Effect of the Core/Shell Particle Synthesis Method on the Physico–Chemical Properties of Their Shell and Sensory Properties of 3D-Ordered Films
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Synthesis of Core/Shell Particles
3.2. Study of Solvatochromic Properties of Films
3.3. Study of Thermochromic Properties of Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leigh, B.L.; Cheng, E.; Xu, L.; Derk, A.; Hansen, M.R.; Guymon, C.A. Antifouling Photograftable Zwitterionic Coatings on PDMS Substrates. Langmuir 2018, 35, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Freiberg, S.; Zhu, X.X. Polymer microspheres for controlled drug release. Int. J. Pharm. 2004, 282, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Du, C.G.; Cui, L.Y.; Zhang, Y.Z.H.; Zhao, T.Y.; Wang, J.X.; Song, Y.L.; Jiang, L. Fabrication of Colloidal Crystals with Hierarchical Structure and Its Water Adhesion Properties. J. Nanosci. Nanotechnol. 2010, 10, 7766–7769. [Google Scholar] [CrossRef] [PubMed]
- Kolle, M.; Lee, S. Progress and Opportunities in Soft Photonics and Biologically Inspired. Opt. Adv. Mater. 2018, 30, 1702669. [Google Scholar] [CrossRef] [PubMed]
- Constantin, M.; Bucatariu, S.M.; Doroftei, F.; Fundueanu, G. Smart composite materials based on chitosan microspheres embedded in thermosensitive hydrogel for controlled delivery of drugs. Carbohydr. Polym. 2017, 157, 493–502. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, B.; Li, S. Preparation and Chromatographic Application of β-Cyclodextrin Molecularly Imprinted Microspheres for Paeoniflorin. Polymers 2017, 9, 214. [Google Scholar] [CrossRef]
- Wang, X.D.; Li, Y.; Dai, T.T. Preparation of pectin/poly(m-phenylenediamine) microsphere and its application for Pb2+ removal Carbohydr. Polymers 2021, 260, 117811. [Google Scholar]
- Qi, X.; Tong, X.; Pan, W.; Zeng, Q.; You, S.; Shen, J. Recent advances in polysaccharide-based adsorbents for wastewater treatment. J. Clean. Product. 2021, 321, 128221. [Google Scholar] [CrossRef]
- Shevchenko, N.N.; Shabsel’s, B.M.; Iurasova, D.I.; Skurkis, Y.O. Synthesis and Properties of Polymer Photonic Crystals Based on Core–Shell Particles. Polym. Sci. Ser. C 2022, 64, 245–255. [Google Scholar] [CrossRef]
- Shevchenko, N.; Pankova, G.; Laishevkina, S. Core/shell polymer particles containing derivatives of 1,3-diphenyl-β-diketonate boron difluoride: Synthesis and spectroscopic investigation of toluene vapor sorption. Colloids Surf. Physicochem. Eng. Asp. 2019, 562, 310–320. [Google Scholar] [CrossRef]
- Ohnuki, R.; Takeoka, Y.; Yoshioka, S. Cross-Sectional Investigations of Spherical Colloidal Clusters from Submicrometer-Sized Silica Particles toward Designing Novel Photonic Materials. ACS Appl. Nano Mat. 2023, 6, 13137–13147. [Google Scholar] [CrossRef]
- Iakobson, O.; Ivan’kova, E.; Shevchenko, N. Photonic Crystal Films Based on Polymer Particles with a Core/Shell Structure Responding to Ethanol. Langmuir 2023, 39, 9952–9962. [Google Scholar] [CrossRef] [PubMed]
- Demirörs, A.F.; Poloni, E.; Chiesa, M. Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color. Nat. Commun. 2022, 13, 4397. [Google Scholar] [CrossRef] [PubMed]
- Goerlitzer, E.S.; Taylor, R.N.; Vogel, N. Bioinspired photonic pigments from colloidal self-assembly. Adv. Mater. 2018, 30, 1706654. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, N.; Tomsik, E.; Laishevkina, S.; Pankova, G. Cross-linked polyelectrolyte microspheres: Preparation and new insights into electro-surface properties. Soft Matter 2021, 17, 2290–2301. [Google Scholar] [CrossRef]
- Shevchenko, N.; Steinhart, M.; Tomsik, E. Single-step preparation of mono-dispersed sulfur nanoparticles for detention of copper. J. Nanopart. Res. 2019, 21, 246. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, L.; Wei, S.; Zhang, Z.; Choi, S.-K.; Song, B.; Shi, Y. A review of additive manufacturing of metamaterials and developing trends. Mater. Today 2021, 50, 303–328. [Google Scholar] [CrossRef]
