Associations Between P300 Latency and Reaction Time on Event-Related Potentials in Children with Varying Levels of Fluid Intelligence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Implementation
2.3. Electrophysiological Assessment
2.3.1. Electrode Placement and Data Recording
2.3.2. P300 Component Detection
2.3.3. Auditory Stimuli
2.3.4. Data Preprocessing and Artifact Removal
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Psychoeducational Implications of the Study Using ERPs and RSPM Results in Identifying Children’s Mental Abilities
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, D.J.; Mousley, A.L.; Shafto, M.A.; Duncan, J. Neural contributions to reduced fluid intelligence across the adult lifespan. J. Neurosci. 2023, 43, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, V.; Breit, M.; Preckel, F. Crystallized Intelligence, Fluid Intelligence, and Need for Cognition: Their Longi-tudinal Relations in Adolescence. J. Intell. 2024, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ren, X.; Altmeyer, M.; Schweizer, K. An account of the relationship between fluid intelligence and complex learning in considering storage capacity and executive attention. Intelligence 2013, 41, 537–545. [Google Scholar] [CrossRef]
- Amin, H.U.; Malik, A.S.; Kamel, N.; Chooi, W.T.; Hussain, M. P300 correlates with learning & memory abilities and fluid intelligence. J. Neuroeng. Rehabil. 2015, 12, 1–14. [Google Scholar]
- Neubauer, A.C.; Fink, A. Intelligence and neural efficiency. Neurosci. Biobehav. Rev. 2009, 33, 1004–1023. [Google Scholar] [CrossRef]
- Liu, T.; Xiao, T.; Shi, J.; Zhao, D.; Liu, J. Conflict control of children with different intellectual levels: An ERP study. Neurosci. Lett. 2011, 490, 101–106. [Google Scholar] [CrossRef]
- Raven, J.C. Raven standard progressive matrices. J. Cogn. Dev. 1936. [Google Scholar] [CrossRef]
- Raven, J. The Raven Progressive Matrices Tests: Their Theoretical Basis and Measurement Model. Uses and Abuses of Intelligence. Studies Advancing Spearman and Raven’s Quest for Non-arbitrary Metrics (Part I). 2008. Available online: http://www.eyeonsociety.co.uk/resources/UAIChapter1.pdf (accessed on 17 February 2025).
- Zurrin, R.; Wong, S.T.S.; Roes, M.M.; Percival, C.M.; Chinchani, A.; Arreaza, L.; Kusi, M.; Momeni, A.; Rasheed, M.; Mo, Z.; et al. Functional brain networks involved in the Raven’s standard progressive matrices task and their relation to theories of fluid intelligence. Intelligence 2024, 103, 101807. [Google Scholar] [CrossRef]
- Duncan, J.; Chylinski, D.; Mitchell, D.J.; Bhandari, A. Complexity and compositionality in fluid intelligence. Proc. Natl. Acad. Sci. USA 2017, 114, 5295–5299. [Google Scholar] [CrossRef]
- Tanaka, F.; Kachi, T.; Yamada, T.; Sobue, G. Auditory and visual event-related potentials and flash visual evoked potentials in Alzheimer’s disease: Correlations with Mini-Mental State Examination and Raven’s Coloured Progressive Matrices. J. Neurol. Sci. 1998, 156, 83–88. [Google Scholar] [CrossRef]
- Jung, R.E.; Haier, R.J. The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behav. Brain Sci. 2007, 30, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Zacks, J.M. Neuroimaging studies of mental rotation: A meta-analysis and review. J. Cogn. Neurosci. 2008, 20, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Haier, R.J.; Siegel, B.; Tang, C.; Abel, L.; Buchsbaum, M.S. Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence 1992, 16, 415–426. [Google Scholar] [CrossRef]
