The Many Unknowns of Partial Sensory Disconnection during Sleep: A Review of the Literature
Abstract
:1. Introduction
2. Sensory Disconnection in Sleep across Different Sensory Modalities
2.1. Auditory System
2.2. Visual System
2.3. Somatosensory System and Pain Pathways
2.4. Olfactory System
3. Neuromodulators and Disconnection
3.1. Noradrenaline
3.2. Histamine
3.3. Serotonin
3.4. Orexin
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cirelli, C.; Tononi, G. Is sleep essential? PLoS Biol. 2008, 6, e216. [Google Scholar] [CrossRef] [PubMed]
- Tononi, G.; Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef] [PubMed]
- Rechtschaffen, A.; Hauri, P.; Zeitlin, M. Auditory awakening thresholds in REM and NREM sleep stages. Percept. Mot. Ski. 1966, 22, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Zepelin, H.; McDonald, C.S.; Zammit, G.K. Effects of age on auditory awakening thresholds. J. Gerontol. 1984, 39, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Neckelmann, D.; Ursin, R. Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat. Sleep 1993, 16, 467–477. [Google Scholar] [PubMed]
- Hayat, H.; Regev, N.; Matosevich, N.; Sales, A.; Paredes-Rodriguez, E.; Krom, A.J.; Bergman, L.; Li, Y.; Lavigne, M.; Kremer, E.J.; et al. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci. Adv. 2020, 6, eaaz4232. [Google Scholar] [CrossRef] [PubMed]
- Price, L.J.; Kremen, I. Variations in behavioral response threshold within the REM period of human sleep. Psychophysiology 1980, 17, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Ermis, U.; Krakow, K.; Voss, U. Arousal thresholds during human tonic and phasic REM sleep. J. Sleep Res. 2010, 19, 400–406. [Google Scholar] [CrossRef]
- Hall, R.D.; Borbely, A.A. Acoustically evoked potentials in the rat during sleep and waking. Exp. Brain Res. 1970, 11, 93–110. [Google Scholar] [CrossRef]
- Kakigi, R.; Naka, D.; Okusa, T.; Wang, X.; Inui, K.; Qiu, Y.; Tran, T.D.; Miki, K.; Tamura, Y.; Nguyen, T.B.; et al. Sensory perception during sleep in humans: A magnetoencephalograhic study. Sleep Med. 2003, 4, 493–507. [Google Scholar] [CrossRef]
- Dang-Vu, T.T.; Bonjean, M.; Schabus, M.; Boly, M.; Darsaud, A.; Desseilles, M.; Degueldre, C.; Balteau, E.; Phillips, C.; Luxen, A.; et al. Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proc. Natl. Acad. Sci. USA 2011, 108, 15438–15443. [Google Scholar] [CrossRef] [PubMed]
- Velluti, R.A. Interactions between sleep and sensory physiology. J. Sleep Res. 1997, 6, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Issa, E.B.; Wang, X. Sensory responses during sleep in primate primary and secondary auditory cortex. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 14467–14480. [Google Scholar] [CrossRef] [PubMed]
- Issa, E.B.; Wang, X. Altered neural responses to sounds in primate primary auditory cortex during slow-wave sleep. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 2965–2973. [Google Scholar] [CrossRef]
- Nir, Y.; Vyazovskiy, V.V.; Cirelli, C.; Banks, M.I.; Tononi, G. Auditory responses and stimulus-specific adaptation in rat auditory cortex are preserved across NREM and REM sleep. Cereb. Cortex 2015, 25, 1362–1378. [Google Scholar] [CrossRef]
- Sela, Y.; Vyazovskiy, V.V.; Cirelli, C.; Tononi, G.; Nir, Y. Responses in Rat Core Auditory Cortex are Preserved during Sleep Spindle Oscillations. Sleep 2016, 39, 1069–1082. [Google Scholar] [CrossRef]
