Extending Multi-Output Methods for Long-Term Aboveground Biomass Time Series Forecasting Using Convolutional Neural Networks
Abstract
:1. Introduction
2. Methodology
2.1. Aboveground Biomass Database
2.2. Data Preprocessing
2.3. Methods for Multi-Output Time Series Forecasting
- Recursive Method
- Direct Method
- Direct-Recursive Method
- MIMO Method
- DIRMO Method
- RECMO Method
- DirRecMO Method
2.4. Modeling, Prediction, and Experimental Baselines
- Convolutional Neural Network (CNN) Model
- Software and Computer Tools
2.5. Model Performance Evaluation
- Coefficient of Variation
3. Results
3.1. Method Performance in Forecasting
3.2. Forecast Accuracy Variation with the Horizon
3.3. RMSE Variability of Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, L.; Li, A.; Yin, G.; Nan, X.; Bian, J. Retrieval of Grassland Aboveground Biomass through Inversion of the PROSAIL Model with MODIS Imagery. Remote Sens. 2019, 11, 1597. [Google Scholar] [CrossRef]
- Bernhardt-Römermann, M.; Römermann, C.; Sperlich, S.; Schmidt, W. Explaining grassland biomass—The contribution of climate, species and functional diversity depends on fertilization and mowing frequency. J. Appl. Ecol. 2011, 48, 1088–1097. [Google Scholar] [CrossRef]
- Das, B.; Patnaik, S.K.; Bordoloi, R.; Paul, A.; Tripathi, O.P. Prediction of forest aboveground biomass using an integrated approach of space-based parameters, and forest inventory data. Geol. Ecol. Landsc. 2022, 8, 1–13. [Google Scholar] [CrossRef]
- Matere, J.; Simpkin, P.; Angerer, J.; Olesambu, E.; Ramasamy, S.; Fasina, F. Predictive Livestock Early Warning System (PLEWS): Monitoring forage condition and implications for animal production in Kenya. Weather Clim. Extrem. 2020, 27, 100209. [Google Scholar] [CrossRef]
- Braimoh, A.; Manyena, B.; Obuya, G.; Muraya, F. Assessment of Food Security Early Warning Systems for East and Southern Africa; World Bank: Washington, DC, USA, 2018; p. 20433. Available online: http://hdl.handle.net/10986/29269 (accessed on 5 February 2023).
- Zang, P.; Zhang, Y.; Chen, Z.; Hou, G.; Liu, Z.; Lu, X. The inversion modeling and aboveground biomass mapping of withered grass changes in the western grassland of Northeast China. Front. Earth Sci. 2023, 10, 1031098. [Google Scholar] [CrossRef]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. PastureBase Ireland: A grassland decision support system and national database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Kumar, L.; Sinha, P.; Taylor, S.; Alqurashi, A.F. Review of the use of remote sensing for biomass estimation to support renewable energy generation. J. Appl. Remote Sens. 2015, 9, 097696. [Google Scholar] [CrossRef]
- Jiang, F.; Deng, M.; Tang, J.; Fu, L.; Hua, S. Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China. Carbon Balance Manag. 2022, 17, 12. [Google Scholar] [CrossRef]
- Bazzo, C.O.G.; Kamali, B.; Hütt, C.; Bareth, G.; Gaiser, T. A Review of Estimation Methods for Aboveground Biomass in Grasslands Using UAV. Remote Sens. 2023, 15, 639. [Google Scholar] [CrossRef]
- Bu, L.; Lai, Q.; Qing, S.; Bao, Y.; Liu, X.; Na, Q.; Li, Y. Grassland Biomass Inversion Based on a Random Forest Algorithm and Drought Risk Assessment. Remote Sens. 2022, 14, 5745. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, R.; Cheng, H.; Liang, T.; Zhang, K.; Chai, N.; Gao, J.; Feng, Q.; Hou, M.; Liu, J.; et al. Can Machine Learning Algorithms Successfully Predict Grassland Aboveground Biomass? Remote Sens. 2022, 14, 3843. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Figueiredo, M.; Domingos, T. The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Huntington, T.; Cui, X.; Mishra, U.; Scown, C.D. Machine learning to predict biomass sorghum yields under future climate scenarios. Biofuels Bioprod. Biorefin. 2020, 14, 566–577. [Google Scholar] [CrossRef]
- Maddison, A.L.; Camargo-Rodriguez, A.; Scott, I.M.; Jones, C.M.; Elias, D.M.O.; Hawkins, S.; Massey, A.; Clifton-Brown, J.; McNamara, N.P.; Donnison, I.S.; et al. Predicting future biomass yield in Miscanthus using the carbohydrate metabolic profile as a biomarker. GCB Bioenergy 2017, 9, 1264–1278. [Google Scholar] [CrossRef]
- Noa-Yarasca, E. A Machine Learning Model of Riparian Vegetation Attenuated Stream Temperatures. Oregon State University: Corvallis, OR, USA, 2021. Available online: https://ir.library.oregonstate.edu/downloads/0r967b65c#page=137 (accessed on 10 April 2024).
