Oral Dissolution Therapy of Uric Acid Stones: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Assessment of Risk of Bias in Included Studies
2.3. Protocol Registration
3. Results
3.1. Participant Characteristics
3.2. Interventions
3.2.1. Potassium Citrate
Study | Country | Design | N * | Patient Age (Years) | Gender Distribution | Weight or BMI | Number of Stones | Stone Size | Stone Density (HU) | Location of Stone | Definition of Treatment Success, Partial Success, or Failure |
---|---|---|---|---|---|---|---|---|---|---|---|
Alsinnawi et al. 2016 [26] | UK | Retrospective | 23 | Mean: 59; range: 21–78 | 18 M; 9 F | Mean weight: 97 kg; range: 70–127 kg | >/=1 | Mean: 9.8 mm, median: 7 mm, range: 4–40 mm | N/A | Renal | Success: >50% dissolution partial: <50% dissolution failure: no dissolution |
Elsawy et al. 2019 [21] | Egypt | Prospective | 182 | Mean: 51 +/− 11 | M and F, exact count N/A | Mean BMI (success and failure): 35 +/− 7 | >/=1 | Mean surface area: 1.3 cm3, range: 0.16–11.84 cm3 | N/A | Renal | Success: complete stone dissolution Partial: any reduction in stone surface area Failures: no change or increased surface area |
Gridley et al. 2019 [27] | USA | Retrospective | 21 | Mean: 55.8; range: 42–70 | 13 M; 8 F | Mean BMI: 43.7; range: 23.9–69.8 mean BMI: 41.1 (complete responders), 48.4 (partial) | >/=1 | Mean: 30.9 mm; range: 8–66 mm | Mean: 403.9 (SD = 17.9) | Renal or ureteric | Success: complete stone clearance or punctate stones (1–2 mm) on imaging Partial: reduction in total stone burden yet persistence of kidney stones |
Hernandez et al. 2020 [28] | Spain | Prospective, RCT | 47 | Mean: 60.4 +/− 10.1 | 42 M; 5 F | Mean BMI: 30.2 +/− 4.7 | N/A | N/A | N/A | Renal | N/A |
Moore et al. 2021 [29] | USA | Retrospective | 27 | Mean: 64.8 (complete or partial responders), 62.3 (non-responders) | 23 M; 4 F | Mean BMI: 32.2 (responders), 34 (non-responders); range: 22–84 | >/=1 | Range: 4.5–40.5 mm | Mean (partial/complete responders): 375 (SD 58.5); range 264–455 non-responders: mean 458 (SD 172); range 248–900 | Renal or ureteric | Success: stone no longer visible on CT Partial: residual stone at end of follow-up Failure: stone burden increased or remained stable |
Petrisch et al. 1977 [22] | Austria | Retrospective | 140 | N/A | M and F, exact count N/A | N/A | >/=1 | N/A | N/A | Renal or ureteric | Success: complete dissolution and patient free of symptoms |
Salem et al. 2019 [23] | Egypt | Prospective | 139 | Mean: 45.1 +/− 10.5 range: 22–70 | 74 M; 65 F | N/A | 1 | Mean: 17 ± 5.7 mm (responders), 19.2 ± 6.1 mm (nonresponders); range 5–30 mm | <600 HU; mean (responders): 347.3 (SD 68.5); mean (nonresponders): 428.9 (SD 84) | Renal | Success: complete stone dissolution or residual that measures up to 2 mm in max length |
Sinha et al. 2013 [32] | India | Retrospective | 48 | N/A | N/A | Mean weight: 58 kg (success); 68.9 (failure) | N/A | Range: 14.8–15.67 mm | N/A | N/A | Success: complete or partial dissolution Partial: at least a 50% reduction in stone size Failure: no change, inadequate reduction, increase in stone size and those refusing to take the tablets due to upper gastrointestinal side effects |