- Sela, Y.; Krom, A.J.; Bergman, L.; Regev, N.; Nir, Y. Sleep Differentially Affects Early and Late Neuronal Responses to Sounds in Auditory and Perirhinal Cortices. J. Neurosci. Off. J. Soc. Neurosci. 2020, 40, 2895–2905. [Google Scholar] [CrossRef]
- Hayat, H.; Marmelshtein, A.; Krom, A.J.; Sela, Y.; Tankus, A.; Strauss, I.; Fahoum, F.; Fried, I.; Nir, Y. Reduced neural feedback signaling despite robust neuron and gamma auditory responses during human sleep. Nat. Neurosci. 2022, 25, 935–943. [Google Scholar] [CrossRef]
- Wang, Y.; You, L.; Tan, K.; Li, M.; Zou, J.; Zhao, Z.; Hu, W.; Li, T.; Xie, F.; Li, C.; et al. A common thalamic hub for general and defensive arousal control. Neuron 2023, 111, 3270–3287.e8. [Google Scholar] [CrossRef]
- Massimini, M.; Ferrarelli, F.; Huber, R.; Esser, S.K.; Singh, H.; Tononi, G. Breakdown of cortical effective connectivity during sleep. Science 2005, 309, 2228–2232. [Google Scholar] [CrossRef]
- Vetter, K.; Boker, W. Zur funktion des K-komplexes im Schlaf-Elektrencephalogramm. Nervenarzt 1962, 33, 390–394. [Google Scholar] [PubMed]
- Colrain, I.M. The K-complex: A 7-decade history. Sleep 2005, 28, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Forget, D.; Morin, C.M.; Bastien, C.H. The role of the spontaneous and evoked k-complex in good-sleeper controls and in individuals with insomnia. Sleep 2011, 34, 1251–1260. [Google Scholar] [PubMed]
- Latreille, V.; von Ellenrieder, N.; Peter-Derex, L.; Dubeau, F.; Gotman, J.; Frauscher, B. The human K-complex: Insights from combined scalp-intracranial EEG recordings. NeuroImage 2020, 213, 116748. [Google Scholar] [CrossRef]
- Funk, C.M.; Honjoh, S.; Rodriguez, A.V.; Cirelli, C.; Tononi, G. Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep. Curr. Biol. 2016, 26, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Huttenlocher, P.R. Evoked and spontaneous activity in single units of medial brain stem during natural sleep and waking. J. Neurophysiol. 1961, 24, 451–468. [Google Scholar] [CrossRef]
- Rechtschaffen, A.; Foulkes, D. Effect of Visual Stimuli on Dream Content. Percept. Mot. Ski. 1965, 20 (Suppl. 3), 1149–1160. [Google Scholar] [CrossRef]
- Yuzgec, O.; Prsa, M.; Zimmermann, R.; Huber, D. Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Curr. Biol. 2018, 28, 392–400.e3. [Google Scholar] [CrossRef]
- Dagnino, N.; Favale, E.; Loeb, C.; Manfredi, M. Sensory Transmission in the Geniculostriate System of the Cat during Natural Sleep and Arousal. J. Neurophysiol. 1965, 28, 443–456. [Google Scholar] [CrossRef]
- Malcolm, L.J.; Bruce, I.S.; Burke, W. Excitability of the lateral geniculate nucleus in the alert, non-alert and sleeping cat. Exp. Brain Res. 1970, 10, 283–297. [Google Scholar] [CrossRef]
- Coenen, A.M.; Vendrik, A.J. Determination of the transfer ratio of cat’s geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Exp. Brain Res. 1972, 14, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Hubel, D.H. Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J. Physiol. 1960, 150, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Galambos, R.; Juhasz, G.; Kekesi, A.K.; Nyitrai, G.; Szilagyi, N. Natural sleep modifies the rat electroretinogram. Proc. Natl. Acad. Sci. USA 1994, 91, 5153–5157. [Google Scholar] [CrossRef] [PubMed]
- Evarts, E.V. Photically Evoked Responses in Visual Cortex Units during Sleep and Waking. J. Neurophysiol. 1963, 26, 229–248. [Google Scholar] [CrossRef]