- An, N.H.; Anh, D.T. Comparison of Strategies for Multi-Step-Ahead Prediction of Time Series Using Neural Network. In Proceedings of the 2015 International Conference on Advanced Computing and Applications (ACOMP), Ho Chi Minh City, Vietnam, 23–25 November 2015; IEEE: Piscataway, NJ, USA, 2016; pp. 142–149. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.-J.; Chang, L.-C.; Kao, I.-F.; Wang, Y.-S. Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 2019, 209, 134–145. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, Q.; Wang, J.; Gao, Y. A novel interval forecasting system for uncertainty modeling based on multi-input multi-output theory: A case study on modern wind stations. Renew. Energy 2021, 163, 88–104. [Google Scholar] [CrossRef]
- Hamzaçebi, C.; Akay, D.; Kutay, F. Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Syst. Appl. 2009, 36, 3839–3844. [Google Scholar] [CrossRef]
- Sorjamaa, A.; Lendasse, A. Time Series Prediction using DirRec Strategy. In Proceedings of the 14th European Symposium on Artificial Neural Networks, Bruges, Belgium, 26–28 April 2006; pp. 143–148, ISBN 2-930307-06-4. [Google Scholar]
- Bao, Y.; Xiong, T.; Hu, Z. Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing 2014, 129, 482–493. [Google Scholar] [CrossRef]
- Taieb, S.B.; Sorjamaa, A.; Bontempi, G. Multiple-output modeling for multi-step-ahead time series forecasting. Neurocomputing 2010, 73, 1950–1957. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, W.-D.; Chang, P.-C.; Yang, J.-W.; Li, F.-Z. Iterated time series prediction with multiple support vector regression models. Neurocomputing 2013, 99, 411–422. [Google Scholar] [CrossRef]
- Kline, D.M. Methods for Multi-Step Time Series Forecasting Neural Networks. In Neural Networks in Business Forecasting; Zhang, G.P., Ed.; IGI Global: Hershey, PE, USA, 2004; pp. 226–250. [Google Scholar] [CrossRef]
- Fox, I.; Ang, L.; Jaiswal, M.; Pop-Busui, R.; Wiens, J. Deep Multi-Output Forecasting. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, New York, NY, USA, 19–23 August 2018; pp. 1387–1395. [Google Scholar] [CrossRef]
- Niu, T.; Wang, J.; Lu, H.; Du, P. Uncertainty modeling for chaotic time series based on optimal multi-input multi-output architecture: Application to offshore wind speed. Energy Convers. Manag. 2018, 156, 597–617. [Google Scholar] [CrossRef]
- Hu, Z.; Bao, Y.; Chiong, R.; Xiong, T. Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection. Energy 2015, 84, 419–431. [Google Scholar] [CrossRef]
- Bontempi, G. Long Term Time Series Prediction with Multi-Input Multi-Output Local Learning. In Proceedings of the 2nd European Symposium on Time Series Prediction (TSP), ESSP08, Helsinki, Finland, 17–19 September 2008. [Google Scholar]
- Weigend, A.S. Time Series Prediction; Routledge: London, UK, 2018. [Google Scholar] [CrossRef]
