Statistical Modeling for Nanofluid Flow: A Stretching Sheet with Thermophysical Property Data
Abstract
:1. Introduction
2. Problem Formulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. 1970, 21, 645–647. [Google Scholar] [CrossRef]
- Gupta, P.S.; Gupta, A.S. Heat and mass transfer of a continuous stretching surface with suction or blowing. Can. J. Chem. Eng. 1977, 55, 74–76. [Google Scholar] [CrossRef]
- Grubka, L.G.; Bobba, K.M. Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J. Heat Transfer 1985, 107, 248–250. [Google Scholar] [CrossRef]
- Ali, M.E. Heat transfer characteristics of a continuous stretching surface. Warme Stoffubertragung 1994, 29, 227–234. [Google Scholar] [CrossRef]
- Wang, C.Y. Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Anal. Real World Appl. 2009, 10, 375–380. [Google Scholar] [CrossRef]
- Hayat, T.; Javed, T.; Abbas, Z. Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space. Int. J. Heat Mass Transfer 2008, 51, 4528–4534. [Google Scholar] [CrossRef]
- Khan, W.A.; Pop, I. Boundary layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transfer 2010, 53, 2477–2483. [Google Scholar] [CrossRef]
- Choi, S.U.S. Enhancing thermal conductivity of fluid with nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–17 November 1995; pp. 99–105. [Google Scholar]
- Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispers- ing ultra-fine particles. Netsu Bussei 1993, 7, 227–233. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Zhang, Z.G.; Yu, W.; Lockwood, F.E.; Grulke, E.A. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 2001, 79, 2252–2254. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Mumjudar, A.S. Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci. 2007, 46, 1–19. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transfer 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Kameswaran, P.K.; Narayana, M.; Sibanda, P.; Murthy, P.V.S.N. Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects. Int. J. Heat Mass Transfer 2012, 55, 7587–7595. [Google Scholar] [CrossRef]
- Bachok, N.; Ishak, A.; Pop, I. Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale Res. Lett. 2011, 6, 623–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boungiorno, J. Convective transport in nanofluids. ASME J. Heat Transfer 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Bachok, N.; Ishak, A.; Pop, I. Boundary layer stagnation-point flow toward a stretching/shrinking sheet in a nanofluid. J. Heat Transfer 2013, 135, 054501. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Tabari, Z.; Heris, S.Z.; Moradi, M.; Kahani, M. The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries. Renew. Sustain. Energy Rev. 2016, 58, 1318–1326. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Heris, S.Z.; Wongwises, S. Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study. Int. J. Heat Mass Transfer 2016, 99, 792–804. [Google Scholar] [CrossRef]
- Rezaei, O.; Akbari, O.A.; Marzban, A.; Toghraie, D.; Pourfattah, F.; Mashayekhi, R. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 93, 179–189. [Google Scholar] [CrossRef]
- Heydari, M.; Toghraie, D.; Akbari, O.A. The effect of semi-attached and offset mid-truncated ribs and Water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel. Therm. Sci. Eng. Prog. 2017, 2, 140–150. [Google Scholar] [CrossRef]
- Hemmat, M.E.; Ahangar, M.R.H.; Toghraie, D.; Hajmohammad, M.H.; Rostamian, H.; Tourang, H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40 %) nanofluid using experimental data. J. Therm. Anal. Calorim. 2016, 126, 837. [Google Scholar] [CrossRef]
