Pharmacological Treatments of Sleep–Wake Disorders: Update 2023
Abstract
:1. Introduction
2. Pharmacotherapy of Sleep–Wake Circadian Disorders
2.1. Insomnia
Drug Group | Drug Type | Example | Recommendation | O * | M+ | Elderly | Remarks |
---|---|---|---|---|---|---|---|
Melatoninergic drugs | Melatonin | 0 | (+) | (+) | |||
Melatonin extended release | (+) | (+) | + | ||||
Melatonin receptor agonists | + | (+) | (+) | Consider indication status | |||
GABA-A receptor agonists | Benzodiazepines | (+) | + | + | Consider abuse or addiction liability | ||
Non-benzodia-zepines “Z”-drugs | ++ | ++ | + | ||||
Antidepressants | Trazodone | ++ | + | + | + | May also be used in dementia | |
Mirtazapine | + | (+) | + | Caveat: long half-life | |||
Tricyclic antidepressants | Amitriptyline | + | (+) | (+) | Low dose recommended | ||
Doxepin | ++ | + | + | ||||
Dual orexin receptor agonists | Dual orexin receptor agonists | Daridorexant | ++ | + | + | (+) | Further studies needed |
Antipsychotic drugs | Quetiapine | 0 | Backup option | ||||
Antihistamines | 0 |
2.2. Sleep-Related Breathing Disorders (SRBDs)
- Insomnia: Some patients experience improvement in their non-restorative or disturbed sleep quickly after the initiation of therapy (i.e., with PAP). In others, insomnia symptoms are unchanged, and some describe novel difficulties in sleep initiation in particular. The treatment of insomnia in SRBDs follows the general recommendations for the management of insomnia (see Section 2.1). CBT-I also leads to an improvement in insomnia in treated and untreated comorbid sleep apnea patients [40]. It needs to be considered that antidepressant and antipsychotic medicines for insomnia may exacerbate sleep apnea [41]. Several studies suggest a neutral response on respiration for GABA-A receptor agonists, (benzodiazepines, Z-drugs) and also for trazodone. In a recent study, using the DORA lemborexant, respiratory safety was demonstrated in subjects with moderate-to-severe OSA [42].
- Excessive daytime sleepiness (EDS)/fatigue: 5–10% of OSA patients, who are under effective PAP treatment, still describe EDS [43]. This condition often is called “residual EDS (R-EDS) in OSA”. The daytime symptomatology, however, still needs further differentiation (EDS vs. fatigue vs. cognitive disturbances). Further, it remains unclear whether EDS is the consequence of OSA at all [43]. In the last decades, modafinil (off-label in the EU) and armodafinil have been used for the treatment of persistent EDS in OSA. Recently, solriamfetol and pitolisant (see also Section 2.3) have been studied and approved for the treatment of R-EDS in OSA. Both have shown to be efficacious in the reduction in EDS in these populations [44,45,46,47].
2.3. Central Disorders of Hypersomnolence (CDH)
2.4. Circadian Rhythm Sleep–Wake Disorders (CRSWDs)
2.5. Parasomnias
2.6. Sleep-Related Movement Disorders
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ramar, K.; Malhotra, R.K.; Carden, K.A.; Martin, J.L.; Abbasi-Feinberg, F.; Aurora, R.N.; Kapur, V.K.; Olson, E.J.; Rosen, C.L.; Rowley, J.A.; et al. Sleep is essential to health: An American Academy of Sleep Medicine position statement. J. Clin. Sleep Med. 2021, 17, 2115–2119. [Google Scholar] [CrossRef]
- Kryger, M.H.; Roth, T.; Dement, W.C. Principles and Practice of Sleep Medicine, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C. Joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: Methodology and discussion. J. Clin. Sleep Med. 2015, 11, 931–952. [Google Scholar] [CrossRef]
- Robbins, R.; Quan, S.F.; Weaver, M.D.; Bormes, G.; Barger, L.K.; Czeisler, C.A. Examining sleep deficiency and disturbance and their risk for incident dementia and all-cause mortality in older adults across 5 years in the United States. Aging 2021, 13, 3254–3268. [Google Scholar] [CrossRef]
- Bassetti, C.L.A.; Randerath, W.; Vignatelli, L.; Ferini-Strambi, L.; Brill, A.K.; Bonsignore, M.R.; Grote, L.; Jennum, P.; Leys, D.; Minnerup, J.; et al. EAN/ERS/ESO/ESRS statement on the impact of sleep disorders on risk and outcome of stroke. Eur. J. Neurol. 2020, 27, 1117–1136. [Google Scholar] [CrossRef]
- Lim, D.C.; Najafi, A.; Afifi, L.; LA Bassetti, C.; Buysse, D.J.; Han, F.; Högl, B.; Melaku, Y.A.; Morin, C.M.; Pack, A.I.; et al. The need to promote sleep health in public health agendas across the globe. Lancet Public Health 2023, 8, e820–e826. [Google Scholar] [CrossRef]