- Saraswati, B.; Joby, J. Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures. Opt. Lett. 2016, 41, 3579–3582. [Google Scholar]
- Gopalan, A.-I.; Komathi, S.; Muthuchamy, N.; Lee, K.P.; Whitcombe, M.J.; Lakshmi, D. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog. Polym. Sci. 2019, 88, 1–129. [Google Scholar]
- Li, W.S.J.; Ladmiral, V.; Takeshima, H.; Satoh, K.; Kamigaito, M.; Semsarilar, M.; Caillol, S. Ferulic acid-based reactive core–shell latex by seeded emulsion polymerization. Polym. Chem. 2019, 10, 3116–3126. [Google Scholar] [CrossRef]
- Pursiainen, O.L.; Baumberg, J.J.; Winkler, H.; Viel, B.; Spahn, P.; Ruhl, T. Phononic Behavior of Colloidal Systems. Adv. Mater. 2008, 20, 1484. [Google Scholar] [CrossRef]
- Goh, E.; Stöver, H. Cross-Linked Poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) Microspheres and Microgels Prepared by Precipitation Polymerization: A Morphology Study. Macromolecules 2002, 35, 9983–9989. [Google Scholar] [CrossRef]
- Kredel, J.; Dietz, C.; Gallei, M. Fluoropolymer-Containing Opals and Inverse Opals by Melt-Shear Organization. Molecules 2019, 24, 333. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, C.G.; Smolin, D.A.; Hellmann, G.P.; Gallei, M. Reversible Light-, Thermo-, and Mechano-Responsive Elastomeric Polymer Opal Films. Langmuir 2013, 29, 11275–11283. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, C.G.; Lederle, C.; Zentel, K.; Stühn, B.; Gallei, M. Utilizing Stretch-Tunable Thermochromic Elastomeric Opal Films as Novel Reversible Switchable Photonic Materials. Macromol. Rapid Commun. 2014, 35, 1852–1860. [Google Scholar] [CrossRef]
- Quan, M.; Yang, B.; Wang, J.; Yu, H.; Cao, X. Simultaneous Microscopic Structure Characteristics of Shape-Memory Effects of Thermo-Responsive Poly(vinylidene fluoride-co-hexafluoropropylene) Inverse Opals. ACS Appl. Mater. Interfaces 2018, 10, 4243–4249. [Google Scholar] [CrossRef]
- Espinha, A.; Serrano, M.C.; Blanco, Á.; López, C. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Adv. Opt. Mater. 2014, 2, 516–521. [Google Scholar] [CrossRef]
- Fang, Y.; Ni, Y.; Leo, S.Y.; Taylor, C.; Basile, V.; Jiang, P. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat. Commun. 2015, 6, 7416. [Google Scholar] [CrossRef]
- Thomas, M.M.; Chandran, P.R.; Vipin, V.V.; Mohamed, A.P.; Kingshott, P.; Pillai, S. Core/shell based responsive colloidal photonic crystals for facile, rapid, visual detection of acetone. Polymers 2020, 158, 104779. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, Y.C.; Zheng, J.Y.; Li, X.Y.; Liu, G.J.; Zhou, L.; Zhou, W.L.; Shao, J.Z. Polystyrene@poly(methyl methacrylate-butyl acrylate) Core–Shell Nanoparticles for Fabricating Multifunctional Photonic Crystal Films as Mechanochromic and Solvatochromic Sensors. ACS Appl. Nano Mater. 2022, 5, 729–736. [Google Scholar] [CrossRef]
- Wu, P.; Shen, X.; Schäfer, C.G.; Pan, J.; Guo, J.; Wang, C. Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring. Nanoscale 2019, 11, 20015–20023. [Google Scholar] [CrossRef] [PubMed]
- Vowinkel, S.; Boehm, A.; Schäfer, T.; Gutmann, T.; Ionescu, E.; Gallei, M. Preceramic core-shell particles for the preparation of hybrid colloidal crystal films by melt-shear organization and conversion into porous ceramics. Mater. Des. 2018, 160, 926–935. [Google Scholar] [CrossRef]
- Chen, J.; Liu, P.; Du, X.; Xie, Z. Clickable Colloidal Photonic Crystals for Structural Color Pattern. Langmuir 2018, 6, 13219–13224. [Google Scholar] [CrossRef] [PubMed]
- Bazin, G.; Zhu, X.X. Understanding the thermo-sensitivity of crystalline colloidal arrays formed by poly(styrene-co-N-isopropylacrylamide) core–shell microspheres. Soft Matter 2012, 8, 1909–1915. [Google Scholar] [CrossRef]
- Kou, D.; Ma, W.; Zhang, S.; Tang, B. Copolymer-Based Photonic Crystal Sensor for Discriminative Detection of Liquid Benzene, Toluene, Ethylbenzene, and Xylene. ACS Appl. Polym. Mater. 2020, 2, 2–11. [Google Scholar] [CrossRef]