- Sakakura, H. Spontaneous and evoked unitary activities of cat lateral geniculate neurons in sleep and wakefulness. Jpn. J. Physiol. 1968, 18, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Angel, A.; Strata, P. Relationship between cortical activity and the excitability of optic nerve terminals in the lateral geniculate body. Brain Res. 1967, 5, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Iwama, K.; Sakakura, H.; Kasamatsu, T. Presynaptic inhibition in the lateral geniculate body induced by stimulation of the cerebral cortex. Jap J. Physiol. 1965, 15, 310–322. [Google Scholar]
- Evarts, E.V. Activity of Neurons in Visual Cortex of Cat during Sleep with Low Voltage Fast Eeg Activity. J. Neurophysiol. 1962, 25, 812–816. [Google Scholar] [CrossRef]
- Carli, G.; Dietespi, K.; Pompeiano, O. Transmission of Sensory Information through Lemniscal Pathway during Sleep. Arch. Ital. De Biol. 1967, 105, 31–51. [Google Scholar]
- Carli, G.; Dietespi, K.; Pompeiano, O. Presynaptic and Postsynaptic Inhibition of Transmission O Somatic Afferent Volleys through Cuneate Nucleus during Sleep. Arch. Ital. De Biol. 1967, 105, 52–82. [Google Scholar]
- Soja, P.J.; Oka, J.I.; Fragoso, M. Synaptic transmission through cat lumbar ascending sensory pathways is suppressed during active sleep. J. Neurophysiol. 1993, 70, 1708–1712. [Google Scholar] [CrossRef] [PubMed]
- Soja, P.J.; Pang, W.; Taepavarapruk, N.; McErlane, S.A. Spontaneous spike activity of spinoreticular tract neurons during sleep and wakefulness. Sleep 2001, 24, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, M.; Formenti, A.; Mancia, M. Responses of VPL thalamic neurones to peripheral stimulation in wakefulness and sleep. Neurosci. Lett. 1989, 102, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Gucer, G. The effect of sleep upon the transmission of afferent activity in the somatic afferent system. Exp. Brain Res. 1979, 34, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Cairns, B.E.; McErlane, S.A.; Fragoso, M.C.; Jia, W.G.; Soja, P.J. Spontaneous discharge and peripherally evoked orofacial responses of trigemino-thalamic tract neurons during wakefulness and sleep. J. Neurosci. Off. J. Soc. Neurosci. 1996, 16, 8149–8159. [Google Scholar] [CrossRef] [PubMed]
- Cairns, B.E.; Fragoso, M.C.; Soja, P.J. Active-sleep-related suppression of feline trigeminal sensory neurons: Evidence implicating presynaptic inhibition via a process of primary afferent depolarization. J. Neurophysiol. 1996, 75, 1152–1162. [Google Scholar] [CrossRef]
- Leung, C.G.; Mason, P. Physiological properties of raphe magnus neurons during sleep and waking. J. Neurophysiol. 1999, 81, 584–595. [Google Scholar] [CrossRef]
- Foo, H.; Mason, P. Brainstem modulation of pain during sleep and waking. Sleep Med. Rev. 2003, 7, 145–154. [Google Scholar] [CrossRef]
- Beydoun, A.; Morrow, T.J.; Shen, J.F.; Casey, K.L. Variability of laser-evoked potentials: Attention, arousal and lateralized differences. Electroencephalogr. Clin. Neurophysiol. 1993, 88, 173–181. [Google Scholar] [CrossRef]
- Lavigne, G.; Zucconi, M.; Castronovo, C.; Manzini, C.; Marchettini, P.; Smirne, S. Sleep arousal response to experimental thermal stimulation during sleep in human subjects free of pain and sleep problems. Pain 2000, 84, 283–290. [Google Scholar] [CrossRef]