- Gustavsson, A.; Svensson, M.; Jacobi, F.; Allgulander, C.; Alonso, J.; Beghi, E.; Dodel, R.; Ekman, M.; Faravelli, C.; Fratiglioni, L.; et al. Cost of disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 718–779. [Google Scholar] [CrossRef]
- Bassetti, C.L.A.; Endres, M.; Sander, A.; Crean, M.; Subramaniam, S.; Carvalho, V.; Di Liberto, G.; Franco, O.H.; Pijnenburg, Y.; Leonardi, M.; et al. The European Academy of Neurology Brain Health Strategy: One brain, one life, one approach. Eur. J. Neurol. 2022, 29, 2559–2566. [Google Scholar] [CrossRef]
- Scammell, T.E.; Arrigoni, E.; Lipton, J. Neural Circuitry of Wakefulness and Sleep. Neuron 2017, 93, 747–765. [Google Scholar] [CrossRef]
- Eban-Rothschild, A.; Appelbaum, L.; De Lecea, L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018, 43, 937–952. [Google Scholar] [CrossRef]
- American Academy of Sleep Medicine. The International Classification of Sleep Disorders, 3rd ed.; (ICSD-3); Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2023. [Google Scholar]
- España, R.A.; Scammell, T.E. Sleep Neurobiology from a Clinical Perspective. Sleep 2011, 34, 845–858. [Google Scholar]
- Ohayon, M.M.; Reynolds, C.F., III. Epidemiological and clinical relevance of insomnia diagnosis algorithms according to the DSM-IV and the International Classification of Sleep Disorders (ICSD). Sleep Med. 2009, 10, 952–960. [Google Scholar] [CrossRef]
- Ohayon, M.M. Epidemiology of insomnia: What we know and what we still need to learn. Sleep Med. Rev. 2002, 6, 97–111. [Google Scholar] [CrossRef]
- Riemann, D.; Baglioni, C.; Bassetti, C.; Bjorvatn, B.; Dolenc Groselj, L.; Ellis, J.G.; Espie, C.A.; Garcia-Borreguero, D.; Gjerstad, M.; Gonçalves, M.; et al. European guideline for the diagnosis and treatment of insomnia. J. Sleep Res. 2017, 26, 675–700. [Google Scholar] [CrossRef] [PubMed]
- De Crescenzo, F.; D’Alò, G.L.; Ostinelli, E.G.; Ciabattini, M.; Di Franco, V.; Watanabe, N.; Kurtulmus, A.; Tomlinson, A.; Mitrova, Z.; Foti, F.; et al. Comparative effects of pharmacological interventions for the acute and long-term management of insomnia disorder in adults: A systematic review and network meta-analysis. Lancet 2022, 400, 170–184. [Google Scholar] [CrossRef]
- Pan, B.; Ge, L.; Lai, H.; Hou, L.; Tian, C.; Wang, Q.; Yang, K.; Lu, Y.; Zhu, H.; Li, M.; et al. The Comparative Effectiveness and Safety of Insomnia Drugs: A Systematic Review and Network Meta-Analysis of 153 Randomized Trials. Drugs 2023, 83, 587–619. [Google Scholar] [CrossRef] [PubMed]
- Hasan, F.; Lee, H.C.; Chen, P.Y.; Wang, Y.-H.; Yuliana, L.T.; Romadlon, D.S.; Tu, Y.-K.; Chiu, H.-Y. Comparative efficacy of hypnotics in young and middle-aged adults with insomnia: A systematic review and network meta-analysis. Sleep Breath. 2023, 27, 2021–2030. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Li, H.; Chen, Y.; Lu, H.; Ni, J.; Chen, G. Daridorexant for the treatment of insomnia disorder: A systematic review and meta-analysis of randomized controlled trials. Medicine 2023, 102, e32754. [Google Scholar] [CrossRef]
- Rocha, R.B.; Bomtempo, F.F.; Nager, G.B.; Cenci, G.I.; Telles, J.P.M. Dual orexin receptor antagonists for the treatment of insomnia: Systematic review and network meta-analysis. Arq. Neuropsiquiatr. 2023, 81, 475–483. [Google Scholar] [CrossRef]
- Zheng, X.; He, Y.; Yin, F.; Liu, H.; Li, Y.; Zheng, Q.; Li, L. Pharmacological interventions for the treatment of insomnia: Quantitative comparison of drug efficacy. Sleep Med. 2020, 72, 41–49. [Google Scholar] [CrossRef]
- Di Marco, T.; Scammell, T.E.; Meinel, M.; Kinter, D.S.; Datta, A.N.; Zammit, G.; Dauvilliers, Y. Number, Duration, and Distribution of Wake Bouts in Patients with Insomnia Disorder: Effect of Daridorexant and Zolpidem. CNS Drugs 2023, 37, 639–653. [Google Scholar] [CrossRef]
- Inoue, Y.; Nishida, M.; Kubota, N.; Koebis, M.; Taninaga, T.; Muramoto, K.; Ishikawa, K.; Moline, M. Comparison of the treatment effectiveness between lemborexant and zolpidem tartrate extended-release for insomnia disorder subtypes defined based on polysomnographic findings. J. Clin. Sleep Med. 2023, 19, 519–528. [Google Scholar] [CrossRef] [PubMed]