- Pourfattah, F.; Motamedian, M.; Sheikhzadeh, G.; Toghraie, D.; Akbari, O.A. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water-Al2O3 nanofluid in a tube. Int. J. Mech. Sci. 2017, 131–132, 1106–1116. [Google Scholar] [CrossRef]
- Bakar, N.A.A.; Bachok, N.; Arifin, N.M. Rotating Flow Over a Shrinking Sheet in Nanofluid Using Buongiorno Model and Thermophysical Properties of Nanoliquids. J. Nanofluids 2017, 6, 1–12. [Google Scholar] [CrossRef]
- Usowicz, B.; Usowicz, J.B.; Usowicz, L.B. Physical-Statistical Model of Thermal Conductivity of Nanofluids. J. Nanomater. 2014, 2014, 756765. [Google Scholar] [CrossRef]
- Abu-Nada, E. Application of nanofluids for heat transfer enhancement of separated flow encountered in a backward facing step. Int. J. Heat Fluid Flow 2008, 29, 242–249. [Google Scholar] [CrossRef]
- Nadeem, A.S.; Rehman, U.; Mehmood, R. Boundary Layer Flow of Rotating Two Phase Nanofluid Over a Stretching Surface. Heat Transfer.-Asian Res. 2016, 45, 285. [Google Scholar] [CrossRef]
- Rosali, H.; Ishak, A.; Nazar, R.; Pop, I. Rotating flow over an exponentially shrinking sheet with suction. J. Mol. Liquids 2015, 211, 965–969. [Google Scholar] [CrossRef]
- Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [Google Scholar] [CrossRef]
Distribution | Cumulative Distribution Function, F(x) |
---|---|
Lognormal | |
where erf is the complete error function; is the shape of the distribution; x is the value used to evaluate the function; is the expected value for the normal distribution. | |
Weibull | |
where x is the value used to evaluate the function; is the scale parameter; is the shape parameter. | |
Rayleigh | |
where x is the value used to evaluate the function; is the shape of the distribution. | |
Exponential | |
where x is the value used to evaluate the function; is the scale parameter. | |
Gamma | |
where is the incomplete gamma function; x is the value used to evaluate the function; is the shape parameter; is the scale parameter. | |
Inverse Gaussian | |
where x is the value used to evaluate the function; denotes the distribution function of the standard normal; is the mean; is the shape parameter. | |
Inverse Gamma | |
where is the incomplete gamma function; x is the value used to evaluate the function; is the shape parameter; is the scale parameter. |
Physical Properties | Base Fluid | Nanoparticle, Cu |
---|---|---|
Water | ||
Cp(J/kgK) | 4179 | 385 |
ρ (kg/m3) | 997.1 | 8933 |
k (W/mk) | 0.613 | 400 |
Nusselt | |||||||
---|---|---|---|---|---|---|---|
Nt | φ | ||||||
0.1 | 0.3 | 0.5 | 0 | 0.5 | 1 | ||
Weibull | alpha | 1.114028 | 0.880117 | 0.707426 | 1.147663 | 1.114028 | 1.060899 |
beta | 2.071876 | 2.044809 | 2.03204 | 2.042564 | 2.071873 | 2.107767 | |
Lognormal | u | 0.597253 | −0.4527 | −0.6728 | −0.1882 | −0.2134 | −0.257 |
sigma | 0.205756 | 0.5687 | 0.5733 | 0.5735 | 0.5581 | 0.5406 | |
Exponential | ʘ | 5.958346 | 0.784728 | 0.63081 | 1.023495 | 0.993058 | 0.945277 |
Rayleigh | ʘ | 0.783248 | 0.620077 | 0.498912 | 0.808725 | 0.783248 | 0.743932 |
Gamma | alpha | 2.576506 | 2.532032 | 2.512095 | 2.518703 | 2.576506 | 2.645924 |
beta | 2.594448 | 3.226632 | 3.9823 | 2.460647 | 2.594448 | 2.799164 | |
InvGaussian | u | 0.996058 | 0.784728 | 0.63081 | 1.023495 | 0.993058 | 0.945277 |
lambda | 0.585994 | 0.458409 | 0.366933 | 0.594599 | 0.585994 | 0.567803 | |
InvGamma | p | 1.128832 | 1.465284 | 1.840917 | 1.141713 | 1.128832 | 1.130869 |
beta | 1.561164 | 1.537004 | 1.528137 | 1.520823 | 1.561164 | 1.609246 |
Sherwood | |||||||
---|---|---|---|---|---|---|---|
Nt | φ | ||||||
0.1 | 0.3 | 0.5 | 0 | 0.5 | 1 | ||