- Murray, C.; Chaurasia, P.; Hollywood, L.; Coyle, D. A Comparative Analysis of State-of-the-Art Time Series Forecasting Algorithms. In Proceedings of the 9th International Conference on Computational Science and Computational Intelligence (CSCI), IEEE, Las Vegas, NV, USA, 14–16 December 2022; pp. 89–95. [Google Scholar] [CrossRef]
- Marcellino, M.; Stock, J.H.; Watson, M.W. A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series. J. Econom. 2006, 135, 499–526. [Google Scholar] [CrossRef]
- Bontempi, G.; Taieb, S.B.; Le Borgne, Y.-A. Machine Learning Strategies for Time Series Forecasting. In Business Intelligence; Aufaure, M.-A., Zimanyi, E., Eds.; eBISS: Brussels, Belgium, 2013; pp. 62–77. [Google Scholar] [CrossRef]
- Noa-Yarasca, E.; Leyton, J.M.O.; Angerer, J.P. Deep Learning Model Effectiveness in Forecasting Limited-Size Aboveground Vegetation Biomass Time Series: Kenyan Grasslands Case Study. Agronomy 2024, 14, 349. [Google Scholar] [CrossRef]
- Stuth, J.W.; Angerer, J. Livestock Early Warning System for Africa’s Rangelands. In Monitoring and Predicting Agricultural Drought; Boken, V.K., Cracknell, A.P., Heathcote, R.L., Eds.; Oxford University Press: Oxford, UK, 2005. [Google Scholar] [CrossRef]
- Opio, P.; Makkar, H.P.S.; Tibbo, M.; Ahmed, S.; Sebsibe, A.; Osman, A.B.; Olesambu, E.; Ferrand, C.; Munyua, S. Opinion paper: A regional feed action plan—One-of-a-kind example from East Africa. Animal 2020, 14, 1999–2002. [Google Scholar] [CrossRef]
- Rhodes, E.C.; Tolleson, D.R.; Angerer, J.P. Modeling Herbaceous Biomass for Grazing and Fire Risk Management. Land 2022, 11, 1769. [Google Scholar] [CrossRef]
- Taieb, S.B.; Bontempia, G.; Atiyac, A.; Sorjamaa, A. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 2011, 39, 7067–7083. [Google Scholar] [CrossRef]
- Koprinska, I.; Wu, D.; Wang, Z. Convolutional Neural Networks for Energy Time Series Forecasting. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Ghosh, A.; Sufian, A.; Sultana, F.; Chakrabarti, A.; De, D. Fundamental Concepts of Convolutional Neural Network. In Recent Trends and Advances in Artificial Intelligence and Internet of Things; Balas, V.E., Kumar, R., Srivastava, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 519–567. [Google Scholar] [CrossRef]
- Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Keras. GitHub. 2015. Available online: https://github.com/fchollet/keras (accessed on 1 May 2023).
- Aronhime, S.; Calcagno, C.; Jajamovich, G.H.; Arezki, H.; Philip, D.; Douglas, R.; Isabel, D.M.; Valérie, F.; Chatterji, M.-L.M. DCE-MRI of the liver: Effect of linear and nonlinear conversions on hepatic perfusion quantification and reproducibility. J. Magn. Reson. Imaging 2014, 40, 90–98. [Google Scholar] [CrossRef]
- Noa-Yarasca, E.; Leyton, J.M.O.; Angerer, J. Biomass Time Series Forecasting Using Deep Learning Techniques. Is the Sophisticated Model Superior. In Biometry and Statistical Computing; SSSA International Annual Meeting; ASA: St. Louis, MO, USA; CSSA: St. Louis, MO, USA, 2023; Available online: https://scisoc.confex.com/scisoc/2023am/meetingapp.cgi/Paper/151648 (accessed on 10 April 2024).
