# Hydrodynamic Parameters of Strelitzia Gum

## Abstract

**:**

_{v}) is determined, with a value of 200,000 g/mol, as well as a hydrodynamic radius of 20 ± 1 nm and a hydration value of 445 ± 34 g/g. The size of StrG was compared against dynamic light scattering data with a value of 16 ± 2 nm and a MW

_{DLS}of 230,000 g/mol. StrG is a biopolyelectrolyte with an “a” value of 0.85, which corresponds to a flexible behavior with a great effect of volume exclusion. This statement is based on the difficulty of gum dissolution, that should be performed at 80 °C. This macromolecule is very promising and can potentially be used in several industrial applications, such as in film forming, and as a gel, thickener, and coemulsifier.

## 1. Introduction

#### Intrinsic Viscosity and Hydrodynamic Parameters

^{3}), and t is drainage time (s).

_{sp}/c”.

_{sp}) to concentration (c, in g/cm

^{3}), when it tends to zero.

_{H}) is given by the Einstein relation [22],

_{0}is sometimes denoted as P is called the Perrin number, where f is the friction coefficient expression.

_{0}is the density of the solvent (distilled water).

## 2. Materials and Methods

#### 2.1. Strelitzia Gum

#### 2.2. Viscosity and Density

#### 2.3. Dynamic Light Scattering

^{2}/s), k

_{B}is Boltzmann constant, T temperature at 298 K, η is solution viscosity in poise, and R

_{HDLS}is hydrodynamic radius for DLS technique.

## 3. Results & Discussion

^{2}. The Huggins equation is used as a standard for intrinsic viscosity calculus. It is of note that the k

_{H}measured in this work has a positive slope, since many other polysaccharides present the opposite value, especially if the ionic strength of the polyelectrolyte solution is inadequate or without the addition of salts. To substantiate this situation, it can be stated that the aqueous solvent is ideal for this macromolecule, and may indicate a special feature of this biopolyelectrolyte.

_{(a/b)}with 11.47, with a R

_{Hv}of 20 ± 1 nm, and R

_{HDLS}is 16 ± 2 nm; see Figure 6. The value of δ is very high, as expected; a similar phenomenon is observed in gel formation or sponge hydration.

_{DLS}is 230,000 g/mol, with an intrinsic viscosity by Huggins method of 38 ± 0.3 cm

^{3}/g, and M-H parameters with values of “a” 0.85 and “k” 0.00124 cm

^{3}/g (see Figure 7 and Table 3). In order to corroborate the viscometric values, DLS measurements were carried out to measure the MW

_{DLS}of this StrG, which for MHKS meters is for K

_{D}of 0.001323 and ε of 0.75 (see Figure 8 and Table 3). The MW

_{DLS}differs substantially with the MW

_{V}

_{,}though it is worth keeping in mind that any measurement by viscosimetry is apparent or doubtful. These types of differences in the determination of MW can be seen and justified in reference [32].