Sterrett et al. 2008 [30] | USA | Retrospective | 10 | Mean: 57 | 5 M; 5 F | N/A | N/A | N/A | N/A | N/A | Success: no radiographic evidence of significant stone burden (>3 mm) on KUB or noncontract CT Noncompliance: missing > 50% of appts in 1 year or noncompliant with medications |
Trinchieri et al. 2009 [31] | Italy | Prospective | 8 | Mean: 66 | 4 M; 4 F | N/A | N/A | ≤15 mm | N/A | Renal | Success: complete dissolution Partial: not defined |
Tsaturyan et al. 2020 [24] | Switzerland | Retrospective | 216 | Median: 63; range: 52–74 | 162 M; 54 F | Median BMI: 29.4; range: 25.9–33.8 | >/=1 | Median: 9.0 mm; range: 7.0–15.0 mm | <450 HU; median: 430; IQR: 360–500 | Renal and ureteric | Success: absence of any visible stone fragments on non-contrast CT Failure: partial (median 36.6% reduction of stone IQR 20.0–61.8) and no response |
Yunhua et al. 2020 [25] | China | Retrospective | 96 | Median: 46; range: 23–76 | 49 M; 47 F | Mean BMI: 23.1; BMI < 30 kg/m | >/=1 | Mean: 13 mm; range: 6–29 mm | N/A | Renal | Success: >50% decrease in or the number of stones with diameter >5 mm decreased |
Study | N * | Duration of Treatment | Treatment | N in Each Group | Results N (%) of Each Treatment Group | ||
---|---|---|---|---|---|---|---|
Alsinnawi et al. 2016 [26] | 23 | Mean: 9 weeks | Complete dissolution | Partial dissolution | No dissolution | ||
Sodium bicarbonate 2 g TID increased to 2 g QD, according to urinary pH | 9 (39%) | 2 (9%) | 10 (43%) | ||||
Elsawy et al. 2019 [21] | 182 | 3–6 months | Complete dissolution | Partial dissolution | No dissolution | ||
Uralyt-U (PC 20 mEq) TID + AP 300 mg QD for hyperuricemia | N/A | At 3 months: 97 (53.3%) At 6 months: 151 (83%) | 65 (35.7%) | 20 (11%) | |||
Gridley et al. 2019 [27] | 21 | Median: 20 months; range 2–72 | Complete dissolution | Partial dissolution | No dissolution | ||
PC 20 mEq TID | 10 | 7 (70%) | 3 (30%) | ||||
PC 30 mEq BID | 3 | 2 (66.7%) | 1 (33.3%) | ||||
PC 30 mEq TID | 8 | 5 (62.5%) | 3 (37.5%) | ||||
PC + AP 100 mg QD | 3 | 2 (66.7%) | 1 (33.3%) | ||||
PC + AP 300 mg QD | 13 | 9 (69.2%) | 4 (30.8%) | ||||
Hernandez et al. 2020 [28] | 47 | 14-day treatment + 7-day washout + 14-day alternate treatment | Risk of uric acid crystallization | ||||
Citrate BID (0.653 mmol K-Cit + 0.933 mmol Mg-Cit) | N/A | Lower than baseline | |||||
Citrate + theobromine BID (0.653 mmol K-Cit + 0.933 mmol Mg-Cit + 0.333 mmol theobromine extract) | N/A | Lower than baseline and lower than citrate alone | |||||
Moore et al. 2021 [29] | 27 | Median: 154 days; range 41–312 | Complete or partial dissolution | No Response | |||
PC | 14 | 4 (28.6%) | 10 (71.4%) | ||||
Sodium bicarbonate | 2 | 1 (50%) | 1 (50%) | ||||
PC + sodium bicarbonate | 10 | 5 (50%) | 5 (50%) | ||||
Any AP | 8 | 3 (37.5%) | 5 (62.5%) | ||||
Petritsch et al. 1977 [22] | 140 | Until dissolution (monitored every 6–8 wks) | 80% complete dissolution | ||||
Sodium + PC + citric acid (Uralyt U) | N/A | ||||||
Sodium + PC + citric acid (Uralyt U) + AP for uricemia | N/A | ||||||
Salem et al. 2019 [23] | 139 | Mean: 3 months | Complete dissolution | No dissolution | |||