Method | Horizon H = 2 | Horizon H = 6 | Horizon H = 12 | Horizon H = 24 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(Short-Term) | (Medium-Term) | (Long-Term) | (Long-Term) | |||||||||
k | w | m | k | w | m | k | w | m | k | w | m | |
Recursive | 1 | 24 | 1 | 1 | 24 | 1 | 1 | 24 | 1 | 1 | 24 | 1 |
Direct | 1 | 24 | 2 | 1 | 24 | 6 | 1 | 24 | 12 | 1 | 24 | 24 |
DirRec | 1 | 24–25 | 2 | 1 | 24–29 | 6 | 1 | 24–35 | 12 | 1 | 24–47 | 24 |
MIMO | 2 | 24 | 1 | 6 | 24 | 1 | 12 | 24 | 1 | 24 | 24 | 1 |
DIRMO | 2, 3 | 24 | 3, 2 | 2, 3, 4, 6 | 24 | 6, 4, 3, 2 | 2, 3, 4, 6, 8, 12 | 24 | 12, 8, 6, 4, 3, 2 | |||
RECMO | 2, 3 | 24 | 1 | 2, 3, 4, 6 | 24 | 1 | 2, 3, 4, 6, 8, 12 | 24 | 1 | |||
DirRecMO | 2 | 24–28 | 3 | 2 | 24–34 | 6 | 2 | 24–46 | 12 | |||
3 | 24–27 | 2 | 3 | 24–33 | 4 | 3 | 24–45 | 8 | ||||
4 | 24–32 | 3 | 4 | 24–44 | 6 | |||||||
6 | 24–30 | 2 | 6 | 24–42 | 4 | |||||||
8 | 24–40 | 3 | ||||||||||
12 | 24–36 | 2 |
Hyperparameter | Tuned Value Range | Optimal Value |
---|---|---|
Convolutional layer filters | {16, 32, 64} | 64 |
Convolutional layer kernel size | 3 | 3 |
Convolution layer activation | Relu | Relu |
Convolution layer padding | Same | Same |
Strides | 1 | 1 |
Number of hidden layers | {1, 2} | 1 |
Batch size | {8, 16, 32, 64} | 16 |
Learning rate | {0.001, 0.005, 0.01} | 0.005 |
Optimizer | Adam, Adamax, SGD | SGD |
Loss function | Mean Square Error | Mean Square Error |
Epochs | {100, 200, 300} | 100 |
Early stopping (patient) | 20 | 20 |
Method | k | TS1 | TS2 | TS3 | TS4 | TS5 | TS6 |
---|---|---|---|---|---|---|---|
Recursive | 1 | 41.4 | 138.5 | 277.6 | 232.8 | 93.2 | 104.2 |
Direct | 1 | 46.4 | 127.3 | 307.2 | 415.9 | 110.2 | 116.5 |
DirRec | 1 | 41.6 | 118.6 | 247.9 | 322.4 | 113.9 | 129.4 |
MIMO | 12 | 52.4 | 153.3 | 326.4 | 551.9 | 94.2 | 152.7 |
DIRMO | 2 | 49.5 | 131.1 | 327.3 | 421.6 | 99.6 | 114.4 |
3 | 51.2 | 140.4 | 325.8 | 441.1 | 89.5 | 113.9 | |
4 | 50.7 | 150.6 | 327.8 | 463.5 | 91.1 | 120.1 | |
6 | 51.4 | 144.4 | 327.9 | 480.8 | 87.1 | 125.0 | |
RECMO | 2 | 43.8 | 141.6 | 302.5 | 306.5 | 95.8 | 94.8 |
3 | 45.9 | 144.6 | 286.2 | 449.0 | 83.0 | 100.3 | |
4 | 47.3 | 137.9 | 290.4 | 504.2 | 84.4 | 100.5 | |
6 | 48.5 | 142.8 | 298.2 | 554.1 | 84.9 | 106.4 | |
DirRec-MO | 2 | 45.3 | 118.3 | 316.8 | 359.3 | 109.6 | 120.6 |
3 | 48.5 | 132.3 | 317.4 | 468.9 | 113.3 | 118.5 | |
4 | 49.9 | 139.9 | 323.1 | 497.1 | 112.5 | 112.6 | |
