Acknowledgment to Reviewers of Machine Learning and Knowledge Extraction in 2021
Abubakar, Aliyu | Mahmoud, Karar |
Ambrosino, Fabrizio | Marchand, Cédric |
Arteta, Alberto | Marcińczuk, Michał |
Artiemjew, Piotr | Martínez-Otzeta, José María |
Bigand, Andre | Matetic, Maja |
Borza, Diana | Matrenin, Pavel |
Bozkurt, Aras | Mezzini, Mauro |
Brandusoiu, Ionut | Milicevic, Mario |
Byeon, Haewon | Mohammed, Bashir |
Cabada, Joaquin Gayoso | Moraru, Luminita |
Carrington, André M. | Moya-Albor, Ernesto |
Castillo Olea, Cristian | Mrówczyńska, Maria |
Chalmeta, Ricardo | Muncharaz, Javier Oliver |
Chen, Liang-Bi | Naqvi, Rizwan Ali |
Choi, Minseok | Nayak, Sridhara |
Conflitti, Paolo | Nayel, Hamada A. |
Crisan, Gloria Cerasela | Ojeda, Dora Luz |
Damaševičius, Robertas | Panek, Jarosław |
Delnevo, Giovanni | Pejic Bach, Mirjana |
Demertzis, Konstantinos | Piga, Dario |
Deriu, Marco Agostino | Podda, Marco |
Derlatka, Marcin | Pouliakis, Abraham |
Dowling, Benjamin | Radac, Mircea-Bogdan |
Egger, Jan | Rana, Pratip |
Fakotakis, Nikos | Riguzzi, Fabrizio |
Feng, Chaochao | Rossi, Riccardo |
Garcke, Jochen | Saeed, Khalid |
Gomes, Rahul | Samakovitis, Georgios |
Gornicki, Krzysztof | Schreiber, Andreas |
Gosti, Giorgio | Sciuto, Grazia Lo |
Howe, Bill | Seeland, Marco |
Hsin, Kun-Yi | Shan, Hongming |
Jeong, Young-Seob | Shi, Feng Bill |
Jurman, Giuseppe | Temerinac-Ott, Maja |
Kanavos, Andreas | Tran, Minh-Quang |
Kapociute-Dzikiene, Jurgita | Trujillo, Logan T. |
Kertész, Gábor | Tsaramirsis, George |
Kieseberg, Peter | Turkay, Cagatay |
Kiourt, Chairi | Valero-Mas, Jose J. |
Klimaszewski, Krzysztof | Veloso, Bruno Miguel |
Klimova, Alexandra | Wang, Hsiang-Chen |
Le, Nguyen-Thinh | Wang, Kai |
Leo, Marco | Wood, David |
Li, Guanpeng | Xu, Hongming |
Lin, Guo-Shiang | Yazdani, Maziar |
Lisjak, Dragutin | Yoo, Jung Sun |
López-Yáñez, Itzamá | Zaborowicz, Maciej |
Luk, Robert | Zambrano-Martinez, Jorge Luis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machine Learning and Knowledge Extraction Editorial Office. Acknowledgment to Reviewers of Machine Learning and Knowledge Extraction in 2021. Mach. Learn. Knowl. Extr. 2022, 4, 103-104. https://doi.org/10.3390/make4010005
Machine Learning and Knowledge Extraction Editorial Office. Acknowledgment to Reviewers of Machine Learning and Knowledge Extraction in 2021. Machine Learning and Knowledge Extraction. 2022; 4(1):103-104. https://doi.org/10.3390/make4010005
Chicago/Turabian StyleMachine Learning and Knowledge Extraction Editorial Office. 2022. "Acknowledgment to Reviewers of Machine Learning and Knowledge Extraction in 2021" Machine Learning and Knowledge Extraction 4, no. 1: 103-104. https://doi.org/10.3390/make4010005
APA StyleMachine Learning and Knowledge Extraction Editorial Office. (2022). Acknowledgment to Reviewers of Machine Learning and Knowledge Extraction in 2021. Machine Learning and Knowledge Extraction, 4(1), 103-104. https://doi.org/10.3390/make4010005