling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 1991, 104, 424–439. [Google Scholar] [CrossRef]
- CRONUS Calculator 2.3. Available online: https://hess.ess.washington.edu/ (accessed on 4 June 2018).
- Mather, A.E.; Harvey, A.M.; Stokes, M. Quantifying long-term catchment changes of alluvial fan systems. Geol. Soc. Am. Bull. 2000, 112, 1825–1833. [Google Scholar] [CrossRef]
- Mather, A.E.; Westhead, K. Plio/Quaternary strain of the Sorbas Basin, SE Spain: Evidence from soft sediment deformation structures. Quat. Proc. 1993, 3, 57–65. [Google Scholar]
- Nash, D.J.; Smith, R.F. Multiple calcrete profiles in the Tabernas Basin, southeast Spain: Their origins and geomorphic implications. Earth Surf. Process. Landf. 1998, 23, 1009–1029. [Google Scholar] [CrossRef]
- King, L. The pediment landform: Some current problems. Geol. Mag. 1949, 86, 245–250. [Google Scholar] [CrossRef]
- Dumas, B. Glacis et croutes calcaires dans le Levant espagnol. Bull. Assoc. Géogr. Fr. 1969, 46, 553–561. [Google Scholar] [CrossRef]
- Strudley, M.W.; Murray, A.B. Sensitivity analysis of pediment development through numerical simulation and selected geospatial query. Geomorphology 2007, 88, 329–351. [Google Scholar] [CrossRef]
- Hodge, E.J.; Richards, D.A.; Smart, P.L.; Andreo, B.; Hoffmann, D.L.; Mattey, D.P.; González-Ramón, A. Effective precipitation in southern Spain (~266 to 46 ka) based on a speleothem stable carbon isotope record. Quat. Res. 2008, 69, 447–457. [Google Scholar] [CrossRef]
- Carrión, J.S.; Fernández, S.; Jiménez-Moreno, G.; Fauquette, S.; Gil-Romera, G.; González-Sampériz, P.; Finlayson, C. The historical origins of aridity and vegetation degradation in southeastern Spain. J. Arid Environ. 2010, 74, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Martrat, B.; Jimenez-Amat, P.; Zahn, R.; Grimalt, J.O. Similarities and dissimilarities between the last two deglaciations and interglaciations in the North Atlantic region. Quat. Sci. Rev. 2014, 99, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Pla-Pueyo, S.; Viseras, C.; Soria, J.M.; Tent-Manclús, J.E.; Arribas, A. A stratigraphic framework for the Pliocene–Pleistocene continental sediments of the Guadix Basin (Betic Cordillera, S. Spain). Quat. Int. 2011, 243, 16–32. [Google Scholar] [CrossRef]
- Braga, J.C.; Martín, J.M.; Quesada, C. Patterns and average rates of late Neogene-Recent uplift of the Betic Cordillera, SE Spain. Geomorphology 2003, 50, 3–26. [Google Scholar] [CrossRef]
- Stokes, M.; Mather, A.E.; Belfoul, A.; Farik, F. Active and passive tectonic controls for transverse drainage and river gorge development in a collisional mountain belt (Dades Gorges, High Atlas Mountains, Morocco). Geomorphology 2008, 102, 2–20. [Google Scholar] [CrossRef]
- Harvey, A.M.; Silva, P.; Mather, A.E.; Goy, J.; Stokes, M.; Zazo, C. The impact of Quaternary sea level and climatic change on coastal alluvial fans in the Cabo de Gata ranges, southeast Spain. Geomorphology 1999, 28, 1–22. [Google Scholar] [CrossRef]
- Pastor, A.; Babault, J.; Teixell, A.; Arboleya, M.L. Intrinsic stream-capture control of stepped fan pediments in the High Atlas piedmont of Ouarzazate (Morocco). Geomorphology 2012, 173, 88–103. [Google Scholar] [CrossRef]
- Völk, H.R. Quartare Reliefentwicklung in Sudost-Spanien; Heidelberger Geographische Arbeiten: Heidelberger, Germany, 1979; 143p. [Google Scholar]
- Stokes, M. Plio-Pleistocene Drainage Evolution of the Vera Basin, SE Spain. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 1997. [Google Scholar]