6 | 51.0 | 145.5 | 323.5 | 535.2 | 112.9 | 121.9 |
Method | k | TS1 | TS2 | TS3 | TS4 | TS5 | TS6 |
---|---|---|---|---|---|---|---|
Recursive | 1 | 25.2 | 147.3 | 81.4 | 152.7 | 62.7 | 117.1 |
Direct | 1 | 29.8 | 158.7 | 83.8 | 291.8 | 42.2 | 149.1 |
DirRec | 1 | 29.1 | 140.7 | 87.8 | 214.0 | 67.6 | 160.6 |
MIMO | 6 | 36.8 | 173.4 | 91.2 | 483.3 | 33.8 | 157.6 |
DIRMO | 2 | 35.6 | 163.1 | 82.3 | 312.2 | 34.1 | 146.6 |
3 | 35.6 | 172.1 | 83.9 | 349.6 | 34.2 | 150.9 | |
RECMO | 2 | 30.6 | 156.1 | 81.7 | 237.4 | 42.8 | 136.7 |
3 | 33.0 | 168.1 | 82.3 | 376.0 | 42.7 | 131.0 | |
DirRec-MO | 2 | 31.8 | 154.5 | 87.6 | 282.8 | 46.6 | 148.7 |
3 | 34.0 | 169.4 | 84.6 | 439.0 | 52.2 | 148.2 |
Method | k | TS1 | TS2 | TS3 | TS4 | TS5 | TS6 |
---|---|---|---|---|---|---|---|
Recursive | 1 | 31.2 | 132.9 | 92.5 | 34.6 | 29.8 | 157.8 |
Direct | 1 | 29.1 | 126.7 | 75.3 | 60.3 | 36.6 | 138.1 |
DirRec | 1 | 31.8 | 130.0 | 77.9 | 94.9 | 28.4 | 147.8 |
MIMO | 2 | 39.6 | 132.1 | 82.6 | 84.8 | 27.4 | 151.4 |
Method | H = 2 | H = 6 | H = 12 | H = 24 | Total |
---|---|---|---|---|---|
Recursive | 1 | 4 | 2 | 2 | 9 |
Direct | 4 | 1 | 5 | ||
DirRec | 1 | 1 | 1 | 3 | |
MIMO | 1 | 1 | 2 | ||
DIRMO | NA | ||||
RECMO | NA | 2 | 2 | 4 | |
DirRec-MO | NA | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noa-Yarasca, E.; Osorio Leyton, J.M.; Angerer, J.P. Extending Multi-Output Methods for Long-Term Aboveground Biomass Time Series Forecasting Using Convolutional Neural Networks. Mach. Learn. Knowl. Extr. 2024, 6, 1633-1652. https://doi.org/10.3390/make6030079
Noa-Yarasca E, Osorio Leyton JM, Angerer JP. Extending Multi-Output Methods for Long-Term Aboveground Biomass Time Series Forecasting Using Convolutional Neural Networks. Machine Learning and Knowledge Extraction. 2024; 6(3):1633-1652. https://doi.org/10.3390/make6030079
Chicago/Turabian StyleNoa-Yarasca, Efrain, Javier M. Osorio Leyton, and Jay P. Angerer. 2024. "Extending Multi-Output Methods for Long-Term Aboveground Biomass Time Series Forecasting Using Convolutional Neural Networks" Machine Learning and Knowledge Extraction 6, no. 3: 1633-1652. https://doi.org/10.3390/make6030079
APA StyleNoa-Yarasca, E., Osorio Leyton, J. M., & Angerer, J. P. (2024). Extending Multi-Output Methods for Long-Term Aboveground Biomass Time Series Forecasting Using Convolutional Neural Networks. Machine Learning and Knowledge Extraction, 6(3), 1633-1652. https://doi.org/10.3390/make6030079