- McCleery, J.; Sharpley, A.L. Pharmacotherapies for sleep disturbances in dementia. Cochrane Database Syst Rev. 2020, 11, CD009178. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, Y.; Ye, C.; Guo, L.; Luo, S.; Dai, S.; Chen, N.; Wang, E. A network meta-analysis of the long- and short-term efficacy of sleep medicines in adults and older adults. Neurosci. Biobehav. Rev. 2021, 131, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.Y.; Lee, H.C.; Liu, J.W.; Hua, S.J.; Chen, P.Y.; Tsai, P.S.; Tu, Y.K. Comparative efficacy and safety of hypnotics for insomnia in older adults: A systematic review and network meta-analysis. Sleep 2021, 44, zsaa260. [Google Scholar] [CrossRef] [PubMed]
- Samara, M.T.; Huhn, M.; Chiocchia, V.; Schneider-Thoma, J.; Wiegand, M.; Salanti, G.; Leucht, S. Efficacy, acceptability, and tolerability of all available treatments for insomnia in the elderly: A systematic review and network meta-analysis. Acta Psychiatr. Scand. 2020, 142, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Sateia, M.J.; Buysse, D.J.; Krystal, A.D.; Neubauer, D.N.; Heald, J.L. Clinical Practice Guideline for the Pharmacologic Treatment of Chronic Insomnia in Adults: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 307–349. [Google Scholar] [CrossRef]
- Choi, H.; Youn, S.; Um, Y.H.; Kim, T.W.; Ju, G.; Lee, H.J.; Lee, C.; Lee, S.D.; Bae, K.; Kim, S.J.; et al. Korean Clinical Practice Guideline for the Diagnosis and Treatment of Insomnia in Adults. Psychiatry Investig. 2020, 17, 1048–1059. [Google Scholar] [CrossRef]
- Qaseem, A.; Kansagara, D.; Forciea, M.A.; Cooke, M.; Denberg, T.D. Clinical Guidelines Committee of the American College of Physicians. Management of Chronic Insomnia Disorder in Adults: A Clinical Practice Guideline From the American College of Physicians. Ann. Intern. Med. 2016, 165, 125–133. [Google Scholar] [CrossRef]
- Wilson, S.; Anderson, K.; Baldwin, D.; Dijk, D.J.; Espie, A.; Espie, C.; Gringras, P.; Krystal, A.; Nutt, D.; Selsick, H.; et al. British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders: An update. J. Psychopharmacol. 2019, 33, 923–947. [Google Scholar] [CrossRef]
- Mysliwiec, V.; Martin, J.L.; Ulmer, C.S.; Chowdhuri, S.; Brock, M.S.; Spevak, C.; Sall, J. The Management of Chronic Insomnia Disorder and Obstructive Sleep Apnea: Synopsis of the 2019 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guidelines. Ann. Intern. Med. 2020, 172, 325–336. [Google Scholar] [CrossRef]
- Pottie, K.; Thompson, W.; Davies, S.; Grenier, J.; Sadowski, C.A.; Welch, V.; Holbrook, A.; Boyd, C.; Swenson, R.; Ma, A.; et al. Deprescribing benzodiazepine receptor agonists: Evidence-based clinical practice guideline. Can. Fam. Physician 2018, 64, 339–351. [Google Scholar]
- Wichniak, A.; Bieńkowski, P.; Dąbrowski, R.; Mastalerz-Migas, A.; Rymaszewska, J. Treatment of insomnia in older adults. Recommendations of the Polish Sleep Research Society, Polish Society of Family Medicine and the Polish Psychiatric Association. Psychiatr. Pol. 2023, 57, 495–516. [Google Scholar] [CrossRef]
- Takaesu, Y.; Sakurai, H.; Aoki, Y.; Takeshima, M.; Ie, K.; Matsui, K.; Utsumi, T.; Shimura, A.; Okajima, I.; Kotorii, N.; et al. Treatment strategy for insomnia disorder: Japanese expert consensus. Front. Psychiatry 2023, 14, 1168100. [Google Scholar] [CrossRef]
- Vecchierini, M.F.; Kilic-Huck, U.; Quera-Salva, M.A. Members of the MEL consensus group of the SFRMS. Melatonin (MEL) and its use in neurological diseases and insomnia: Recommendations of the French Medical and Research Sleep Society (SFRMS). Rev. Neurol. 2021, 177, 245–259. [Google Scholar] [CrossRef]
- Palagini, L.; Manni, R.; Aguglia, E.; Amore, M.; Brugnoli, R.; Girardi, P.; Grassi, L.; Mencacci, C.; Plazzi, G.; Minervino, A.; et al. Expert Opinions and Consensus Recommendations for the Evaluation and Management of Insomnia in Clinical Practice: Joint Statements of Five Italian Scientific Societies. Front. Psychiatry 2020, 11, 558. [Google Scholar] [CrossRef]
- Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; et al. Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. Lancet Respir. Med. 2015, 3, 310–318. [Google Scholar] [CrossRef]
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef]
- Sweetman, A.; Farrell, S.; Wallace, D.M.; Crawford, M. The effect of cognitive behavioural therapy for insomnia in people with comorbid insomnia and sleep apnoea: A systematic review and meta-analysis. J. Sleep Res. 2023, 32, e13847. [Google Scholar] [CrossRef]
