Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Metallic Nanoparticles
2.3. Nanocomposite Ink Formation and Conductive Coatings’ Fabrication
2.4. Characterization
3. Results and Discussion
3.1. Preparation of Ni-Ag and Ag NPs as a Component of Hybrid Dispersion
3.2. Fabrication of Ink Formulation and Conductive Coatings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salmerón, J.F.; Molina-Lopez, D.; Briand, J.J.; Ruan, A.; Rivadeneyra, M.A.; Carvaja, L.F.; Capitán-Vallrey, N.F.; Derooij, A.J. Palma Properties and printability of inkjet and screen-printed silver patterns for RFID antennas. J. Electron. Mater. 2014, 43, 604–617. [Google Scholar]
- Layani, M.; Darmawan, P.; Foo, W.L.; Liu, L.; Kamyshny, A.; Mandler, D.; Magdassi, S.; Lee, P.S. Nanostructures electrochromic films by inkjet printing on large area and flexible transparent silver electrodes. Nanoscale 2014, 6, 4572–4576. [Google Scholar] [CrossRef]
- Shanyong, C.; Guan, Y.; Li, X.; Yan, H.; Ni, L.; Li, A. Water-based silver nanowire ink for large-scale flexible transparent conductive films and touch screens. J. Mater. Chem. C 2017, 5, 2404–2414. [Google Scholar]
- Kamyshny, A.; Magdassi, S. Inkjet ink formulations. In Inkjet-Based Micromanufactoring; Korvink, J.P., Smith, P.J., Shin, D.-Y., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp. 173–189. [Google Scholar]
- Kamyshny, A.; Magdassi, S. Magdassi Inkjet printing. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley-VCH: Weinheim, Germany, 2013; pp. 1–21. [Google Scholar]
- Sergeeva, A.S.; Tameev, A.R.; Zolotarevskii, V.I.; Vannikov, A.V. Electrically conductive inks Based on polymer composition for inkjet printing. Inorg. Mater. Appl. Res. 2018, 9, 147–150. [Google Scholar] [CrossRef]
- Liu, F.; Qiu, X.; Xu, J.; Huang, J.; Chen, D.; Chen, G. High conductivity and transparency of graphene-based conductive ink: Prepared from a multi-component synergistic stabilization method. Prog. Org. Coat. 2019, 133, 125–130. [Google Scholar] [CrossRef]
- Choi, Y.; Seong, K. Piao Metal−Organic Decomposition Ink for Printed Electronics. Adv. Mater. Interfaces 2019, 6, 1901002. [Google Scholar] [CrossRef]
- Naghdi, S.; Rhee, K.Y.; Hui, D.; Park, S.J. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings 2018, 8, 278. [Google Scholar] [CrossRef]
- Peng, P.; Liu, L.; Gerlich, A.P.; Hu, A.; Zhou, N.Y. Self-oriented nanojoining of silver nanowires via surface selective activation. Part. Part. Syst. Charact. 2013, 30, 420–426. [Google Scholar] [CrossRef]
- Jing, J.J.; Xie, J.; Chen, G.Y.; Li, W.H.; Zhang, M.M. Preparation of nickel silver core–shell nanoparticles by liquid-phase reduction for use in conductive paste. J. Exp. Nanosci. 2015, 10, 1347–1356. [Google Scholar] [CrossRef]
- Pajor-Świerzy, A.; Gaweł, D.; Drzymała, E.; Socha, R.; Parlińska-Wojtan, M.; Szczepanowicz, K.; Warszyński, P. The optimization of methods of synthesis of nickel-silver core-shell nanoparticles for conductive materials. Nanotechnology 2018, 30, 1–8. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. (Eds.) Metallic nanoinks for inkjet printing of conductive 2D and 3D structures. In Nanomaterials for 2D and 3D Printing; Wiley-VCH: Weinheim, Germany, 2017; Chapter 7; pp. 119–160. [Google Scholar]
- Tang, Y.; He, W.; Wang, S.; Tao, Z.; Cheng, L. New insight into the size-controlled synthesis of silver nanoparticles and its superiority in room temperature sintering. CrystEngComm 2014, 16, 4431. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Moon, S.-J. The characteristic variations of inkjet-printed silver nanoparticle ink during furnace sintering. J. Nanosci. Nanotechnol. 2013, 13, 6145–6149. [Google Scholar] [CrossRef]