Weibull | alpha | 0.8744 11 | 0.898522 | 0.817144 | 0.979489 | 0.874401 | 0.797106 |
beta | 2.577703 | 3.371081 | 1.81384 | 3.554751 | 2.577703 | 2.790235 | |
Lognormal | u | −0.4244 | −0.3095 | −0.6076 | −0.2249 | −0.4244 | −0.499 |
sigma | 0.6062 | 0.2281 | 1.1546 | 0.2703 | 0.6062 | 0.5926 | |
Exponential | ʘ | 0.789122 | 0.805275 | 0.74553 | 0.883678 | 0.789712 | 0.723538 |
Rayleigh | ʘ | 1.328239 | 3.12215 | 4.058364 | 1.278631 | 1.328239 | 1.389953 |
Gamma | alpha | 2.809859 | 5.54345 | 1.741032 | 5.098837 | 2.809859 | 3.006884 |
beta | 3.55806 | 6.883961 | 2.335395 | 5.769994 | 3.55806 | 4.156075 | |
InvGaussian | u | 0.789712 | 0.805275 | 0.74553 | 0.883678 | 0.789712 | 0.723538 |
lambda | 0.585994 | 0.690534 | 0.210486 | 0.707045 | 0.419399 | 0.380038 | |
InvGamma | p | 2.10314 | 0.406664 | 7.750569 | 0.502391 | 2.10314 | 2.441288 |
beta | 1.176628 | 3.838668 | 0.628842 | 2.976252 | 1.176628 | 1.121279 |
Nusselt | |||||||
---|---|---|---|---|---|---|---|
Nt | φ | ||||||
0.1 | 0.3 | 0.5 | 0 | 0.5 | 1 | ||
Weibull | AIC | 28.0644 | 19.87677 | 12.15149 | 29.47854 | 28.0644 | 25.89071 |
Lognormal | AIC | 489.2136 | 32.11579 | 24.22703 | 41.67786 | 40.65745 | 38.98349 |
Exponential | AIC | 72.25254 | 29.27293 | 21.41297 | 38.83604 | 37.7492 | 35.97403 |
Rayleigh | AIC | 28.09332 | 19.88825 | 12.15742 | 29.4889 | 28.09332 | 25.95421 |
Gamma | AIC | 130.558 | 155.573 | 181.8519 | 121.6317 | 130.558 | 143.5579 |
InvGaussian | AIC | 43.14529 | 34.74409 | 26.90818 | 44.40187 | 43.14529 | 41.17968 |
InvGamma | AIC | 66.38085 | 61.39603 | 59.74171 | 64.92191 | 66.38085 | 68.1083 |
Sherwood | |||||||
---|---|---|---|---|---|---|---|
Nt | φ | ||||||
0.1 | 0.3 | 0.5 | 0 | 0.5 | 1 | ||
Weibull | AIC | 12.54905 | 5.472407 | 13.72022 | 8.515101 | 12.54905 | 8.096197 |
Lognormal | AIC | 26.92753 | 33.11634 | 23.53942 | 38.58843 | 26.92753 | 23.25246 |
Exponential | AIC | 23.38957 | 19.23543 | 17.53949 | 26.53744 | 23.38957 | 19.58635 |
Rayleigh | AIC | 35.5429 | 59.7277 | 77.45971 | 29.54075 | 35.5429 | 36.12442 |
Gamma | AIC | 146.2801 | 361.4002 | 51.51091 | 377.5105 | 146.2801 | 164.1227 |
InvGaussian | AIC | 29.30123 | 20.50199 | 29.48493 | 28.73508 | 31.16536 | 27.70555 |
InvGamma | AIC | 40.39328 | 131.3749 | 210.1284 | 119.6908 | 40.39328 | 38.24802 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jedi, A.; Shamsudeen, A.; Razali, N.; Othman, H.; Zainuri, N.A.; Zulkarnain, N.; Bakar, N.A.A.; Pati, K.D.; Thanoon, T.Y. Statistical Modeling for Nanofluid Flow: A Stretching Sheet with Thermophysical Property Data. Colloids Interfaces 2020, 4, 3. https://doi.org/10.3390/colloids4010003
Jedi A, Shamsudeen A, Razali N, Othman H, Zainuri NA, Zulkarnain N, Bakar NAA, Pati KD, Thanoon TY. Statistical Modeling for Nanofluid Flow: A Stretching Sheet with Thermophysical Property Data. Colloids and Interfaces. 2020; 4(1):3. https://doi.org/10.3390/colloids4010003
Chicago/Turabian StyleJedi, Alias, Azhari Shamsudeen, Noorhelyna Razali, Haliza Othman, Nuryazmin Ahmat Zainuri, Noraishikin Zulkarnain, Nor Ashikin Abu Bakar, Kafi Dano Pati, and Thanoon Y. Thanoon. 2020. "Statistical Modeling for Nanofluid Flow: A Stretching Sheet with Thermophysical Property Data" Colloids and Interfaces 4, no. 1: 3. https://doi.org/10.3390/colloids4010003
APA StyleJedi, A., Shamsudeen, A., Razali, N., Othman, H., Zainuri, N. A., Zulkarnain, N., Bakar, N. A. A., Pati, K. D., & Thanoon, T. Y. (2020). Statistical Modeling for Nanofluid Flow: A Stretching Sheet with Thermophysical Property Data. Colloids and Interfaces, 4(1), 3. https://doi.org/10.3390/colloids4010003