## 4. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

Symbol | Name | Units |

η | viscosity | poise |

t | time drainage | s |

t_{0} | solvent drainage time | s |

t_{s} | solution drainage time | s |

A | viscometer constant | cm^{2}/s^{2} |

ρ | density | g/cm^{3} |

ρ_{0} | solvent density | g/cm^{3} |

ρ_{s} | solution density | g/cm^{3} |

η_{s} | solution viscosity | poise |

T | temperature | K |

η_{r} | relative viscosity | dimensionless |

η_{sp} | specific viscosity | dimensionless |

c | solution concentration | g/cm^{3} |

[η] | intrinsic viscosity | cm^{3}/g |

k_{H} | Huggins constant | dimensionless |

k_{k} | Kraemer’s constant | dimensionless |

k_{M} | Martin’s constant | dimensionless |

MW_{v} | viscometer molecular weight | g/mol |

a | “a” Mark–Houwink parameter | dimensionless |

k | “k” Mark–Houwink parameter | cm^{3}/g |

N_{A} | Avogadro’s number | 1/mol |

R_{Hv} | viscometer hydrodynamic radius | cm or nm |

f | solution friction coefficient | poise |

f_{0} | solvent friction coefficient | poise |

P | Perrin number | dimensionless |

ν_{a/b} | Einstein viscosity increment | dimensionless |

$\overline{v}$ | partial specific volume | cm^{3}/g |

V_{s} | volume specific | cm^{3}/g |

δ | hydration value | g/g |

D | diffusion coefficient | cm^{2}/g |

R_{HDLS} | DLS hydrodynamic radius | cm or nm |

MW_{DLS} | DLS molecular weight | g/mol |

## References and Notes

- Odriozola Azurmendi, J.M.; García, J.A. El Cultivo de la Strelitzia; Hojas Divulgadoras del Ministerio de Agricultura: Madrid, España, 1972. [Google Scholar]
- Kronestedt, E.; Walles, B. Anatomy of the Sirelirzia reginae flower (Strelitziaceae). Nord. J. Bot.
**1986**, 6, 307–320. [Google Scholar] [CrossRef] - Bayogan, E.R.; Teeranuch Jaroenkit, V.; Paull, R.E. Postharvest life of Bird-of-Paradise inflorescences. Posth. Biol. Technol.
**2008**, 48, 259–263. [Google Scholar] [CrossRef] - Ribeiro da Silva Vieira, M.; Cleuma de Medeiros, D.; Nepomuceno Costa, P.; Guimarães Santos, C.M.; de Alencar Paes, R.; de Sousa Fernandez, L.M.; de Oliveira, N.G.; Flavio Silva, A.A. Effect of refrigeration on post-harvest flowers. Afr. J. Biotechnol.
**2012**, 11, 13065–13068. [Google Scholar] [CrossRef] - Barbosa, J.G.; Mantovani Alvarenga, E.; Cunha Fernandes Dos Santos Dias, D.; Nunes Vieira, A. Effect of Acid Scarification and Different Temperatures on Physiological Quality of Strelitzia reginae Seeds. Parte da Dissertação de Mestrado do último autor, apresentada à Universidade Federal de Viçosa (UFV). Rev. Bras. Sementes
**2005**, 27, 71–77. [Google Scholar] [CrossRef] - Mele, E.; Girardo, S.; Pisignano, D. Strelitzia reginae Leaf as a Natural Template for Anisotropic Wetting and Superhydrophobicity. Langmuir
**2012**, 28, 5312–5317. [Google Scholar] [CrossRef] [PubMed] - Martin, F.W. The stigmatic exúdate of Strelitzia. Phyton. Buenos Aires
**1970**, 27, 47–53. [Google Scholar] - Kronestedt-Robards, E.C.; Greger, M.; Robards, A.W. The nectar of the Strelitzia reginae flower. Physiol. Plant.
**1989**, 77, 341–346. [Google Scholar] [CrossRef] - Kronestedt, E.C.; Robards, A.W. Sugar Secretion from the Nectary of Strelitzia: An Ultrastructural and Physiological Study. Protoplasma
**1987**, 137, 168–182. [Google Scholar] [CrossRef] - Jaroenkit, T.; Chen, N.J.; Paull, R.E. Nectar secretion, mucilage production and mold growth on bird-of-paradise inflorescences. Posth. Biol. Technol.
**2008**, 49, 431–435. [Google Scholar] [CrossRef] - Huggins, M.L. The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J. Am. Chem. Soc.
**1942**, 64, 2716–2718. [Google Scholar] [CrossRef] - Martin, A.F. Abstr. 103rd Am. Chem. Soc. Meeting, Memphis, TN, USA, April 20–24, 1942; p. 1-c ACS.
- Tanglertpaibul, T.; Rao, M.A. Intrinsic viscosity of tomato serum as affected by methods of determination and methods of processing concentrates. J. Food Sci.
**1987**, 52, 1642–1688. [Google Scholar] [CrossRef] - Higiro, J.; Herald, T.J.; Alavi, S. Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res. Int.
**2006**, 39, 165–175. [Google Scholar] [CrossRef] - Higiro, J.; Herald, T.J.; Alavi, S.; Bean, S. Rheological study of xanthan and locust bean gum interaction in dilute solution: Effect of salt. Food Res. Int.
**2007**, 40, 435–447. [Google Scholar] [CrossRef] - Mark, H. Der Feste Körper; Sänger, R., Ed.; Hirzel, Switzerland; Leipzig, Germany, 1938; pp. 65–104. [Google Scholar]
- Houwink, R. Zusammenhang zwischen viscosimetrisch und osmotisch bestimm-ten polymerisationsgraden bei hochpolymeren. J. Prakt. Chem.
**1940**, 157, 15. [Google Scholar] [CrossRef] - Masuelli, M.A.; Takara, A.; Acosta, A. Hydrodynamic properties of tragacanthin. Study of temperature influence. J. Argent. Chem. Soc.
**2013**, 100, 25–34. [Google Scholar] - Masuelli, M.A. Mark-Houwink parameters for aqueous-soluble polymers and biopolymers at various temperatures. J. Pol. Biopol. Phys. Chem.
**2014**, 2, 37–43. [Google Scholar] [CrossRef] - Masuelli, M.A. Viscometric study of pectin. Effect of temperature on the hydrodynamic properties. Int. J. Biol. Macromol.
**2011**, 48, 286–291. [Google Scholar] [CrossRef] [PubMed] - Masuelli, M.A.; Sansone, M.G. Hydrodynamic properties of Gelatine. Studies from intrinsic viscosity measurements. In Products and Applications of Biopolymers; Verbeek, C.J.R., Ed.; InTech: Rijeka, Croatia, 2012; Chapter 5; ISBN 978-953-51-0226-7. [Google Scholar]
- Masuelli, M.A. Hydrodynamic Properties of Whole Arabic Gum. Am. J. Food Sci. Technol.
**2013**, 1, 60–66. [Google Scholar] - Harding, S.E. The Viscosity Intrinsic of Biological Macromolecules. Progress in Measurement, Interpretation and Application to Structure in Dilute Solution. Prog. Biophys. Mol. Biol.
**1997**, 68, 207–262. [Google Scholar] [CrossRef] - Curvale, R.; Masuelli, M.; Perez Padilla, A. Intrinsic viscosity of bovine serum albumin conformers. Int. J. Biol. Macromol.
**2008**, 42, 133–137. [Google Scholar] [CrossRef] [PubMed] - Masuelli, M.A. Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements. Adv. Phys. Chem.
**2013**, 2013, 360239. [Google Scholar] [CrossRef][Green Version] - Sartor, M. Dynamic Light Scattering; University of California: San Diego, CA, USA, 2003; pp. 2–21. [Google Scholar]
- Rojas, R.; Giacomelli, C. Effect of structure and bonding on the interfacial properties and the reactivity of layered double hydroxides and Zn hydroxide salts. Eng. Asp.
**2013**, 419, 166–173. [Google Scholar] [CrossRef] - Zanon, M.; Masuelli, M. Purification and Characterization of Alcayota Gum. Exp. Rev. Biopolym. Res.
**2018**, 2, 105. [Google Scholar] - Kuhn, W.; Kuhn, H. Die abhängigkeit der viskosität vom strömungsgefälle bei hochverdünnten suspensionen und lösungen. Helv. Chim. Acta
**1945**, 28, 97–127. [Google Scholar] [CrossRef] - Sakurada, I. Kasen Koenshu
**1940**, 5, 33–44. - Sakurada, I. Kasen Koenshu
**1941**, 6, 177–184. - Fee, M.; Errington, N.; Jumel, K.; Illum, L.; Smith, A.; Harding, S.E. Correlation of SEC/MALLS with ultracentrifuge and viscometric data for chitosans. Eur. Biophys. J.
**2003**, 32, 457–464. [Google Scholar] [CrossRef] [PubMed]

