CD34 and FSHR Expression to Differentiate Multiple Subtypes of Benign and Malignant Renal Neoplasms
Abstract
:Introduction
Materials and Methods
Patients and Tissue Analysis
Immunohistochemistry
Quantitative Analysis
Study Aims
Statistical Analysis
Results
Baseline Analysis
Overall Distribution of CD34 and FSHR in Normal, Capsular, and Tumor Tissues
Malignant versus Benign Renal Cancers
Oncocytoma versus Chromophobe Carcinoma
Capsular Distance in Cancerous Tissue
Discussion
Conclusion
Supplementary Materials
Funding
Conflicts of Interest
Abbreviations
AML | angiomyolipoma |
ChC | chromophobe carcinoma |
FSHR | follicle-stimulating hormone receptor |
RCa | renal cancer |
RCC | renal cell carcinoma |
References
- Folkman, J.; Watson, K.; Ingber, D.; Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989, 339, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.C.; Silva, B.B.; Pinto, G.A.; Vassallo, J.; Moraes, N.G.; Santana, J.O.I.; et al. CD34 as a marker for evaluating angiogenesis in cervical cancer. Pathol Pract. 2005, 201, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, U.; Christian, S.; Koidl, S.; Kerjaschki, D.; Emmett, M.S.; Bates, D.O.; et al. The sialomucin CD34 is a marker of lymphatic endothelial cells in human tumors. Am J Pathol. 2006, 168, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Tenderenda, M.; Rutkowski, P.; Jesionek-Kupnicka, D.; Kubiak, R. Expression of CD34 in gastric cancer and its correlation with histology, stage, proliferation activity, p53 expression and apoptotic index. Pathol Oncol Res. 2001, 7, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Coston, W.M.P.; Loera, S.; Lau, S.K.; Ishizawa, S.; Jiang, Z.; Wu, C.-L.; et al. Distinction of hepatocellular carcinoma from benign hepatic mimickers using glypican-3 and CD34 immunohistochemistry. Am J Surg Pathol. 2008, 32, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Foroozan, M.; Roudi, R.; Abolhasani, M.; Gheytanchi, E.; Mehrazma, M. Clinical significance of endothelial cell marker CD34 and mast cell marker CD117 in prostate adenocarcinoma. Pathol Res Pract. 2017, 213, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Nassif, A.E.; Filho, R.T. Immunohistochemistry expression of tumor markers CD34 and P27 as a prognostic factor of clinically localized prostate adenocarcinoma after radical prostatectomy. Rev Col Bras Cir. 2010, 37, 338–344. [Google Scholar] [CrossRef] [PubMed]
- López, J.I.; Erramuzpe, A.; Guarch, R.; Cortés, J.M.; Pulido, R.; Llarena, R.; et al. CD34 immunostaining enhances a distinct pattern of intratumor angiogenesis with prognostic implications in clear cell renal cell carcinoma. APMIS. 2017, 125, 128–133. [Google Scholar] [CrossRef]
- Ajili, F.; Kacem, M.; Tounsi, H.; Darouiche, A.; Enayfer, E.; Chebi, M.; et al. Prognostic impact of angiogenesis in nonmuscle invasive bladder cancer as defined by Microvessel density after immunohistochemical staining for CD34. Ultrastruct Pathol. 2012, 36, 336–342. [Google Scholar] [CrossRef]
- Sprengel, R.; Braun, T.; Nikolics, K.; Segaloff, D.L.; Seeburg, P.H. The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA. Mol Endocrinol. 1990, 4, 525–530. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Kountourakis, P.; Kottorou, A.E.; Antonacopoulou, A.G.; Rolfo, C.; Peeters, M.; et al. Follicle-stimulating hormone receptor (FSHR): a promising tool in oncology? Mol Diagnosis Ther. 2016, 20, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jia, L.; Feng, Y.; Zheng, W. Overexpression of follicle-stimulating hormone receptor facilitates the development of ovarian epithelial cancer. Cancer Lett. 2009, 278, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Mariani, S.; Salvatori, L.; Basciani, S.; Arizzi, M.; Franco, G.; Petrangeli, E.; et al. Expression and cellular localization of follicle-stimulating hormone receptor in normal human prostate, benign prostatic hyperplasia and prostate cancer. J Urol. 2006, 175, 2072–2077. [Google Scholar] [CrossRef] [PubMed]