- Badia, P.; Wesensten, N.; Lammers, W.; Culpepper, J.; Harsh, J. Responsiveness to olfactory stimuli presented in sleep. Physiol. Behav. 1990, 48, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Carskadon, M.A.; Herz, R.S. Minimal olfactory perception during sleep: Why odor alarms will not work for humans. Sleep 2004, 27, 402–405. [Google Scholar] [PubMed]
- Stuck, B.A.; Stieber, K.; Frey, S.; Freiburg, C.; Hormann, K.; Maurer, J.T.; Hummel, T. Arousal responses to olfactory or trigeminal stimulation during sleep. Sleep 2007, 30, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.T.; Zhao, B.; Chen, S.; Ye, J.; Liu, J.; Liang, L.; Ding, H.; Schaefke, B.; Yang, Q.; Wang, L.; et al. The subthalamic corticotropin-releasing hormone neurons mediate adaptive REM-sleep responses to threat. Neuron 2022, 110, 1223–1239.e8. [Google Scholar] [CrossRef]
- Tsuno, Y.; Kashiwadani, H.; Mori, K. Behavioral state regulation of dendrodendritic synaptic inhibition in the olfactory bulb. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 9227–9238. [Google Scholar] [CrossRef]
- Murakami, M.; Kashiwadani, H.; Kirino, Y.; Mori, K. State-dependent sensory gating in olfactory cortex. Neuron 2005, 46, 285–296. [Google Scholar] [CrossRef]
- Yamaguchi, M. The role of sleep in the plasticity of the olfactory system. Neurosci. Res. 2017, 118, 21–29. [Google Scholar] [CrossRef]
- Moruzzi, G.; Magoun, H.W. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1949, 1, 455–473. [Google Scholar] [CrossRef]
- Brown, R.E.; Basheer, R.; McKenna, J.T.; Strecker, R.E.; McCarley, R.W. Control of sleep and wakefulness. Physiol. Rev. 2012, 92, 1087–1187. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Bloom, F.E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. Off. J. Soc. Neurosci. 1981, 1, 876–886. [Google Scholar] [CrossRef]
- Takahashi, K.; Kayama, Y.; Lin, J.S.; Sakai, K. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience 2010, 169, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- el Mansari, M.; Sakai, K.; Jouvet, M. Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp. Brain Res. 1989, 76, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Boucetta, S.; Cisse, Y.; Mainville, L.; Morales, M.; Jones, B.E. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 4708–4727. [Google Scholar] [CrossRef]
- Lee, M.G.; Hassani, O.K.; Alonso, A.; Jones, B.E. Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 4365–4369. [Google Scholar] [CrossRef]
- Xu, M.; Chung, S.; Zhang, S.; Zhong, P.; Ma, C.; Chang, W.C.; Weissbourd, B.; Sakai, N.; Luo, L.; Nishino, S.; et al. Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 2015, 18, 1641–1647. [Google Scholar] [CrossRef]
- McGinty, D.J.; Harper, R.M. Dorsal raphe neurons: Depression of firing during sleep in cats. Brain Res. 1976, 101, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Trulson, M.E.; Jacobs, B.L. Raphe unit activity in freely moving cats: Correlation with level of behavioral arousal. Brain Res. 1979, 163, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.F.; John, J.; Boehmer, L.N.; Yau, D.; Nguyen, G.B.; Siegel, J.M. Activity of dorsal raphe cells across the sleep-waking cycle and during cataplexy in narcoleptic dogs. J. Physiol. 2004, 554, 202–215. [Google Scholar] [CrossRef]
- John, J.; Wu, M.F.; Boehmer, L.N.; Siegel, J.M. Cataplexy-active neurons in the hypothalamus: Implications for the role of histamine in sleep and waking behavior. Neuron 2004, 42, 619–634. [Google Scholar] [CrossRef]