- Neubauer, A.C.; Grabner, R.H.; Fink, A.; Neuper, C. Intelligence and neural efficiency: Further evidence of the influence of task content and sex on the brain–IQ relationship. Cogn. Brain Res. 2005, 25, 217–225. [Google Scholar] [CrossRef]
- Zygouris, N.C. Differences in children and adolescents with depression before and after a remediation program: An event-related potential study. Brain Sci. 2024, 14, 660. [Google Scholar] [CrossRef]
- Karapetsas, A.V.; Zygouris, N.C. Event Related Potentials (ERPs) in prognosis, diagnosis and rehabilitation of children with dyslexia. Encephalos 2011, 48, 118–127. [Google Scholar]
- Howe, A.S.; Bani-Fatemi, A.; De Luca, V. The clinical utility of the auditory P300 latency subcomponent event-related potential in preclinical diagnosis of patients with mild cognitive impairment and Alzheimer’s disease. Brain Cogn. 2014, 86, 64–74. [Google Scholar] [CrossRef]
- Demirayak, P.; Kıyı, İ.; İşbitiren, Y.Ö.; Yener, G. Cognitive load associates prolonged P300 latency during target stimulus processing in individuals with mild cognitive impairment. Sci. Rep. 2023, 13, 15956. [Google Scholar] [CrossRef]
- Zhong, R.; Li, M.; Chen, Q.; Li, J.; Li, G.; Lin, W. The P300 event-related potential component and cognitive im-pairment in epilepsy: A systematic review and meta-analysis. Front. Neurol. 2019, 10, 943. [Google Scholar] [CrossRef]
- Sternberg, R.J. (Ed.) The Cambridge Handbook of Intelligence; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Walhovd, K.B.; Nyberg, L.; Lindenberger, U.; Amlien, I.K.; Sørensen, Ø.; Wang, Y.; Mowinckel, A.M.; Kievit, R.A.; Ebmeier, K.P.; Bartrés-Faz, D.; et al. Brain aging differs with cognitive ability regardless of education. Sci. Rep. 2022, 12, 13886. [Google Scholar] [CrossRef]
- Warchoł, Ł.; Zając-Lamparska, L. The Relationship of N200 and P300 Amplitudes with Intelligence, Working Memory, and Attentional Control Behavioral Measures In Young Healthy Individuals. Adv. Cogn. Psychol. 2023, 19, 63–75. [Google Scholar] [CrossRef]
- Walhovd, K.B.; Fjell, A.M. One-year test–retest reliability of auditory ERPs in young and old adults. Int. J. Psychophysiol. 2002, 46, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Polich, J. Neuropsychology of P300. In The Oxford Handbook of Event-Related Potential Components; Kappenman, E.S., Luck, S.J., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 160–188. [Google Scholar]
- Sternberg, R.J. A theory of adaptive intelligence and its relation to general intelligence. J. Intell. 2019, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Blasco, R.; Quílez-Robres, A.; Usán, P.; Salavera, C.; Casanovas-López, R. Types of intelligence and academic performance: A systematic review and meta-analysis. J. Intell. 2022, 10, 123. [Google Scholar] [CrossRef]
- Ren, X.; Schweizer, K.; Wang, T.; Chu, P.; Gong, Q. On the relationship between executive functions of working memory and components derived from fluid intelligence measures. Acta Psychol. 2017, 180, 79–87. [Google Scholar] [CrossRef]
- Ren, X.; Wang, T.; Sun, S.; Deng, M.; Schweizer, K. Speeded testing in the assessment of intelligence gives rise to a speed factor. Intelligence 2018, 66, 64–71. [Google Scholar] [CrossRef]
- Bazana, P.G.; Stelmack, R.M. Intelligence and information processing during an auditory discrimination task with backward masking: An event-related potential analysis. J. Personal. Soc. Psychol. 2002, 83, 998. [Google Scholar] [CrossRef]