- Khazaie, H.; Sharafkhaneh, A.; Khazaie, S.; Ghadami, M.R. A weight-independent association between atypical antipsychotic medications and obstructive sleep apnea. Sleep Breath. 2018, 22, 109–114. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Lorch, D.; Lowe, A.D.; Uchimura, N.; Hall, N.; Shah, D.; Moline, M. A randomized, double-blind, placebo-controlled, crossover study of respiratory safety of lemborexant in moderate-to-severe obstructive sleep apnea. J. Clin. Sleep Med. 2023. ahead of print. [Google Scholar] [CrossRef]
- Kallweit, U.; Pevernagie, D.; Lammers, G.J. “Sleepiness” in obstructive sleep apnea: Getting into deep water. Sleep Med. 2022, 92, 64–66. [Google Scholar] [CrossRef]
- Schweitzer, P.K.; Rosenberg, R.; Zammit, G.K.; Gotfried, M.; Chen, D.; Carter, L.P.; Wang, H.; Lu, Y.; Black, J.; Malhotra, A.; et al. Solriamfetol for excessive sleepiness in obstructive sleep apnea (TONES 3). A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2019, 199, 1421–1431. [Google Scholar] [CrossRef]
- Dauvilliers, Y.; Verbraecken, J.; Partinen, M.; Saaresranta, T.; Georgiev, O.; Tiholov, R.; Lecomte, I.; Tamisier, R.; Lévy, P.; Scart-Gres, C.; et al. Pitolisant for daytime sleepiness in patients with obstructive sleep apnea who refuse continuous positive airway pressure treatment. A randomized trial. Am. J. Respir. Crit. Care Med. 2020, 201, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- El-Solh, A.A.; Rudraraju, A.; Pasrija, D.; Bui, H. Pharmacotherapy of residual excessive sleepiness among continuous positive airway pressure (CPAP) treated patients with sleep apnea. Expert Opin. Pharmacother. 2022, 23, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Craig, S.; Pépin, J.L.; Randerath, W.; Caussé, C.; Verbraecken, J.; Asin, J.; Barbé, F.; Bonsignore, M.R. Investigation and management of residual sleepiness in CPAP-treated patients with obstructive sleep apnoea: The European view. Eur. Respir. Rev. 2022, 31, 210230. [Google Scholar] [CrossRef] [PubMed]
- Taranto-Montemurro, L.; Messineo, L.; Sands, S.A.; Azarbarzin, A.; Marques, M.; Edwards, B.A.; Eckert, D.J.; White, D.P.; Wellman, A. The combination of atomoxetine and oxybutynin greatly reduces obstructive sleep apnea severity. A randomized, placebo-controlled, double-blind crossover trial. Am. J. Respir. Crit. Care Med. 2019, 199, 1267–1276. [Google Scholar] [CrossRef]
- Hedner, J.; Stenlöf, K.; Zou, D.; Hoff, E.; Hansen, C.; Kuhn, K.; Lennartz, P.; Grote, L. A randomized controlled clinical trial exploring safety and tolerability of sulthiame in sleep apnea. Am. J. Respir. Crit. Care Med. 2022, 205, 1461–1469. [Google Scholar] [CrossRef]
- Ohayon, M.M. From wakefulness to excessive sleepiness: What we know and still need to know. Sleep Med. Rev. 2008, 12, 129–141. [Google Scholar] [CrossRef]
- Ohayon, M.M.; Reynolds, C.F.; Dauvilliers, Y. Excessive sleep duration and quality of life. Ann. Neurol. 2013, 73, 785–794. [Google Scholar] [CrossRef]
- Heier, M.S.; Evsiukova, T.; Wilson, J.; Abdelnoor, M.; Hublin, C.; Ervik, S. Prevalence of narcolepsy with cataplexy in Norway. Acta Neurol. Scand. 2009, 120, 276–280. [Google Scholar] [CrossRef]
- Latorre, D.; Sallusto, F.; Bassetti, C.L.A.; Kallweit, U. Narcolepsy: A model interaction between immune system, nervous system, and sleep-wake regulation. Semin. Immunopathol. 2022, 44, 611–623. [Google Scholar] [CrossRef]
- Bassetti, C.L.A.; Kallweit, U.; Vignatelli, L.; Plazzi, G.; Lecendreux, M.; Baldin, E.; Dolenc-Groselj, L.; Jennum, P.; Khatami, R.; Manconi, M.; et al. European guideline and expert statements on the management of narcolepsy in adults and children. Eur. J. Neurol. 2021, 28, 2815–2830. [Google Scholar] [CrossRef]
- Maski, K.; Trotti, L.M.; Kotagal, S.; Auger, R.R.; Rowley, J.A.; Hashmi, S.D.; Watson, N.F. Treatment of central disorders of hypersomnolence: An American Academy of Sleep Medicine clinical practice guideline. J. Clin. Sleep Med. 2021, 17, 1881–1893. [Google Scholar] [CrossRef]
- Maski, K.; Trotti, L.M.; Kotagal, S.; Auger, R.R.; Swick, T.J.; Rowley, J.A.; Hashmi, S.D.; Watson, N.F. Treatment of central disorders of hypersomnolence: An American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 2021, 17, 1895–1945. [Google Scholar] [CrossRef] [PubMed]