Potassium sodium hydrogen citrate (Uralyt-U) TID, evening dose doubled | 92 | 59 (64.1%) | 33 (35.9%) | ||||
Potassium sodium hydrogen citrate (Uralyt-U) + double J stent | 47 | 31 (66%) | 16 (34%) | ||||
Sinha et al. 2013 [32] | 48 | Mean: 103.6 ± 89 days | Complete dissolution | Partial dissolution | No dissolution | ||
10 (20.8%) | 13 (27%) | 25 (52%) | |||||
Potassium magnesium citrate (7 mEq potassium, 3.5 mEq magnesium and 10.5 mEq of citrate) 2 tablets TID | 39 | ||||||
Potassium magnesium citrate (7 mEq of potassium, 3.5 mEq of magnesium and 10.5 mEq of citrate) 1 tablet TID | 5 | ||||||
Potassium magnesium citrate (7 mEq of potassium, 3.5 mEq of magnesium and 10.5 mEq of citrate) 9 tablets QD | 3 | ||||||
Potassium magnesium citrate (7 mEq of potassium, 3.5 mEq of magnesium and 10.5 mEq of citrate) 15 tablets QD | 1 | ||||||
Sterrett et al. 2008 [30] | 10 | Mean: 46.1 months; range: 11–86 | |||||
PC (20 mEq TID) + AP 600 mg | 1 | Development of new stone | |||||
PC (20 mEq TID) + AP 600 mg | 1 | Multiple stones and interventions required | |||||
PC (20 mEq TID) + AP 300 mg + Acetazolamide (500 mg QHS) | 1 | No further stones after starting acetazolamide | |||||
PC (20 mEq TID) + Acetazolamide (250mg qAM + 500 mg QHS) | 1 | Slight growth of previous stone while taking acetazolamide | |||||
PC (20 mEq TID) +Acetazolamide (500 mg QHS) | 1 | Slight growth and calcification of previous stone on acetazolamide | |||||
Trinchieri et al. 2009 [31] | 8 | 3 months | Complete dissolution | Partial dissolution | |||
1500 mL water QD for 6 weeks | 8 | 0% | 0% | ||||
1500 mL water QD + (PC 20 mEq + potassium bicarbonate 10 mEq) BID | 8 | 3 (37.5%) had complete stone dissolution at 6 weeks; 2 (25%)% had complete dissolution after 4 and 6 months | 5 (62.5%) at 6 weeks | ||||
Tsaturyan et al. 2020 [24] | 216 | 3 months | Complete dissolution | Partial or no dissolution | |||
127 (58.8%) | 89 (41.2%) | ||||||
PC 20 mEq TID | 202 | ||||||
Sodium bicarbonate | 22 | ||||||
Magnesium bicarbonate | 1 | ||||||
ODT + AP 100–300 mg/day for hyperuricemia or history of gout | N/A | ||||||
Yunhua et al. 2020 [25] | 90 | 6 months | Maximum stone diameter decreased by >50% | ||||
PC + AP 300 mg/d (100 mg TID) | 31 | 16 (51.6%) | |||||
PC + febuxostat 40 mg/d (40 mg QD, F40 group) | 29 | 17 (58.6%) | |||||
PC + febuxostat 80 mg/d (40 mg BID, F80 group) | 30 | 22 (73.3%) |
3.2.2. Bicarbonate
3.2.3. Citrate
3.3. Effects of Interventions Summarized
3.3.1. Primary Outcomes
3.3.2. Secondary Outcomes
3.3.3. Study Conclusions
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alelign, T.; Petros, B. Kidney Stone Disease: An Update on Current Concepts. Adv. Urol. 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Lieske, J.C.; Rule, A.D.; Krambeck, A.E.; Williams, J.C.; Bergstralh, E.J.; Mehta, R.A.; Moyer, T.P. Stone Composition as a Function of Age and Sex. Clin. J. Am. Soc. Nephrol. 2014, 9, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
- KC, M.; Leslie, S.W. Uric Acid Nephrolithiasis. StatPearls. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560726/ (accessed on 13 November 2023).