- De Pascalis, V.A.; Varriale, V.; Matteoli, A. Intelligence and P3 components of the event-related potential elicited during an auditory discrimination task with masking. Intelligence 2008, 36, 35–47. [Google Scholar] [CrossRef]
- Troche, S.J.; Houlihan, M.E.; Stelmack, R.M.; Rammsayer, T.H. Mental ability, P300, and mismatch negativity: Analysis of frequency and duration discrimination. Intelligence 2009, 37, 365–373. [Google Scholar] [CrossRef]
- Teixeira-Santos, A.C.; Pinal, D.; Pereira, D.R.; Leite, J.; Carvalho, S.; Sampaio, A. Probing the relationship between late endogenous ERP components with fluid intelligence in healthy older adults. Sci. Rep. 2020, 10, 11167. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [PubMed]
- Der, G.; Deary, I.J. The relationship between intelligence and reaction time varies with age: Results from three rep-resentative narrow-age age cohorts at 30, 50 and 69 years. Intelligence 2017, 64, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Kannen, K.; Aslan, B.; Boetzel, C.; Herrmann, C.S.; Lux, S.; Rosen, H.; Selaskowski, B.; Wiebe, A.; Philipsen, A.; Braun, N. P300 modulation via transcranial alternating current stimulation in adult attention-deficit/hyperactivity disorder: A crossover study. Front. Psychiatry 2022, 13, 928145. [Google Scholar] [CrossRef] [PubMed]
- Jungeblut, H.M.; Hagemann, D.; Löffler, C.; Schubert, A.L. An investigation of the slope parameters of reaction times and P3 latencies in the Sternberg memory scanning task—A fixed-links model approach. J. Cogn. 2021, 4, 26. [Google Scholar] [CrossRef]
- Schubert, A.L.; Löffler, C.; Hagemann, D.; Sadus, K. How robust is the relationship between neural processing speed and cognitive abilities? Psychophysiology 2023, 60, e14165. [Google Scholar] [CrossRef]
- Schubert, A.L. A meta-analysis of the worst performance rule. Intelligence 2019, 73, 88–100. [Google Scholar] [CrossRef]
- Regel, S.; Meyer, L.; Gunter, T.C. Distinguishing neurocognitive processes reflected by P600 effects: Evidence from ERPs and neural oscillations. PLoS ONE 2014, 9, e96840. [Google Scholar] [CrossRef]
- Beldzik, E.; Ullsperger, M. A thin line between conflict and reaction time effects on EEG and fMRI brain signals. Imaging Neurosci. 2024, 2, 1–17. [Google Scholar] [CrossRef]
- Raven, J. Raven progressive matrices. In Handbook of Nonverbal Assessment; Springer: Boston, MA, USA, 2003; pp. 223–237. [Google Scholar]
- Jasper, H.H. Ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 371–375. [Google Scholar]
- Sadus, K.; Schubert, A.L.; Löffler, C.; Hagemann, D. An explorative multiverse study for extracting differences in P3 latencies between young and old adults. Psychophysiology 2024, 61, e14459. [Google Scholar] [CrossRef]
- Picton, T.W.; Bentin, S.; Berg, P.; Donchin, E.; Hillyard, S.A.; Johnson, R.; Miller, G.A.; Ritter, W.; Ruchkin, D.S.; Rugg, M.D.; et al. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology 2000, 37, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Zygouris, N.C.; Avramidis, E.; Karapetsas, A.V.; Stamoulis, G.I. Differences in dyslexic students before and after a remediation program: A clinical neuropsychological and event related potential study. Appl. Neuropsychol. Child 2018, 7, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Zygouris, N.C.; Vlachos, F.; Stamoulis, G.I. ERPs in Children and Adolescents with Generalized Anxiety Disorder: Before and after an Intervention Program. Brain Sci. 2022, 12, 1174. [Google Scholar] [CrossRef] [PubMed]
- OpenAI. ChatGPT [Large Language Model]. 2024. Available online: https://openai.com (accessed on 28 February 2025).