- Park, B.K.; Kim, D.; Jeong, S.; Moon, J.; Kim, J.S. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 2007, 515, 7706–7711. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, X.; Huang, Q.; Xu, Q.; Song, W. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 2014, 6, 1622. [Google Scholar] [CrossRef]
- Hermerschmidt, D.F.; Burmeister, G.; Ligorio, S.M.; Pozov, R.; Ward, S.A.; Choulis, E.J.W. List-Kratochvil Truly low temperature sintering of printed copper ink using formic acid. Adv. Mater. Technol. 2018, 3, 1800146. [Google Scholar] [CrossRef]
- Pajor-Świerzy, R.A.; Socha, R.; Pawłowski, P.; Warszynski, K. Szczepanowicz Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films. Nanotechnology 2019, 30, 225301. [Google Scholar] [CrossRef]
- Pajor-Świerzy, R.A.; Pawłowski; Warszyński, P.; Szczepanowicz, K. The conductive properties of ink coating based on Ni–Ag core–shell nanoparticles with the bimodal size distribution. J. Mater. Sci. Mater. Electron. 2020, 31, 12991–12999. [Google Scholar]
- Pajor-Świerzy, A.; Staśko, D.; Pawłowski, R.; Mordarski, G.; Kamyshny, A.; Szczepanowicz, K. Polydispersity vs monodispersity. How the properties of Ni-Ag core-shell nanoparticles affect the conductivity of ink coatings. Prog. Org. Coat. 2021. submitted. [Google Scholar]
- K Hand Coater, Pre-Press Equipment, RK Print Coat Instruments. Available online: https://www.rkprint.com/products/k-hand-coater/ (accessed on 12 October 2020).
- Kamyshny, A.; Steinke, J.; Magdassi, S. Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 2011, 4, 19–36. [Google Scholar] [CrossRef]
- Khan, M.J.; Shameli, K.; Sazili, A.Q.; Selamat, J.; Kumari, S. Rapid Green Synthesis and Characterization of Silver Nanoparticles Arbitrated by Curcumin in an Alkaline Medium. Molecules 2019, 24, 719. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Shabanzadeh, P.; Al-Mulla, E.A.J.; Zamanian, Y.A.; Abdollahi, S.D.; Jazayeri, M.; Eili, F.A.; Jalilian, R.Z. Haroun Effect of curcuma longa tuber powder extract on size of silver nanoparticles prepared by green method. Res. Chem. Intermed. 2013, 40, 1313–1325. [Google Scholar] [CrossRef]
- Magdassi, S.; Grouchko, M.; Kamyshny, A. Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability. Materials 2010, 3, 4626–4638. [Google Scholar] [CrossRef] [PubMed]
- Goebl, C.; Faltenbacher, J. Low temperature sinter technology die attachment for power electronic applications. In Proceedings of the 2010 6th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 16–18 March 2010. [Google Scholar]
- Balantrapu, K.; McMurran, M.; Goia, D.V. Inkjet printable silver dispersions: Effect of bimodal particle-size distribution on film formation and electrical conductivity. J. Mater. Res. 2010, 25, 821–827. [Google Scholar] [CrossRef]
- Mohammadi, M.M.; Gunturi, S.S.; Shao, S.; Konda, S.; Buchner, R.D.; Swihart, M.T. Flame-synthesized nickel-silver nanoparticle inks provide high conductivity without sintering. Chem. Eng. J. 2019, 372, 648–655. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pajor-Świerzy, A.; Szendera, F.; Pawłowski, R.; Szczepanowicz, K. Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering. Colloids Interfaces 2021, 5, 15. https://doi.org/10.3390/colloids5010015
Pajor-Świerzy A, Szendera F, Pawłowski R, Szczepanowicz K. Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering. Colloids and Interfaces. 2021; 5(1):15. https://doi.org/10.3390/colloids5010015
Chicago/Turabian StylePajor-Świerzy, Anna, Franciszek Szendera, Radosław Pawłowski, and Krzysztof Szczepanowicz. 2021. "Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering" Colloids and Interfaces 5, no. 1: 15. https://doi.org/10.3390/colloids5010015
APA StylePajor-Świerzy, A., Szendera, F., Pawłowski, R., & Szczepanowicz, K. (2021). Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering. Colloids and Interfaces, 5(1), 15. https://doi.org/10.3390/colloids5010015