Hardness of Learning in Rich Environments and Some Consequences for Financial Markets
Abstract
1. Introduction
2. Literature Review
3. Hardness of Learning
3.1. Modeling Framework
3.2. Establishing Hardness Results
4. Some Consequences of Hardness
4.1. Rich Environments
4.2. Coping with Hardness
4.3. Illustrative Example: Information Percolation in Trading
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Grossman, S.J.; Stiglitz, J.E. On the Impossibility of Informationally Efficient Markets. Am. Econ. Rev. 1980, 70, 393–408. [Google Scholar]
- Glosten, L.; Milgrom, P. Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. J. Financ. Econ. 1985, 14, 71–100. [Google Scholar] [CrossRef]
- Kyle, A. Continuous Auctions and Insider Trading. Econometrica 1985, 5, 1315–1335. [Google Scholar] [CrossRef]
- Athey, S.; Wager, S. Policy learning with observational data. Econometrica 2021, 89, 133–161. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Newey, W.K.; Singh, R. Automatic Debiased Machine Learning of Causal and Structural Effects. arXiv 2021, arXiv:1809.05224. [Google Scholar]
- Dao, T.; Kamath, G.M.; Syrgkanis, V.; Mackey, L. Knowledge Distillation As Semiparametric Inference. In Proceedings of the International Conference on Learning Representations (ICLR’21), Vienna, Austria, 28–29 October 2021. [Google Scholar]
- Iskhakov, F.; Rust, J.; Schjerning, B. Machine learning and structural econometrics: Contrasts and synergies. Econom. J. 2020, 23, S81–S124. [Google Scholar] [CrossRef]
- Oprescu, M.; Syrgkanis, V.; Wu, Z.S. Orthogonal random forest for causal inference. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 4932–4941. [Google Scholar]
- Singh, R.; Sahani, M.; Gretton, A. Kernel Instrumental Variable Regression. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; pp. 4595–4607. [Google Scholar]
- Sverdrup, E.; Kanodia, A.; Zhou, Z.; Athey, S.; Wager, S. Policytree: Policylearning via doubly robust empirical welfare maximization over trees. J. Open Source Softw. 2020, 5, 2232. [Google Scholar] [CrossRef]
- Syrgkanis, V.; Lei, V.; Oprescu, M.; Hei, M.; Battocchi, K.; Lewis, G. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. In Proceedings of the Conference on Learning Theory, Phoenix, AZ, USA, 25–28 June 2019; pp. 15167–15176. [Google Scholar]
- Syrgkanis, V.; Zampetakis, M. Estimation and Inference with Trees and Forests in High Dimensions. In Proceedings of the Annual Workshop on Computational Learning Theory, Graz, Austria, 9–12 July 2020; pp. 3453–3454. [Google Scholar]
- Koller, D.; Friedman, N. Probabilistic Graphical Models; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufman Publishers: San Francisco, CA, USA, 1988. [Google Scholar]
- Chickering, D.M.; Heckerman, D.; Meek, C. Large-Sample Learning of Bayesian Networks is NP-Hard. J. Mach. Learn. Res. 2004, 5, 1287–1330. [Google Scholar] [CrossRef]
- Caravagna, G.; Ramazzotti, D. Learning the structure of Bayesian Networks via the Bootstrap. Neurocomputing 2021, 448, 48–59. [Google Scholar] [CrossRef]
- Constantinou, A. Learning Bayesian Networks That Enable Full Propagation of Evidence. IEEE Access 2020, 8, 124845–124856. [Google Scholar] [CrossRef]
- Malone, B.; Kangas, K.; Jarvisalo, M.; Koivisto, M.; Myllymäki, P. Empirical Hardness of Finding Optimal Bayesian Network Structures: Algorithm Selection and Runtime prediction. Mach. Learn. 2018, 107, 247–283. [Google Scholar] [CrossRef]
- Platas-López, A.; Mezura-Montes, E.; Cruz-Ramírez, N.; Guerra-Hernández, A. Discriminative Learning of Bayesian Network Parameters by Differential Evolution. Appl. Math. Model. 2021, 93, 244–256. [Google Scholar] [CrossRef]
- Talvitie, T.; Eggeling, R.; Koivisto, M. Learning Bayesian Networks with Local Structure, Mixed Variables, and Exact Algorithms. Int. J. Approx. Reason. 2019, 115, 69–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Rekatsinas, T. A Statistical Perspective on Discovering Functional Dependencies in Noisy Data. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, Portland, OR, USA, 14–19 June 2020; pp. 861–876. [Google Scholar] [CrossRef]