- Takahashi, K.; Lin, J.S.; Sakai, K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 10292–10298. [Google Scholar] [CrossRef]
- Lee, M.G.; Hassani, O.K.; Jones, B.E. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 6716–6720. [Google Scholar] [CrossRef]
- Mileykovskiy, B.Y.; Kiyashchenko, L.I.; Siegel, J.M. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 2005, 46, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Dahan, L.; Astier, B.; Vautrelle, N.; Urbain, N.; Kocsis, B.; Chouvet, G. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 2007, 32, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Eban-Rothschild, A.; Rothschild, G.; Giardino, W.J.; Jones, J.R.; de Lecea, L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat. Neurosci. 2016, 19, 1356–1366. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.R.; Treweek, J.B.; Robinson, J.E.; Xiao, C.; Bremner, L.R.; Greenbaum, A.; Gradinaru, V. Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli. Neuron 2017, 94, 1205–1219.e8. [Google Scholar] [CrossRef] [PubMed]
- Poe, G.R.; Foote, S.; Eschenko, O.; Johansen, J.P.; Bouret, S.; Aston-Jones, G.; Harley, C.W.; Manahan-Vaughan, D.; Weinshenker, D.; Valentino, R.; et al. Locus coeruleus: A new look at the blue spot. Nat. Rev. Neurosci. 2020, 21, 644–659. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S.; Deisseroth, K.; de Lecea, L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 2010, 13, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Hunsley, M.S.; Palmiter, R.D. Altered sleep latency and arousal regulation in mice lacking norepinephrine. Pharm. Biochem. Behav. 2004, 78, 765–773. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, C.; Lischinsky, J.E.; Jing, M.; Zhou, J.; Wang, H.; Zhang, Y.; Dong, A.; Wu, Z.; Wu, H.; et al. A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine. Neuron 2019, 102, 745–761.e8. [Google Scholar] [CrossRef]
- Osorio-Forero, A.; Cardis, R.; Vantomme, G.; Guillaume-Gentil, A.; Katsioudi, G.; Devenoges, C.; Fernandez, L.M.J.; Luthi, A. Noradrenergic circuit control of non-REM sleep substates. Curr. Biol. 2021, 31, 5009–5023.e7. [Google Scholar] [CrossRef]
- Kjaerby, C.; Andersen, M.; Hauglund, N.; Untiet, V.; Dall, C.; Sigurdsson, B.; Ding, F.; Feng, J.; Li, Y.; Weikop, P.; et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat. Neurosci. 2022, 25, 1059–1070. [Google Scholar] [CrossRef]
- Lecci, S.; Fernandez, L.M.; Weber, F.D.; Cardis, R.; Chatton, J.Y.; Born, J.; Luthi, A. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci. Adv. 2017, 3, e1602026. [Google Scholar] [CrossRef] [PubMed]
- Swift, K.M.; Gross, B.A.; Frazer, M.A.; Bauer, D.S.; Clark, K.J.D.; Vazey, E.M.; Aston-Jones, G.; Li, Y.; Pickering, A.E.; Sara, S.J.; et al. Abnormal Locus Coeruleus Sleep Activity Alters Sleep Signatures of Memory Consolidation and Impairs Place Cell Stability and Spatial Memory. Curr. Biol. 2018, 28, 3599–3609.e4. [Google Scholar] [CrossRef] [PubMed]
- Aston-Jones, G.; Bloom, F.E. Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. Off. J. Soc. Neurosci. 1981, 1, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Simor, P.; van der Wijk, G.; Nobili, L.; Peigneux, P. The microstructure of REM sleep: Why phasic and tonic? Sleep Med. Rev. 2020, 52, 101305. [Google Scholar] [CrossRef] [PubMed]