- Kim, S.H.; Son, W.K.; Kim, Y.J.; Kang, E.-G.; Kim, D.-W.; Park, C.W.; Kim, W.-G.; Kim, H.-J. Synthesis of polystyrene/poly(butyl acrylate) core–shell latex and its surface morphology. J. Appl. Polym. Sci. 2003, 88, 595–601. [Google Scholar] [CrossRef]
- Iakobson, O.D.; Ivan’kova, E.M.; Vaganov, G.V. Synthesis of Composite Polymer Particles by Seeded Emulsion Polymerization and Formation of Photonic Crystals Based on Them. Polym. Sci. Ser. B 2023, 65, 457–466. [Google Scholar] [CrossRef]
- Iakobson, O.D.; Ivankova, E.M.; Popova, E.N.; Shevchenko, N.N. Surface morphology of core/shell particles and its determining factors. Coll. Surf. A Physicoch. Eng. Asp. 2024, 697, 134416. [Google Scholar] [CrossRef]
- Dong, X.; Wu, P.; Schaefer, C.G.; Zhang, L.; Finlayson, C.E.; Wang, C. Solvatochromism based on structural color: Smart polymer composites for sensing and security. Mater. Des. 2018, 160, 417–426. [Google Scholar] [CrossRef]
Acronym | Core-Forming Comonomers | Mn/H2O wt.% | K2S2O8/H2O wt.% | T °C | D *, nm/PDI |
---|---|---|---|---|---|
Y1 | St-MAA | 6 | 2.4 | 90 | 260/0.03 |
Y2 | St-MMA-MAA | 8 | 1.3 | 75 | 200/0.01 |
Y3 | St-MMA-MAA | 8.6 | 1.3 | 75 | 190/0.04 |
Acronym | The Composition of the Reaction System | Characteristics of Obtained Polymer Core/Shell Particles | Recovery of the Optical Density of PBG After Drying **, % | ||||||
---|---|---|---|---|---|---|---|---|---|
Shell-Forming Acrylate Comonomer | Cross-Linker/Mn wt.% | K2S2O8./Mn wt.% | DSNa * | D, nm, (DLS) | PDI | ξ-Potential mV (10−2 M NaCl) | h, nm | ||
Y1/C1 | BA | TMPTM—0.5 | 1.2 | – | 320 | 0.08 | −77 | 30 | 83 |
Y1/C2 | BA | EGDM 0.5 | 1.2 | – | 315 | 0.04 | −71 | 30 | 71 |
Y2/C3 | BA | EGDM 0.5 | 2 | 1 CCM | 250 | 0.04 | −67 | 25 | 100 |
Y2/C4 | EA | EGDM 0.5 | 2 | 1 CCM | 260 | 0.03 | −53 | 30 | 0 |
Y2/C5 | BMA | EGDM 0.5 | 2 | 1 CCM | 270 | 0.05 | −73 | 35 | 6 |
Y2/C6 | PA | EGDM 0.5 | 2 | 1 CCM | 260 | 0.01 | −61 | 30 | 83 |
Acronym | Composition of the Reaction System | Characteristics of Obtained Polymer Core/Shell Particles | Recovery of the Optical Density of PBG After Drying ***, % | |||||
---|---|---|---|---|---|---|---|---|
Core:Shell wt.% | (MMA + BA) wt.% | Cross-Linker/Mn wt.% | D, nm, DLS/SEM | PDI | h, nm | ξ-Potential mV (10−2 M NaCl) | ||
Y1/C4 | 50:50 | 1:2.5 * | EGDM 0.5 | 370/330 | 0.04 | 77/35 | −81 | 21 |
Y1/C5 | 65:35 | 1:2.5 * | EGDM 0.5 | 310/220 ÷ 325 | 0.06 | 45/32 | −80 | 100 |
Y3/C6 | 50:50 | 1:2.5 * | TMPTM—0.5 | 230/220 | 0.03 | 20/15 | −78 | 77 |
Y3/C7 | 50:50 | 1:2.5 * | EGDM 0.5 | 309/250 | 0.03 | 60/30 | −70 | 78 |
Y3/C8 | 50:50 | 1:2.5 ** | EGDM 0.5 | 270/240 | 0.01 | 40/25 | −84 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iakobson, O.; Ivankova, E.; Laishevkina, S.; Shevchenko, N. Effect of the Core/Shell Particle Synthesis Method on the Physico–Chemical Properties of Their Shell and Sensory Properties of 3D-Ordered Films. Colloids Interfaces 2024, 8, 67. https://doi.org/10.3390/colloids8060067
Iakobson O, Ivankova E, Laishevkina S, Shevchenko N. Effect of the Core/Shell Particle Synthesis Method on the Physico–Chemical Properties of Their Shell and Sensory Properties of 3D-Ordered Films. Colloids and Interfaces. 2024; 8(6):67. https://doi.org/10.3390/colloids8060067
Chicago/Turabian StyleIakobson, Olga, Elena Ivankova, Svetlana Laishevkina, and Natalia Shevchenko. 2024. "Effect of the Core/Shell Particle Synthesis Method on the Physico–Chemical Properties of Their Shell and Sensory Properties of 3D-Ordered Films" Colloids and Interfaces 8, no. 6: 67. https://doi.org/10.3390/colloids8060067
APA StyleIakobson, O., Ivankova, E., Laishevkina, S., & Shevchenko, N. (2024). Effect of the Core/Shell Particle Synthesis Method on the Physico–Chemical Properties of Their Shell and Sensory Properties of 3D-Ordered Films. Colloids and Interfaces, 8(6), 67. https://doi.org/10.3390/colloids8060067