- Cohen, J. Set correlation and contingency tables. Appl. Psychol. Meas. 1988, 12, 425–434. [Google Scholar] [CrossRef]
- Beauchamp, C.M.; Stelmack, R.M. The chronometry of mental ability: An event-related potential analysis of an auditory oddball discrimination task. Intelligence 2006, 34, 571–586. [Google Scholar] [CrossRef]
- Wongupparaj, P.; Sumich, A.; Wickens, M.; Kumari, V.; Morris, R.G. Individual differences in working memory and general intelligence indexed by P200 and P300: A latent variable model. Biol. Psychol. 2018, 139, 96–105. [Google Scholar] [CrossRef]
- McGarry-Roberts, P.A.; Stelmack, R.M.; Campbell, K.B. Intelligence, reaction time, and event-related potentials. Intelligence 1992, 16, 289–313. [Google Scholar] [CrossRef]
- Sur, S.; Sinha, V.K. Event-related potential: An overview. Ind. Psychiatry J. 2009, 18, 70–73. [Google Scholar] [CrossRef]
- Gmaj, B.; Januszko, P.; Kamiński, J.; Drozdowicz, E.; Kopera, M.; Wołyńczyk-Gmaj, D.; Wojnar, M. EEG source activity during processing of neutral stimuli in subjects with anxiety disorders. Acta Neurobiol. Exp. 2016, 76, 75–85. [Google Scholar] [CrossRef]
- Doebler, P.; Scheffler, B. The relationship of choice reaction time variability and intelligence: A meta-analysis. Learn. Individ. Differ. 2016, 52, 157–166. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Lu, H.J.; Chang, C.F.; Liang, W.K.; Muggleton, N.G.; Juan, C.H. Electrophysiological and behavioral evidence reveals the effects of trait anxiety on contingent attentional capture. Cogn. Affect. Behav. Neurosci. 2017, 17, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.R. The Factor; Prager: Westport, CT, USA, 1998. [Google Scholar]
- Sanz, M.; Molina, V.; Martin-Loeches, M.; Calcedo, A.; Rubia, F.J. Auditory P300 event related potential and sero-tonin reuptake inhibitor treatment in obsessive-compulsive disorder patients. Psychiatry Res. 2001, 101, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Deary, I.J.; Cox, S.R.; Okely, J.A. Inspection time and intelligence: A five-wave longitudinal study from age 70 to age 82 in the Lothian Birth Cohort 1936. Intelligence 2024, 105, 101844. [Google Scholar] [CrossRef]
- Coles, M.G.H.; Smid, H.G.O.M.; Scheffers, M.K.; Otten, L.J. Mental Chronometry and the study of human in-formation processing. In Electrophysiology of Mind; Oxford University Press: Oxford, UK, 1995; pp. 86–127. [Google Scholar]
- Shaw, P.; Greenstein, D.; Lerch, J.; Clasen, L.; Lenroot, R.; Gogtay, N.E.E.A.; Evans, A.; Rapoport, J.; Giedd, J. Intellectual ability and cortical development in children and adolescents. Nature 2006, 440, 676–679. [Google Scholar] [CrossRef]
- Kutas, M.; Federmeier, K.D. Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annu. Rev. Psychol. 2011, 62, 621–647. [Google Scholar] [CrossRef]
- Wronka, E.; Kaiser, J.; Coenen, A.M. Psychometric intelligence and P3 of the event-related potentials studied with a 3-stimulus auditory oddball task. Neurosci. Lett. 2013, 535, 110–115. [Google Scholar] [CrossRef]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Zygouris, N.C.; Dermitzaki, I.; Karapetsas, A.V. Differences in brain activity of children with higher mental abilities. An Event Related Potentials study using the latency of P300 and N100 waveforms. Int. J. Dev. Neurosci. 2015, 47, 118–119. [Google Scholar] [CrossRef]