- Venner, A.; Mochizuki, T.; De Luca, R.; Anaclet, C.; Scammell, T.E.; Saper, C.B.; Arrigoni, E.; Fuller, P.M. Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control. J. Neurosci. Off. J. Soc. Neurosci. 2019, 39, 8929–8939. [Google Scholar] [CrossRef]
- Takahashi, K.; Lin, J.S.; Sakai, K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 2008, 153, 860–870. [Google Scholar] [CrossRef]
- Nishino, S.; Mignot, E. Pharmacological aspects of human and canine narcolepsy. Prog. Neurobiol. 1997, 52, 27–78. [Google Scholar] [CrossRef]
- Nishino, S.; Tafti, M.; Reid, M.S.; Shelton, J.; Siegel, J.M.; Dement, W.C.; Mignot, E. Muscle atonia is triggered by cholinergic stimulation of the basal forebrain: Implication for the pathophysiology of canine narcolepsy. J. Neurosci. Off. J. Soc. Neurosci. 1995, 15, 4806–4814. [Google Scholar] [CrossRef]
- Lydic, R.; McCarley, R.W.; Hobson, J.A. Serotonin neurons and sleep. I. Long term recordings of dorsal raphe discharge frequency and PGO waves. Arch. Ital. De Biol. 1987, 125, 317–343. [Google Scholar]
- Jacobs, B.L.; Fornal, C.A. Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 1999, 21, 9S–15S. [Google Scholar] [CrossRef] [PubMed]
- Portas, C.M.; Bjorvatn, B.; Ursin, R. Serotonin and the sleep/wake cycle: Special emphasis on microdialysis studies. Prog. Neurobiol. 2000, 60, 13–35. [Google Scholar] [CrossRef] [PubMed]
- Trulson, M.E.; Jacobs, B.L.; Morrison, A.R. Raphe unit activity during REM sleep in normal cats and in pontine lesioned cats displaying REM sleep without atonia. Brain Res. 1981, 226, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Steinfels, G.F.; Heym, J.; Strecker, R.E.; Jacobs, B.L. Raphe unit activity in freely moving cats is altered by manipulations of central but not peripheral motor systems. Brain Res. 1983, 279, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Cape, E.G.; Jones, B.E. Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J. Neurosci. Off. J. Soc. Neurosci. 1998, 18, 2653–2666. [Google Scholar] [CrossRef] [PubMed]
- Rogawski, M.A.; Aghajanian, G.K. Norepinephrine and serotonin: Opposite effects on the activity of lateral geniculate neurons evoked by optic pathway stimulation. Exp. Neurol. 1980, 69, 678–694. [Google Scholar] [CrossRef]
- Waterhouse, B.D.; Azizi, S.A.; Burne, R.A.; Woodward, D.J. Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis. Brain Res. 1990, 514, 276–292. [Google Scholar] [CrossRef]
- Fornal, C.A.; Metzler, C.W.; Marrosu, F.; Ribiero-do-Valle, L.E.; Jacobs, B.L. A subgroup of dorsal raphe serotonergic neurons in the cat is strongly activated during oral-buccal movements. Brain Res. 1996, 716, 123–133. [Google Scholar] [CrossRef]
- Heym, J.; Trulson, M.E.; Jacobs, B.L. Raphe unit activity in freely moving cats: Effects of phasic auditory and visual stimuli. Brain Res. 1982, 232, 29–39. [Google Scholar] [CrossRef]
- Steinfels, G.F.; Heym, J.; Strecker, R.E.; Jacobs, B.L. Response of dopaminergic neurons in cat to auditory stimuli presented across the sleep-waking cycle. Brain Res. 1983, 277, 150–154. [Google Scholar] [CrossRef]