- Ngo, T.C.; Assimos, D.G. Uric Acid nephrolithiasis: Recent progress and future directions. Rev. Urol. 2007, 9, 17–27. [Google Scholar]
- Wiederkehr, M.R.; Moe, O.W. Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder. Clin. Rev. Bone Miner. Metab. 2011, 9, 207–217. [Google Scholar] [CrossRef]
- Tracy, C.R.; Best, S.; Bagrodia, A.; Poindexter, J.R.; Adams-Huet, B.; Sakhaee, K.; Maalouf, N.; Pak, C.Y.; Pearle, M.S. Animal Protein and the Risk of Kidney Stones: A Comparative Metabolic Study of Animal Protein Sources. J. Urol. 2014, 192, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Curhan, G.C. Serum Uric Acid and Risk of Kidney Stones. Am. J. Kidney Dis. 2017, 70, 158–159. [Google Scholar] [CrossRef] [PubMed]
- Dawson, C.H.; Tomson, C.R. Kidney stone disease: Pathophysiology, investigation and medical treatment. Clin. Med. 2012, 12, 467–471. [Google Scholar] [CrossRef]
- Salem, C.B.; Slim, R.; Fathallah, N.; Hmouda, H. Drug-induced hyperuricaemia and gout. Rheumatology 2017, 56, 679–688. [Google Scholar]
- Pearle, M.S.; Goldfarb, D.S.; Assimos, D.G.; Curhan, G.; Denu-Ciocca, C.J.; Matlaga, B.R.; Monga, M.; Penniston, K.L.; Preminger, G.M.; Turk, T.M.T.; et al. Medical Management of Kidney Stones: AUA Guideline. J. Urol. 2014, 192, 316–324. [Google Scholar] [CrossRef]
- EAU Guidelines. In Proceedings of the EAU Annual Congress Paris, Paris, France, 5–8 April 2024.
- Turney, B.; Reynard, J. Medical Therapy (Dissolution Therapy); Oxford University Press (OUP): Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Dahl, N.K.; Goldfarb, D.S. Nutritional prevention and treatment of urinary tract stones. In Nutritional Management of Renal Disease; Elsevier: Amsterdam, The Netherlands, 2022; pp. 685–697. [Google Scholar]
- Spatola, L.; Ferraro, P.M.; Gambaro, G.; Badalamenti, S.; Dauriz, M. Metabolic syndrome and uric acid nephrolithiasis: Insulin resistance in focus. Metabolism 2018, 83, 225–233. [Google Scholar] [CrossRef]
- Becker, M.A.; Schumacher, H.R.; Wortmann, R.L.; MacDonald, P.A.; Eustace, D.; Palo, W.A.; Streit, J.; Joseph-Ridge, N. Febuxostat Compared with Allopurinol in Patients with Hyperuricemia and Gout. N. Engl. J. Med. 2005, 353, 2450–2461. [Google Scholar] [CrossRef] [PubMed]
- Knops, A.M.; Legemate, D.A.; Goossens, A.; Bossuyt, P.M.M.; Ubbink, D.T. Decision Aids for Patients Facing a Surgical Treatment Decision: A Systematic Review and Meta-analysis. Ann. Surg. 2013, 257, 860–866. [Google Scholar] [CrossRef]
- Sterne, J.A.; Savović, J.; Page, M.; Elbers, R.; Blencowe, N. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, 4898. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernánm, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 4919. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Syn. Meth. 2021, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, A.; Takele, R.; Limbrick, B.; Thaker, K.; Scotland, K. Oral Dissolution Therapy of Uric Acid Stones: A Systematic Review. Inplasy 2024, 0057. Available online: https://inplasy.com/inplasy-2024-5-0057/ (accessed on 13 May 2024).
- Elsawy, A.A.; Elshal, A.M.; El-Nahas, A.R.; Elbaset, M.A.; Farag, H.; Shokeir, A.A. Can We Predict the Outcome of Oral Dissolution Therapy for Radiolucent Renal Calculi? A Prospective Study. J. Urol. 2019, 201, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Petritsch, P.H. Uric acid calculi. Urology 1977, 10, 536–538. [Google Scholar] [CrossRef]
- Salem, S.; Sultan, M.; Badawy, A. Oral dissolution therapy for renal radiolucent stones, outcome, and factors affecting response: A prospective study. Urol. Ann. 2019, 11, 369–373. [Google Scholar]
- Tsaturyan, A.; Bokova, E.; Bosshard, P.; Bonny, O.; Fuster, D.G.; Roth, B. Oral chemolysis is an effective, non-invasive therapy for urinary stones suspected of uric acid content. Urolithiasis 2020, 48, 501–507. [Google Scholar] [CrossRef]