- Ben-Josef, E.; Yang, S.Y.; Ji, T.H.; Bidart, J.M.; Garde, S.V.; Chopra, D.P.; et al. Hormone-refractory prostate cancer cells express functional follicle- stimulating hormone receptor (FSHR). J Urol. 1999, 161, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.; Pichon, C.; Camparo, P.; Antoine, M.; Allory, Y.; Couvelard, A.; et al. Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J Med. 2010, 363, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Siraj, A.; Desestret, V.; Antoine, M.; Fromont, G.; Huerre, M.; Sanson, M.; et al. Expression of follicle-stimulating hormone receptor by the vascular endothelium in tumor metastases. BMC Cancer. 2013, 13, 246. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Marra, G.; Oderda, M.; Allasia, M.; Munegato, S.; Joniau, S.; Gontero, P. A review on the management of small renal masses: active surveillance versus surgery. Anticancer Agents Med Chem. 2018, 18, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Rosenkrantz, A.B.; Hindman, N.; Fitzgerald, E.F.; Niver, B.E.; Melamed, J.; Babb, J.S. MRI features of renal oncocytoma and chromophobe renal cell carcinoma. Am J Roentgenol. 2010, 195, W421–W427. [Google Scholar] [CrossRef]
- Hindman, N.; Ngo, L.; Genega, E.M.; Melamed, J.; Wei, J.; Braza, J.M.; et al. Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology 2012, 265, 468–477. [Google Scholar] [CrossRef]
- Richard, P.O.; Jewett, M.A.S.; Bhatt, J.R.; Evans, A.J.; Timilsina, N. Finelli Active surveillance for renal neoplasms with oncocytic features is safe. J Urol. 2016, 195, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.D.; Druskin, S.C.; Rowe, S.P.; Pierorazio, P.M.; Gorin, M.A.; Allaf, M.E. Surgical histopathology for suspected oncocytoma on renal mass biopsy: a systematic review and meta-analysis. BJU Int. 2017, 119, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bensalah, K.; Dabestani, S.; Fernández-Pello, S.; et al. European Association of Urology guidelines on renal cell carcinoma: the 2019 update. Eur Urol. 2019, 75, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.L.; Morais, C.; Bernard, A.; Saunders, N.; Samaratunga, H.; Gobe, G.; et al. A systematic review and meta-analysis of immunohistochemical biomarkers that differentiate chromophobe renal cell carcinoma from renal oncocytoma. J Clin Pathol. 2016, 69, 661–671. [Google Scholar] [CrossRef]
- Dekel, Y.; Koren, R.; Kugel, V.; Livne, P.M.; Gal, R. Significance of angiogenesis and microvascular invasion in renal cell carcinoma. Pathol Oncol Res. 2002, 8, 129–132. [Google Scholar] [CrossRef]
- Yilmazer, D.; Han, Ü.; Önal, B. A comparison of the vascular density of VEGF expression with microvascular density determined with CD34 and CD31 staining and conventional prognostic markers in renal cell carcinoma. Int Urol Nephrol. 2007, 39, 691–698. [Google Scholar] [CrossRef]
- Fox, S.B.; Gatter, K.C.; Bicknell, R.; Going, J.J.; Stanton, P.; Cooke, T.G.; et al. Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res. 1993, 53, 4161–4163. [Google Scholar]
- Hellwig, S.M.M.; Damen, C.A.; Van Adrichem, N.P.H.; Blijham, G.H.; Groenewegen, G.; Griffioen, A.W. Endothelial CD34 is suppressed in human malignancies: role of angiogenic factors. Cancer Lett. 1997, 120, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Siraj, M.A.; Pichon, C.; Radu, A.; Ghinea, N. Endothelial follicle stimulating hormone receptor in primary kidney cancer correlates with subsequent response to sunitinib. J Cell Mol Med. 2012, 6, 2010–2016. [Google Scholar] [CrossRef]