- Buchanan, G.F.; Richerson, G.B. Central serotonin neurons are required for arousal to CO2. Proc. Natl. Acad. Sci. USA 2010, 107, 16354–16359. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; De Luca, R.; Khanday, M.A.; Bandaru, S.S.; Thomas, R.C.; Broadhurst, R.Y.; Venner, A.; Todd, W.D.; Fuller, P.M.; Arrigoni, E.; et al. Role of serotonergic dorsal raphe neurons in hypercapnia-induced arousals. Nat. Commun. 2020, 11, 2769. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, A.E.; Hodges, M.R.; Wu, Y.; Wang, W.; Wylie, C.J.; Deneris, E.S.; Richerson, G.B. Medullary serotonin neurons and central CO2 chemoreception. Respir. Physiol. Neurobiol. 2009, 168, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Saper, C.B. Neural Circuitry Underlying Waking Up to Hypercapnia. Front. Neurosci. 2019, 13, 401. [Google Scholar] [CrossRef]
- McCormick, D.A.; Wang, Z. Serotonin and noradrenaline excite GABAergic neurones of the guinea-pig and cat nucleus reticularis thalami. J. Physiol. 1991, 442, 235–255. [Google Scholar] [CrossRef] [PubMed]
- Pape, H.C.; McCormick, D.A. Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 1989, 340, 715–718. [Google Scholar] [CrossRef]
- Lee, K.H.; McCormick, D.A. Abolition of spindle oscillations by serotonin and norepinephrine in the ferret lateral geniculate and perigeniculate nuclei in vitro. Neuron 1996, 17, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Faraco, J.; Li, R.; Kadotani, H.; Rogers, W.; Lin, X.; Qiu, X.; de Jong, P.J.; Nishino, S.; Mignot, E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999, 98, 365–376. [Google Scholar] [CrossRef]
- Chemelli, R.M.; Willie, J.T.; Sinton, C.M.; Elmquist, J.K.; Scammell, T.; Lee, C.; Richardson, J.A.; Williams, S.C.; Xiong, Y.; Kisanuki, Y.; et al. Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell 1999, 98, 437–451. [Google Scholar] [CrossRef]
- Adamantidis, A.R.; Zhang, F.; Aravanis, A.M.; Deisseroth, K.; de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 2007, 450, 420–424. [Google Scholar] [CrossRef]
- Carter, M.E.; Brill, J.; Bonnavion, P.; Huguenard, J.R.; Huerta, R.; de Lecea, L. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc. Natl. Acad. Sci. USA 2012, 109, E2635–E2644. [Google Scholar] [CrossRef] [PubMed]
- Bayer, L.; Eggermann, E.; Saint-Mleux, B.; Machard, D.; Jones, B.E.; Muhlethaler, M.; Serafin, M. Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 7835–7839. [Google Scholar] [CrossRef] [PubMed]
- Bayer, L.; Serafin, M.; Eggermann, E.; Saint-Mleux, B.; Machard, D.; Jones, B.E.; Muhlethaler, M. Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 6760–6764. [Google Scholar] [CrossRef] [PubMed]
- Zolnik, T.A.; Ledderose, J.; Toumazou, M.; Trimbuch, T.; Oram, T.; Rosenmund, C.; Eickholt, B.J.; Sachdev, R.N.S.; Larkum, M.E. Layer 6b Is Driven by Intracortical Long-Range Projection Neurons. Cell Rep. 2020, 30, 3492–3505.e5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirelli, C.; Tononi, G. The Many Unknowns of Partial Sensory Disconnection during Sleep: A Review of the Literature. Clin. Transl. Neurosci. 2024, 8, 9. https://doi.org/10.3390/ctn8010009
Cirelli C, Tononi G. The Many Unknowns of Partial Sensory Disconnection during Sleep: A Review of the Literature. Clinical and Translational Neuroscience. 2024; 8(1):9. https://doi.org/10.3390/ctn8010009
Chicago/Turabian StyleCirelli, Chiara, and Giulio Tononi. 2024. "The Many Unknowns of Partial Sensory Disconnection during Sleep: A Review of the Literature" Clinical and Translational Neuroscience 8, no. 1: 9. https://doi.org/10.3390/ctn8010009
APA StyleCirelli, C., & Tononi, G. (2024). The Many Unknowns of Partial Sensory Disconnection during Sleep: A Review of the Literature. Clinical and Translational Neuroscience, 8(1), 9. https://doi.org/10.3390/ctn8010009