- Lammers, G.J. Drugs Used in Narcolepsy and Other Hypersomnias. Sleep Med. Clin. 2022, 17, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.; Yang, S.; Wang, T.; Xu, Z.; Xu, J.; Gao, H.; Chen, G. Pitolisant versus placebo for excessive daytime sleepiness in narcolepsy and obstructive sleep apnea: A meta-analysis from randomized controlled trials. Pharmacol. Res. 2021, 167, 105522. [Google Scholar] [CrossRef] [PubMed]
- Subedi, R.; Singh, R.; Thakur, R.K.; Bibek, K.C.; Jha, D.; Ray, B.K. Efficacy and safety of solriamfetol for excessive daytime sleepiness in narcolepsy and obstructive sleep apnea: A systematic review and meta-analysis of clinical trials. Sleep Med. 2020, 75, 510–521. [Google Scholar] [CrossRef]
- Xu, X.M.; Wei, Y.D.; Liu, Y.; Li, Z.X. Gamma-hydroxybutyrate (GHB) for narcolepsy in adults: An updated systematic review and meta-analysis. Sleep Med. 2019, 64, 62–70. [Google Scholar] [CrossRef]
- Dauvilliers, Y.; Bassetti, C.L.; Lammers, G.J.; Arnulf, I.; Mayer, G.; Rodenbeck, A.; Lehert, P.; Ding, C.L.; Lecomte, J.M.; Schwartz, J.C. Pitolisant versus placebo or modafinil in patients with narcolepsy: A double-blind, randomised trial. Lancet Neurol. 2013, 12, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- Dauvilliers, Y.; Mignot, E.; Del Río Villegas, R.; Du, Y.; Hanson, E.; Inoue, Y.; Kadali, H.; Koundourakis, E.; Meyer, S.; Rogers, R.; et al. Oral Orexin Receptor 2 Agonist in Narcolepsy Type 1. N. Engl. J. Med. 2023, 389, 309–321. [Google Scholar] [CrossRef]
- Four-week Study of the Safety and Efficacy of NLS-2 (Mazindol Extended Release) in the Treatment of Narcolepsy. ClinicalTrials.gov ID NCT04923594. Available online: https://clinicaltrials.gov/study/NCT04923594 (accessed on 14 November 2023).
- Seifinejad, A.; Ramosaj, M.; Shan, L.; Li, S.; Possovre, M.L.; Pfister, C.; Fronczek, R.; Garrett-Sinha, L.A.; Frieser, D.; Honda, M.; et al. Epigenetic silencing of selected hypothalamic neuropeptides in narcolepsy with cataplexy. Proc. Natl. Acad. Sci. USA 2023, 120, e2220911120. [Google Scholar] [CrossRef] [PubMed]
- Schrader, H.; Bovim, G.; Sand, T. The prevalence of delayed and advanced sleep phase syndromes. J. Sleep Res. 1993, 2, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Paine, S.J.; Fink, J.; Gander, P.H.; Warman, G.R. Identifying advanced and delayed sleep phase disorders in the general population: A national survey of New Zealand adults. Chronobiol. Int. 2014, 31, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Flo, E.; Pallesen, S.; Magerøy, N.; Moen, B.E.; Grønli, J.; Nordhus, I.H.; Bjorvatn, B. Shift Work Disorder in nurses—Assessment, prevalence and related health outcome. PLoS ONE 2012, 7, e33981. [Google Scholar] [CrossRef] [PubMed]
- Rajaratnam, S.M.; Barger, L.K.; Lockley, S.W.; Shea, S.A.; Wang, W.; Landrigan, C.P.; O’Brien, C.S.; Qadri, S.; Sullivan, J.P.; Cade, B.E.; et al. Sleep disorders, health and safety in police officers. JAMA 2011, 306, 2567–2578. [Google Scholar] [CrossRef] [PubMed]
- Emens, J.S.; Burgess, H.J. Effect of light and melatonin and other melatonin receptor agonists on human circadian physiology. Sleep Med. Clin. 2015, 10, 435–453. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J.; Skene, D.J. Melatonin as a chronobiotic. Sleep Med. Rev. 2005, 9, 25–39. [Google Scholar] [CrossRef]
- Wichniak, A.; Jankowski, K.S.; Skalski, M.; Skwarło-Sońta, K.; Zawilska, J.B.; Żarowski, M.; Poradowska, E.; Jernajczyk, W. Treatment guidelines for Circadian Rhythm Sleep—Wake Disorders of the Polish Sleep Research Society and the Section of Biological Psychiatry of the Polish Psychiatric Association. Part II Diagn. Treatment. Psychiatr. Pol. 2017, 51, 815–832. [Google Scholar]
- Auger, R.R.; Burgess, H.J.; Emens, J.S.; Deriy, L.V.; Thomas, S.M.; Sharkey, K.M. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: Advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2015, 11, 1199–1236. [Google Scholar]
- Arendt, J. Approaches to the pharmacological management of jet lag. Drugs 2018, 78, 1419–1431. [Google Scholar] [CrossRef]
- Van Geijlswijk, I.M.; Korzilius, H.P.; Smits, M.G. The use of exogenous melatonin in delayed sleep phase disorder: A meta-analysis. Sleep 2010, 33, 1605–1614. [Google Scholar] [CrossRef]