- Farber, N.J.; Kim, C.J.; Modi, P.K.; Hon, J.D.; Sadimin, E.T.; Singer, E.A. Renal cell carcinoma: the search for a reliable biomarker. Transl Cancer Res. 2017, 6, 620–632. [Google Scholar] [CrossRef]
- Perera, M.; Papa, N.; Ischia, J.; Christidis, D.; Bolton, D.; Lawrentschuk, N.; et al. Trends in percutaneous renal biopsy: the evolving diagnostic pathway for the small renal mass. Urol Ann. 2018, 10, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Ingels, A.; Leguerney, I.; Cournède, P.H.; Irani, J.; Ferlicot, S.; Sébrié, C.; et al. Ultrasound molecular imaging of renal cell carcinoma: VEGFR targeted therapy monitored with VEGFR1 and FSHR targeted microbubbles. Sci Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alam, H.; Weck, J.; Maizels, E.; Park, Y.; Lee, E.J.; Ashcroft, M.; et al. Role of the phosphatidylinositol-3-Kinase and extracellular regulated kinase pathways in the induction of hypoxia-inducible factor (HIF)-1 activity and the HIF-1 target vascular endothelial growth factor in ovarian granulosa cells in response to follicle-stimulating hormone. Endocrinology 2009, 150, 915–928. [Google Scholar] [PubMed]
- Castro-Fernández, C.; Maya-Núñez, G.; Méndez, J.P. Regulation of follicle- stimulating and luteinizing hormone receptor signaling by “regulator of G protein signaling” proteins. Endocrine 2004, 25, 49–54. [Google Scholar] [CrossRef]
- Zeng, H.; Zhao, D.; Yang, S.; Datta, K.; Mukhopadhyay, D. Heterotrimeric Gαq /Gα 11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phosphorylation in vascular permeability factor/VEGF signaling. J Biol Chem. 2003, 278, 20738–20745. [Google Scholar] [CrossRef]
- Ghinea, N. Vascular endothelial FSH receptor, a target of interest for cancer therapy. Endocrinology. 2018, 159, 3268–3274. [Google Scholar] [CrossRef]
This is an open access article under the terms of a license that permits non-commercial use, provided the original work is properly cited. © 2022 The Authors. Société Internationale d'Urologie Journal, published by the Société Internationale d'Urologie, Canada.
Share and Cite
Marra, G.; Meseure, D.; Lefèvre, M.; Nicolas, A.; Lesage, L.; Ghinea, N.; Moschini, M.; Pasquali, C.; Macek, P.; Filippini, C.; et al. CD34 and FSHR Expression to Differentiate Multiple Subtypes of Benign and Malignant Renal Neoplasms. Soc. Int. Urol. J. 2022, 3, 132-143. https://doi.org/10.48083/RQBN1626
Marra G, Meseure D, Lefèvre M, Nicolas A, Lesage L, Ghinea N, Moschini M, Pasquali C, Macek P, Filippini C, et al. CD34 and FSHR Expression to Differentiate Multiple Subtypes of Benign and Malignant Renal Neoplasms. Société Internationale d’Urologie Journal. 2022; 3(3):132-143. https://doi.org/10.48083/RQBN1626
Chicago/Turabian StyleMarra, Giancarlo, Didier Meseure, Marine Lefèvre, Andre Nicolas, Laetitia Lesage, Nicolae Ghinea, Marco Moschini, Caio Pasquali, Petr Macek, Claudia Filippini, and et al. 2022. "CD34 and FSHR Expression to Differentiate Multiple Subtypes of Benign and Malignant Renal Neoplasms" Société Internationale d’Urologie Journal 3, no. 3: 132-143. https://doi.org/10.48083/RQBN1626
APA StyleMarra, G., Meseure, D., Lefèvre, M., Nicolas, A., Lesage, L., Ghinea, N., Moschini, M., Pasquali, C., Macek, P., Filippini, C., Gontero, P., Sanchez-Salas, R., & Cathelineau, X. (2022). CD34 and FSHR Expression to Differentiate Multiple Subtypes of Benign and Malignant Renal Neoplasms. Société Internationale d’Urologie Journal, 3(3), 132-143. https://doi.org/10.48083/RQBN1626