- Yunhua, M.; Hao, Z.; Ke, L.; Wentao, H.; Xiaokang, L.; Jie, S. Febuxostat Promoted Dissolution of Radiolucent Nephrolithiasis in Patients with Hyperuricemia. Urol. J. 2020, 18, 41–46. [Google Scholar] [CrossRef]
- Alsinnawi, M.; Maan, Z.; Rix, G. Oral dissolution therapy for radiolucent kidney stones. An old treatment revisited. J. Clin. Urol. 2016, 9, 268–273. [Google Scholar] [CrossRef]
- Gridley, C.M.; Sourial, M.W.; Lehman, A.; Knudsen, B.E. Medical dissolution therapy for the treatment of uric acid nephrolithiasis. World J. Urol. 2019, 37, 2509–2515. [Google Scholar] [CrossRef]
- Hernandez, Y.; Costa-Bauza, A.; Calvó, P.; Benejam, J.; Sanchis, P.; Grases, F. Comparison of Two Dietary Supplements for Treatment of Uric Acid Renal Lithiasis: Citrate vs. Citrate + Theobromine. Nutrients 2020, 12, 2012. [Google Scholar] [CrossRef]
- Moore, J.; Nevo, A.; Salih, S.; Abdul-Muhsin, H.; Keddis, M.; Stern, K.; Humphreys, M. Outcomes and rates of dissolution therapy for uric acid stones. J. Nephrol. 2021, 35, 665–669. [Google Scholar] [CrossRef]
- Sterrett, S.P.; Penniston, K.L.; Wolf, J.S.; Nakada, S.Y. Acetazolamide Is an Effective Adjunct for Urinary Alkalization in Patients With Uric Acid and Cystine Stone Formation Recalcitrant to Potassium Citrate. Urology 2008, 72, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, A.; Esposito, N.; Castelnuovo, C. Dissolution of radiolucent renal stones by oral alkalinization with potassium citrate/potassium bicarbonate. Arch. Ital. Urol. Androl. 2009, 81, 188–191. [Google Scholar] [PubMed]
- Sinha, M.; Prabhu, K.; Venkatesh, P.; Venkatesh, K. Results of urinary dissolution therapy for radiolucent calculi. Int. Braz. J. Urol. 2013, 39, 103–107. [Google Scholar]
- Nevo, A.; Humphreys, M.R.; Callegari, M.; Keddis, M.; Moore, J.P.; Salih, S.; Sterns, K.L. Is medical dissolution treatment for uric acid stones more cost-effective than surgical treatment? A novel, solo practice retrospective cost-analysis of medical vs. surgical therapy. Can. Urol. Assoc. J. 2022, 17, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Golomb, D.; Nevo, A.; Goldberg, H.; Ehrlich, Y.; Margel, D.; Lifshitz, D. Long-Term Adherence to Medications in Secondary Prevention of Urinary Tract Stones. J. Endourol. 2019, 33, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Tomer, N.; Garden, E.; Small, A.; Palese, M. Ureteral Stent Encrustation: Epidemiology, Pathophysiology, Management and Current Technology. J. Urol. 2021, 205, 68–77. [Google Scholar] [CrossRef]
- Cheng, P.M.; Moin, P.; Dunn, M.D.; Boswell, W.D.; Duddalwar, V.A. What the Radiologist Needs to Know About Urolithiasis: Part 1—Pathogenesis, Types, Assessment, and Variant Anatomy. Am. J. Roentgenol. 2012, 198, 540–547. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, A.; Takele, R.; Limbrick, B.; Thaker, K.N.; Scotland, K.B. Oral Dissolution Therapy of Uric Acid Stones: A Systematic Review. Soc. Int. Urol. J. 2024, 5, 284-299. https://doi.org/10.3390/siuj5040047
Mousavi A, Takele R, Limbrick B, Thaker KN, Scotland KB. Oral Dissolution Therapy of Uric Acid Stones: A Systematic Review. Société Internationale d’Urologie Journal. 2024; 5(4):284-299. https://doi.org/10.3390/siuj5040047
Chicago/Turabian StyleMousavi, Ava, Rebecca Takele, Bree’ava Limbrick, Karan N. Thaker, and Kymora B. Scotland. 2024. "Oral Dissolution Therapy of Uric Acid Stones: A Systematic Review" Société Internationale d’Urologie Journal 5, no. 4: 284-299. https://doi.org/10.3390/siuj5040047
APA StyleMousavi, A., Takele, R., Limbrick, B., Thaker, K. N., & Scotland, K. B. (2024). Oral Dissolution Therapy of Uric Acid Stones: A Systematic Review. Société Internationale d’Urologie Journal, 5(4), 284-299. https://doi.org/10.3390/siuj5040047