- Stokes, M.; Mather, A.E. Response of Plio-Pleistocene alluvial systems to tectonically induced base-level changes, Vera Basin, SE Spain. J. Geol. Soc. 2000, 157, 303–316. [Google Scholar] [CrossRef]
- Wenzens, G. Mittelquartäre klimaverhältnisse und reliefentwicklung im semiariden becken von Vera (Südostspanien). Eiszeitalt. Ggw. 1992, 42, 121–133. [Google Scholar]
- Wenzens, G. The influence of tectonics and climate on the Villafranchian morphogenesis in semiarid Southeastern Spain. Z. Geomorphol. 1992, 84, 173–184. [Google Scholar]
- Wenzens, G. Die Quartäre küstenentwicklung im mündungsbereich der flüsse Aguas, Antas und Almanzora in Südostspanien. Erdundliches Wissen 1991, 105, 131–150. [Google Scholar]
- Meikle, C.; Stokes, M.; Maddy, D. Field mapping and GIS visualisation of Quaternary river terrace landforms: An example from the Rio Almanzora, SE Spain. J. Maps 2010, 6, 531–542. [Google Scholar] [CrossRef]
- Silva, P.G.; Roquero, E.; López-Recio, M.; Huerta, P.; Martínez-Graña, A.M. Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tagus and Duero drainage basins, Central Spain). Quat. Sci. Rev. 2017, 166, 188–203. [Google Scholar] [CrossRef]
- Santisteban, J.I.; Schulte, L. Fluvial networks of the Iberian Peninsula: A chronological framework. Quat. Sci. Rev. 2007, 26, 2738–2757. [Google Scholar] [CrossRef]
- Antón, L.; De Vicente, G.; Muñoz-Martín, A.; Stokes, M. Using river long profiles and geomorphic indices to evaluate the geomorphological signature of continental scale drainage capture, Duero basin (NW Iberia). Geomorphology 2014, 206, 250–261. [Google Scholar] [CrossRef]
- Gibbard, P.L.; Lewin, J. River incision and terrace formation in the Late Cenozoic of Europe. Tectonophysics 2009, 474, 41–55. [Google Scholar] [CrossRef]
- Bellin, N.; Vanacker, V.; Kubik, P.W. Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera. Earth Planet. Sci. Lett. 2014, 390, 19–30. [Google Scholar] [CrossRef]
Surface erosion (m) | Min. exposure age (ka) | Max. exposure age (ka) | Min. sediment burial age (Ma) | Max. sediment burial age (Ma) | Min. surface erosion rate (m/Ma) | Max. surface erosion rate (m/Ma) | Min. upstream basin erosion rate (m/Ma) | Max. upstream basin erosion rate (m/Ma) | Reduced chi-square | Min. depositional age (ka) | Max. depositional age (ka) |
10 | 169 | 1990 | 0.679 | 1.056 | 0.04 | 5.98 | 6.8 | 9.3 | 2.8 | 191 | 1056 |
4 | 169 | 798 | 0.679 | 1.048 | 0.05 | 5.72 | 6.6 | 8.7 | 2.9 | 191 | 798 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stokes, M.; Mather, A.; Rodes, A.; Kearsey, S.; Lewin, S. Anatomy, Age and Origin of an Intramontane Top Basin Surface (Sorbas Basin, Betic Cordillera, SE Spain). Quaternary 2018, 1, 15. https://doi.org/10.3390/quat1020015
Stokes M, Mather A, Rodes A, Kearsey S, Lewin S. Anatomy, Age and Origin of an Intramontane Top Basin Surface (Sorbas Basin, Betic Cordillera, SE Spain). Quaternary. 2018; 1(2):15. https://doi.org/10.3390/quat1020015
Chicago/Turabian StyleStokes, Martin, Anne Mather, Angel Rodes, Samantha Kearsey, and Shaun Lewin. 2018. "Anatomy, Age and Origin of an Intramontane Top Basin Surface (Sorbas Basin, Betic Cordillera, SE Spain)" Quaternary 1, no. 2: 15. https://doi.org/10.3390/quat1020015
APA StyleStokes, M., Mather, A., Rodes, A., Kearsey, S., & Lewin, S. (2018). Anatomy, Age and Origin of an Intramontane Top Basin Surface (Sorbas Basin, Betic Cordillera, SE Spain). Quaternary, 1(2), 15. https://doi.org/10.3390/quat1020015