**Figure 5.**Tanglertpaibul & Rao plots for (

**a**–

**c**) equations. Where (

**a**) is η

_{r}vs. c, (

**b**) is ln η

_{r}vs. c, and (

**c**) is 1 − 1/η

_{r}vs. c.

Tanglertpeibul & Rao | |||||||
---|---|---|---|---|---|---|---|

Huggins | Kraemer | H-K Media * | Martin | a | b | c | |

[η] (cm^{3}/g) | 38 ± 0.3 | 39 ± 1 | 39 ± 0.5 | 40 ± 1.8 | 54 ± 21 | 51 ± 17 | 49 ± 13 |

R^{2} | 0.9934 | 0.9978 | - | 0.9977 | 0.9850 | 0.9893 | 0.9930 |

ER% | - | 2.57 | 1.28 | 4.44 | 39.66 | 33.24 | 27.23 |

k_{H} | $\overline{v}$ (cm^{3}/g) | δ (g_{H2O}/g) | R_{Hv} (nm) | MW_{v} (g/mol) | ν_{a/b} | P | k (cm^{3}/g) | a |
---|---|---|---|---|---|---|---|---|

5.4 ± 0.25 | 0.14 ± 0.03 | 445 ± 34 | 20 ± 1 | 200,000 | 11.4 ± 0.15 | 1.6 ± 0.24 | 0.00124 | 0.8500 |

**Table 3.**Data of D, molecular weight (DLS and viscometric), and intrinsic viscosity of hydrolyzed StrG.

c (M) | D (cm^{2}/s) × 10^{7} | MW_{DLS} (g/mol) | [η] (cm^{3}/g) | MW_{v} (g/mol) |
---|---|---|---|---|

0 | 1.26 ± 0.13 | 230,000 | 38 ± 0.3 | 200,000 |

0.005 | 1.41 ± 0.27 | 205,000 | 36 ± 0.8 | 185,000 |

0.01 | 1.61 ± 0.24 | 180,000 | 34 ± 0.2 | 170,000 |

0.025 | 1.94 ± 0.07 | 130,000 | 28 ± 0.1 | 130,000 |

0.05 | 2.55 ± 0.16 | 90,000 | 20 ± 0.2 | 94,000 |

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Masuelli, M.A. Hydrodynamic Parameters of Strelitzia Gum. *Colloids Interfaces* **2018**, *2*, 45.
https://doi.org/10.3390/colloids2040045

**AMA Style**

Masuelli MA. Hydrodynamic Parameters of Strelitzia Gum. *Colloids and Interfaces*. 2018; 2(4):45.
https://doi.org/10.3390/colloids2040045

**Chicago/Turabian Style**

Masuelli, Martin A. 2018. "Hydrodynamic Parameters of Strelitzia Gum" *Colloids and Interfaces* 2, no. 4: 45.
https://doi.org/10.3390/colloids2040045