- Scanagatta, M.; Salmerón, A.; Stella, F. A survey on Bayesian network structure learning from data. Prog. Artif. Intell. 2019, 8, 425–439. [Google Scholar] [CrossRef]
- Rubinstein, A. Modeling Bounded. Rationality; The MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Spiegler, R. Bounded Rationality and Industrial Organization; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Ellis, A.; Piccione, M. Correlation Misperception in Choice. Am. Econ. Rev. 2017, 107, 1264–1292. [Google Scholar] [CrossRef]
- Esponda, I.; Puozo, D. Berk—Nash Equilibrium: A Framework for Modeling Agents With Misspecified Models. Econometrica 2016, 84, 1093–1130. [Google Scholar] [CrossRef]
- Eyster, E.; Rabin, M.; Vayanos, D. Financial Markets Where Traders Neglect the Informational Content of Prices. J. Financ. 2019, 74, 374–399. [Google Scholar] [CrossRef]
- Eyster, E.; Piccione, M. An Approach to Asset Pricing under Incomplete and Diverse Perceptions. Econometrica 2013, 81, 1483–1506. [Google Scholar] [CrossRef]
- Jehiel, P. Analogy-based Expectation Equilibrium. J. Econ. Theory 2005, 123, 81–104. [Google Scholar] [CrossRef]
- Jehiel, P. Analogy-Based Expectation Equilibrium and Related Concepts: Theory, Applications, and Beyond. World Congress of the Econometric Society. 2020. Available online: https://philippe-jehiel.enpc.fr/wp-content/uploads/sites/2/2020/10/SurveyABEE.pdf (accessed on 10 May 2021).
- Jehiel, P.; Koessler, F. Revisiting Games of Incomplete Information with Analogy-based Expectations. Games Econ. Behav. 2008, 62, 533–557. [Google Scholar] [CrossRef]
- Mailath, G.J.; Samuelson, L. Learning under Diverse World Views: Model-Based Inference. Am. Econ. Rev. 2020, 110, 1464–1501. [Google Scholar] [CrossRef]
- Spiegler, R. Bayesian Networks and Boundedly Rational Expectations. Q. J. Econ. 2016, 131, 1243–1290. [Google Scholar] [CrossRef]
- Steiner, J.; Stewart, C. Price distortions under coarse reasoning with frequent trade. J. Econ. Theory 2015, 159, 574–595. [Google Scholar] [CrossRef]
- Williamson, D.P.; Shmoys, D.B. The Design of Approximation Algorithms; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Esponda, I. Behavioral Equilibrium in Economies with Adverse Selection. Am. Econ. Rev. 2008, 98, 1269–1291. [Google Scholar] [CrossRef]
- Aumann, R. Interactive Epistemology I: Knowledge. Int. J. Game Theory 1999, 28, 263–300. [Google Scholar] [CrossRef]
- Ralston, A. De Bruijn Sequences—A Model Example of the Interaction of Discrete Mathematics and Computer Science. Math. Mag. 1982, 55, 131–143. [Google Scholar] [CrossRef]
- Piccione, M.; Rubinstein, A. Modeling the Economic Interaction of Agents with Diverse Abilities to Recognize Equilibrium Patterns. J. Eur. Econ. Assoc. 2003, 1, 212–223. [Google Scholar] [CrossRef]
- Milgrom, P.; Stokey, N. Information, trade and common knowledge. J. Econ. Theory 1982, 26, 17–27. [Google Scholar] [CrossRef]
Sparse Environment | Rich Environment | |
---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharya, A. Hardness of Learning in Rich Environments and Some Consequences for Financial Markets. Mach. Learn. Knowl. Extr. 2021, 3, 467-480. https://doi.org/10.3390/make3020024
Bhattacharya A. Hardness of Learning in Rich Environments and Some Consequences for Financial Markets. Machine Learning and Knowledge Extraction. 2021; 3(2):467-480. https://doi.org/10.3390/make3020024
Chicago/Turabian StyleBhattacharya, Ayan. 2021. "Hardness of Learning in Rich Environments and Some Consequences for Financial Markets" Machine Learning and Knowledge Extraction 3, no. 2: 467-480. https://doi.org/10.3390/make3020024
APA StyleBhattacharya, A. (2021). Hardness of Learning in Rich Environments and Some Consequences for Financial Markets. Machine Learning and Knowledge Extraction, 3(2), 467-480. https://doi.org/10.3390/make3020024