- Gagné, F. From gifts to talents: The DMGT as a devalopmental model. In Conceptions of Giftedness; Sternberg, R.J., Davidson, J.E., Eds.; Cambridge University Press: New York, NY, USA, 2005; pp. 98–120. [Google Scholar]
- Greer, K. Neural Assemblies as Precursors for Brain Function. NeuroSci 2022, 3, 645–655. [Google Scholar] [CrossRef]
- Liu, X.; Yang, S.; Liu, Z. Predicting Fluid Intelligence via Naturalistic Functional Connectivity Using Weighted En-semble Model and Network Analysis. NeuroSci 2021, 2, 427–442. [Google Scholar] [CrossRef]
- Karapetsas, A.; Zygouris, N. Charting the maturation of the prefrontal lobes at school aged children and adolescents, using Event Related Potentials. Ann. Gen. Psychiatry 2008, 7 (Suppl. S1), S355. [Google Scholar] [CrossRef]
- Merks, S. Elucidating Different Aspects of Speed of Information Processing: Comparison of Behavioral Response Latency and P300 Latency in a Modified Hick Reaction Time Task. Ph.D. Thesis, Universität Bern, Bern, Switzerland, 2016. [Google Scholar]
- Lees, T.; Fry, C.M.; Terrell, S.; Jetha, M.K.; Segalowitz, S.J.; Gatzke-Kopp, L.M. Developmental changes in external and internal performance monitoring across middle childhood: An ERP study. Int. J. Psychophysiol. 2021, 169, 20–33. [Google Scholar] [CrossRef]
- Raufi, B.; Longo, L. An evaluation of the EEG alpha-to-theta and theta-to-alpha band ratios as indexes of mental workload. Front. Neuroinform. 2022, 16, 861967. [Google Scholar] [CrossRef] [PubMed]
- Rico-Picó, J.; Hoyo, Á.; Guerra, S.; Conejero, Á.; Rueda, M.R. Behavioral and brain dynamics of executive control in relation to children’s fluid intelligence. Intelligence 2021, 84, 101513. [Google Scholar] [CrossRef]
- De Zwarte, S.M.; Brouwer, R.M.; Agartz, I.; Alda, M.; Alonso-Lana, S.; Bearden, C.E.; Bertolino, A.; Bonvino, A.; Bramon, E.; Buimer, E.E.; et al. Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder. Hum. Brain Mapp. 2022, 43, 414–430. [Google Scholar] [CrossRef] [PubMed]
Step | Procedure | Description |
---|---|---|
Step 1: Informed Consent | 1.1 Ethical Briefing | Parents/guardians receive a detailed explanation of the study’s aims, procedures, and potential risks. |
1.2 Consent Form Signing | Written informed consent is obtained from parents/guardians in accordance with ethical guidelines. | |
1.3 Clinical interview | Children, parents/guardians, and educators. | |
Step 2: Cognitive Assessment | 2.1 Instruction Phase | Children are given instructions and sample items to familiarize them with RSPM format. |
2.2 RSPM Test Completion | Children complete the RSPM to assess fluid intelligence and abstract reasoning. | |
2.3 Break (if needed) | A short break is provided to ensure sustained attention and optimal performance. | |
Step 3: EEG Data Acquisition | 3.1 EEG Preparation | Electrode placement, impedance checks, and EEG system calibration are conducted. |
3.2 Auditory Oddball Paradigm (ERP Task) | Children perform an auditory oddball task to elicit the P300 component while EEG data are recorded. | |
3.3 Reaction Time Recording | Behavioral responses (button presses) are recorded concurrently with EEG to measure reaction time. | |
3.4 Data Quality Check | EEG data undergo visual inspection to ensure artifact-free, high-quality recordings. |
Electro/ Encephalographic Sites | P300 Latency of Children with High Mental Abilities | SD | P300 Latency of Children with Average Mental Abilities | SD | t | p | Cohen’s d | Observed Power |