- Liira, J.; Verbeek, J.; Ruotsalainen, J. Pharmacological interventions for sleepiness and sleep disturbances caused by shift work. JAMA 2015, 313, 961–962. [Google Scholar] [CrossRef]
- Manni, R.; Toscano, G.; Terzaghi, M. Therapeutic symptomatic strategies in the parasomnias. Curr. Treat. Options Neurol. 2018, 20, 26. [Google Scholar] [CrossRef]
- Drakatos, P.; Marples, L.; Muza, R.; Higgins, S.; Gildeh, N.; Macavei, R.; Dongol, E.M.; Nesbitt, A.; Rosenzweig, I.; Lyons, E.; et al. NREM parasomnias: A treatment approach based upon a retrospective case series of 512 patients. Sleep Med. 2019, 53, 181–188. [Google Scholar] [CrossRef]
- Proserpio, P.; Terzaghi, M.; Manni, R.; Nobili, L. Drugs used in parasomnia. Sleep Med. Clin. 2018, 13, 191–202. [Google Scholar] [CrossRef]
- Standards of Practice Committee; Aurora, R.N.; Zak, R.S.; Maganti, R.K.; Auerbach, S.H.; Casey, K.R.; Chowdhuri, S.; Karippot, A.; Ramar, K.; Kristo, D.A.; et al. Best practice guide for the treatment of REM sleep behavior disorder (RBD). J. Clin. Sleep Med. 2010, 6, 85–95. [Google Scholar]
- Boeve, B.F.; Silber, M.H.; Ferman, T.J. Melatonin for treatment of REM sleep behavior disorder in neurologic disorders: Results in 14 patients. Sleep Med. 2003, 4, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Bonakis, A.; Economou, N.-T.; Papageorgiou, S.G.; Vagiakis, E.; Nanas, S.; Paparrigopoulos, T. Agomelatine may improve REM sleep behavior disorder symptoms. J. Clin. Psychopharmacol. 2012, 32, 732–734. [Google Scholar] [CrossRef] [PubMed]
- Esaki, Y.; Kitajima, T.; Koike, S.; Fujishiro, H.; Iwata, Y.; Tsuchiya, A.; Hirose, M.; Iwata, N. An Open-Labeled Trial of Ramelteon in Idiopathic Rapid Eye Movement Sleep Behavior Disorder. J. Sleep Med. 2016, 12, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Hoque, R.; Chesson, A.L.J. Pharmacologically induced/exacerbated restless legs syndrome, periodic limb movements of sleep, and REM behavior disorder/REM sleep without atonia: Literature review, qualitative scoring, and comparative analysis. J. Clin. Sleep Med. 2010, 6, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Kam, K.; Vetter, K.; Tejiram, R.A.; Pettibone, W.D.; Shim, K.; Audrain, M.; Yu, L.; Daehn, I.S.; Ehrlich, M.E.; Varga, A.W. Effect of Aging and a Dual Orexin Receptor Antagonist on Sleep Architecture and Non-REM Oscillations Including an REM Behavior Disorder Phenotype in the PS19 Mouse Model of Tauopathy. J. Neurosci. 2023, 43, 4738–4749. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.B. Restless leg syndrome across the globe: Epidemiology of the restless legs syndrome/Willis-Ekbom disease. Sleep Med. Clin. 2015, 10, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Haba-Rubio, J.; Marti-Soler, H.; Marques-Vidal, P.; Tobback, N.; Andries, D.; Preisig, M.; Waeber, G.; Vollenweider, P.; Kutalik, Z.; Tafti, M.; et al. Prevalence and determinants of periodic limb movements in the general population. Ann. Neurol. 2016, 79, 464–474. [Google Scholar] [CrossRef]
- Kolla, B.P.; Mansukhani, M.P.; Bostwick, J.M. The influence of antidepressants on restless legs syndrome and periodic limb movements: A systematic review. Sleep Med. Rev. 2018, 38, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.P.; Picchietti, D.L.; Auerbach, M.; Cho, Y.W.; Connor, J.R.; Earley, C.J.; Garcia-Borreguero, D.; Kotagal, S.; Manconi, M.; Ondo, W.; et al. International Restless Legs Syndrome Study Group (IRLSSG). Evidence-based and consensus clinical practice guidelines for the iron treatment of restless legs syndrome/Willis-Ekbom disease in adults and children: An IRLSSG task force report. Sleep Med. 2018, 41, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Winkelman, J.W.; Armstrong, M.J.; Allen, R.P.; Chaudhuri, K.R.; Ondo, W.; Trenkwalder, C.; Zee, P.C.; Gronseth, G.S.; Gloss, D.; Zesiewicz, T. Practice guideline summary: Treatment of restless legs syndrome in adults: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2016, 87, 2585–2593. [Google Scholar] [CrossRef]
- Aurora, R.N.; Kristo, D.A.; Bista, S.R.; Rowley, J.A.; Zak, R.S.; Casey, K.R.; Lamm, C.I.; Tracy, S.L.; Rosenberg, R.S. American Academy of Sleep Medicine. The treatment of restless legs syndrome and periodic limb movement disorder in adults--an update for 2012: Practice parameters with an evidence-based systematic review and meta-analyses: An American Academy of Sleep Medicine Clinical Practice Guideline. Sleep 2012, 35, 1039–1062. [Google Scholar]