---|---|---|---|---|---|---|---|---|
Fp1 | 304.48 | 6.21 | 316.58 | 3.46 | −5.89 | <0.001 | 2.41 | 1.00 |
FPz | 305.44 | 7.64 | 318.41 | 4.63 | −5.89 | <0.001 | 2.05 | 0.99 |
Fp2 | 307.55 | 6.33 | 320.53 | 5.92 | −5.03 | <0.001 | 2.12 | 0.99 |
F3 | 307.00 | 7.14 | 326.65 | 7.56 | −5.03 | <0.001 | 2.67 | 1.00 |
Fz | 307.87 | 6.05 | 325.53 | 2.21 | −5.18 | <0.001 | 3.88 | 1.00 |
F4 | 313.15 | 10.31 | 336.38 | 1.99 | −5.18 | <0.001 | 3.13 | 1.00 |
T3 | 306.28 | 10.03 | 329.00 | 4.82 | −6.54 | <0.001 | 2.89 | 1.00 |
T4 | 308.32 | 11.85 | 325.85 | 2.45 | −6.54 | <0.001 | 2.05 | 0.99 |
C3 | 306.78 | 13.10 | 330.45 | 6.37 | −9.49 | <0.001 | 2.30 | 1.00 |
Cz | 311.69 | 15.84 | 337.53 | 3.22 | −9.49 | <0.001 | 2.26 | 1.00 |
C4 | 317.77 | 9.41 | 338.19 | 2.89 | −7.66 | <0.001 | 2.93 | 1.00 |
P3 | 309.51 | 10.04 | 329.96 | 5.21 | −7.66 | <0.001 | 2.56 | 1.00 |
Pz | 311.98 | 14.98 | 336.37 | 5.45 | −7.07 | <0.001 | 2.16 | 0.99 |
P4 | 313.39 | 17.56 | 339.68 | 3.67 | −7.07 | <0.001 | 2.07 | 0.99 |
Oz | 316.91 | 10.38 | 337.87 | 5.71 | −5.01 | <0.001 | 2.50 | 1.00 |
Electro/ Encephalographic Sites | p-Value | BH Critical Value |
---|---|---|
Fp1 | <0.05 | 0.02 |
FPz | <0.05 | 0.01 |
Fp2 | <0.05 | 0.03 |
F3 | <0.05 | 0.01 |
Fz | <0.05 | 0.01 |
F4 | <0.05 | 0.01 |
T3 | <0.05 | 0.01 |
T4 | <0.05 | 0.05 |
C3 | <0.05 | 0.03 |
Cz | <0.05 | 0.04 |
C4 | <0.05 | 0.01 |
P3 | <0.05 | 0.02 |
Pz | <0.05 | 0.04 |
P4 | <0.05 | 0.04 |
Oz | <0.05 | 0.02 |
Reaction Time | High Mental Abilities | Average Mental Abilities | |||||
---|---|---|---|---|---|---|---|
M | SD | M | SD | t | p | Cohen’s d | |
319.70 | 6.54 | 352.30 | 11.76 | −8.39 | <0.001 | 3.43 |
Electro/ Encephalographic Sites | Correlation ρ | Sign |
---|---|---|
FP1 | −0.844 | 0.001 |
FPZ | −0.804 | 0.001 |
FP2 | −0.742 | 0.001 |
F3 | −0.862 | 0.001 |
FZ | −0.889 | 0.001 |
F4 | −0.813 | 0.001 |
T3 | −0.818 | 0.001 |
T4 | −0.893 | 0.001 |
C3 | −0.844 | 0.001 |
CZ | −0.865 | 0.001 |
C4 | −0.770 | 0.001 |
P3 | −0.853 | 0.001 |
PZ | −0.803 | 0.001 |
P4 | −0.790 | 0.001 |
OZ | −0.781 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Swiss Federation of Clinical Neuro-Societies. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zygouris, N.C.; Dermitzaki, I.; Patrikelis, P.; Messinis, L.; Toki, E.I. Associations Between P300 Latency and Reaction Time on Event-Related Potentials in Children with Varying Levels of Fluid Intelligence. Clin. Transl. Neurosci. 2025, 9, 24. https://doi.org/10.3390/ctn9020024
Zygouris NC, Dermitzaki I, Patrikelis P, Messinis L, Toki EI. Associations Between P300 Latency and Reaction Time on Event-Related Potentials in Children with Varying Levels of Fluid Intelligence. Clinical and Translational Neuroscience. 2025; 9(2):24. https://doi.org/10.3390/ctn9020024
Chicago/Turabian StyleZygouris, Nikolaos C., Irini Dermitzaki, Panayiotis Patrikelis, Lambros Messinis, and Eugenia I. Toki. 2025. "Associations Between P300 Latency and Reaction Time on Event-Related Potentials in Children with Varying Levels of Fluid Intelligence" Clinical and Translational Neuroscience 9, no. 2: 24. https://doi.org/10.3390/ctn9020024
APA StyleZygouris, N. C., Dermitzaki, I., Patrikelis, P., Messinis, L., & Toki, E. I. (2025). Associations Between P300 Latency and Reaction Time on Event-Related Potentials in Children with Varying Levels of Fluid Intelligence. Clinical and Translational Neuroscience, 9(2), 24. https://doi.org/10.3390/ctn9020024