- Drakatos, P.; Olaithe, M.; Verma, D.; Ilic, K.; Cash, D.; Fatima, Y.; Higgins, S.; Young, A.H.; Chaudhuri, K.R.; Steier, J.; et al. Periodic limb movements during sleep: A narrative review. J. Thorac. Dis. 2021, 13, 6476–6494. [Google Scholar] [CrossRef]
- Trotti, L.M.; Becker, L.A. Iron for the treatment of restless legs syndrome. Cochrane Database Syst Rev. 2019, 1, CD007834. [Google Scholar] [CrossRef]
- Yang, X.; Yang, B.; Ming, M.; Li, S.; Wang, F.; Zhu, Z.; Ji, C.; Long, J.; Hu, F.; Xu, Z.; et al. Efficacy and tolerability of intravenous iron for patients with restless legs syndrome: Evidence from randomized trials and observational studies. Sleep Med. 2019, 61, 110–117. [Google Scholar] [CrossRef]
- Garcia-Borreguero, D.; Ferini-Strambi, L.; Kohnen, R.; O’Keeffe, S.; Trenkwalder, C.; Högl, B.; Benes, H.; Jennum, P.; Partinen, M.; Fer, D.; et al. European Federation of Neurological Societies; European Neurological Society; European Sleep Research Society. European guidelines on management of restless legs syndrome: Report of a joint task force by the European Federation of Neurological Societies, the European Neurological Society and the European Sleep Research Society. Eur. J. Neurol. 2012, 19, 1385–1396. [Google Scholar]
- Garcia-Borreguero, D.; Kohnen, R.; Silber, M.H.; Winkelman, J.W.; Earley, C.J.; Högl, B.; Manconi, M.; Montplaisir, J.; Inoue, Y.; Allen, R.P. The long-term treatment of restless legs syndrome/Willis-Ekbom disease: Evidence-based guidelines and clinical consensus best practice guidance: A report from the International Restless Legs Syndrome Study Group. Sleep Med. 2013, 14, 675–684. [Google Scholar] [CrossRef]
- Silber, M.H.; Becker, P.M.; Earley, C.; Garcia-Borreguero, D.; Ondo, W.G. Willis-Ekbom Disease Foundation revised consensus statement on the management of restless legs syndrome. Mayo Clin. Proc. 2013, 88, 977–986. [Google Scholar] [CrossRef]
- Iftikhar, I.H.; Alghothani, L.; Trotti, L.M. Gabapentin enacarbil, pregabalin and rotigotine are equally effective in restless legs syndrome: A comparative meta-analysis. Eur. J. Neurol. 2017, 24, 1446–1456. [Google Scholar] [CrossRef]
- Liu, G.J.; Wu, L.; Lin Wang, S.; Xu, L.L.; Ying Chang, L.; Fu Wang, Y. Efficacy of Pramipexole for the Treatment of Primary Restless Leg Syndrome: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Clin. Ther. 2016, 38, 162–179.e6. [Google Scholar] [CrossRef]
- Högl, B.; Comella, C. Therapeutic advances in restless legs syndrome (RLS). Mov. Disord. 2015, 30, 1574–1579. [Google Scholar] [CrossRef]
- Bassetti, C.L.; Bornatico, F.; Fuhr, P.; Schwander, J.; Kallweit, U.; Mathis, J.; Swiss RLS study group. Pramipexole versus dual release levodopa in restless legs syndrome: A double blind, randomised, cross-over trial. Swiss. Med. Wkly. 2001, 141, w13274. [Google Scholar] [CrossRef] [PubMed]
- Happe, S.; Sauter, C.; Klösch, G.; Saletu, B.; Zeitlhofer, J. Gabapentin versus ropinirole in the treatment of idiopathic restless legs syndrome. Neuropsychobiology 2003, 48, 82–86. [Google Scholar] [CrossRef]
- Garcia-Borreguero, D.; Patrick, J.; DuBrava, S.; Becker, P.M.; Lankford, A.; Chen, C.; Miceli, J.; Knapp, L.; Allen, R.P. Pregabalin versus pramipexole: Effects on sleep disturbance in restless legs syndrome. Sleep 2014, 37, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.P.; Ondo, W.G.; Ball, E.; Calloway, M.O.; Manjunath, R.; Higbie, R.L.; Lee, M.R.; Nisbet, P.A. Restless legs syndrome (RLS) augmentation associated with dopamine agonist and levodopa usage in a community sample. Sleep Med. 2011, 12, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Borreguero, D.; Silber, M.H.; Winkelman, J.W.; Högl, B.; Bainbridge, J.; Buchfuhrer, M.; Hadjigeorgiou, G.; Inoue, Y.; Manconi, M.; Oertel, W.; et al. Guidelines for the first-line treatment of restless legs syndrome/Willis-Ekbom disease, prevention and treatment of dopaminergic augmentation: A combined task force of the IRLSSG, EURLSSG, and the RLS-foundation. Sleep Med. 2016, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Picchietti, D.L.; Hensley, J.G.; Bainbridge, J.L.; Lee, K.A.; Manconi, M.; McGregor, J.A.; Silver, R.M.; Trenkwalder, C.; Walters, A.S. International Restless Legs Syndrome Study Group (IRLSSG). Consensus clinical practice guidelines for the diagnosis and treatment of restless legs syndrome/Willis-Ekbom disease during pregnancy and lactation. Sleep Med. Rev. 2015, 22, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Jahani Kondori, M.; Kolla, B.P.; Moore, K.M.; Mansukhani, M.P. Management of Restless Legs Syndrome in Pregnancy and Lactation. J. Prim. Care Community Health 2020, 11, 2150132720905950. [Google Scholar] [CrossRef] [PubMed]
Drug Type | Examples | Pharmacological Effect | Neurobiological Effect | Clinical Effect |
---|---|---|---|---|
Traditional, amphetamine-like stimulants | Amphetamine Methylphenidate | Increase extracellular levels of DA and NE | Increased DA and NE signaling | Increased wakefulness |
Wake-promoting, non-traditional stimulants | Modafinil Armodafinil | Increase extracellular levels of DA | Increased DA signaling | Increased wakefulness |
Wake-promoting agent | Pitolisant | Block H3 receptors | Reduced H3 neuron activity leads to increased ACh, NA, and DA release | Increased attention and wakefulness |
Benzodiazepines | Diazepam Clonazepam Lorazepam | Enhance GABA signaling via GABAA receptors | GABA inhibits the arousal systems | Increased sleep |
Non-benzodiazepine sedative hypnotics (“Z”) | Zolpidem Zaleplon Zopiclone | Enhance GABA signaling via GABAA receptors | GABA inhibits the arousal systems | Increased sleep |
Classic antihistamines | Diphenhydramine Triprolidine | Block HA H1 receptors | Reduced HA signaling | Increased sleep |
Typical antipsychotics | Haloperidol Chlorpromazine | Block DA receptors | Reduced DA signaling | Increased sleep |
Sleep-promoting agents | Sodium oxybate | Stimulation of GABAB receptors | Reduced DA neuronal activity and inhibition of arousal systems | Increases sleep |
Orexin receptor antagonists | Daridorexant Lemborexant Suvorexant | Block OX1R and OX2R | Reduced orexin neuronal activity | Decreases wakefulness |
Selective serotonin reuptake inhibitors (SSRIs) | Fluoxetine Citalopram | Increase extracellular levels of 5-HT | 5-HT inhibits REM sleep-producing cells | Decreased REM sleep |
Tricyclic antidepressants | Amitriptyline Nortriptyline Clomipramine | Increase extracellular levels of 5-HT and NE | 5-HT and NE inhibit REM sleep-producing cells | Decreased REM sleep |
(A) | ||||
---|---|---|---|---|
Drug | EDS | Cataplexy | DNS | |
Modafinil/Armodafinil | ++ | |||
Solriamfetol | ++ | |||
Pitolisant | ++ | + | ||
Sodium Oxybate | ++ | ++ | ++ | |
Antidepressants: Venlafaxine, Clomipramine | ++ | |||
Methylphenidate | + | |||
Amphetamines | + | |||
Baclofen | (+) | |||
Non-benzodiazepines (“Z”-drugs) | + * | |||
(B) | ||||
Drug | EDS | Hypersomnia | ||
Modafinil | ++ | |||
Oxybates | + | |||
Pitolisant | (+) | |||
Methylphenidate | (+) |
Drug | NREM Parasomnia | REM Parasomnia |
---|---|---|
Melatonin (3–10 mg) * | + | ++ |
Clonazepam (0.25–3 mg) | ++ | ++ |
Antidepressants: SSRI (i.e., Sertraline), tricyclic (i.e., Clomipramine), or trazodone | + | |
Dopamine agonist (i.e., pramipexole) | (+) |
RLS Type | Drugs | Remarks | |
---|---|---|---|
First-Line | Second-Line | ||
Intermittent | L-Dopa or DA (i.e., pramipexole) | Low-potency opioids, clonazepam, or Z-drugs | Drug only on demand |
Chronic | α2δ ligands (gabapentin, pregabalin) or * DA (pramipexole, ropinirole, rotigotine **) | Combination of first-line drugs; change or add low-potency opioids | * Whenever possible, start with α2δ ligands ** Rotigotine for RLS symptoms in the daytime |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kallweit, M.S.; Kallweit, N.P.; Kallweit, U. Pharmacological Treatments of Sleep–Wake Disorders: Update 2023. Clin. Transl. Neurosci. 2023, 7, 42. https://doi.org/10.3390/ctn7040042
Kallweit MS, Kallweit NP, Kallweit U. Pharmacological Treatments of Sleep–Wake Disorders: Update 2023. Clinical and Translational Neuroscience. 2023; 7(4):42. https://doi.org/10.3390/ctn7040042
Chicago/Turabian StyleKallweit, Marcel S., Nayeli P. Kallweit, and Ulf Kallweit. 2023. "Pharmacological Treatments of Sleep–Wake Disorders: Update 2023" Clinical and Translational Neuroscience 7, no. 4: 42. https://doi.org/10.3390/ctn7040042
APA StyleKallweit, M. S., Kallweit, N. P., & Kallweit, U. (2023). Pharmacological Treatments of Sleep–Wake Disorders: Update 2023. Clinical and Translational Neuroscience, 7(4), 42. https://doi.org/10.3390/ctn7040042