The Effects of Different Blending Methods on the Thermal, Mechanical, and Optical Properties of PMMA/SiO2 Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of the SiO2 and MPS@SiO2 Nanoparticles
2.3. Synthesis of Pristine PMMA, PMMA/SiO2 Composites with Different Methods
2.4. Structural Characterization of the PMMA/SiO2 Composites
2.5. Mechanical and Morphology of PMMA/SiO2 Composites
3. Results and Discussion
3.1. Characterization of SiO2 and MPS@SiO2 Nanoparticles
3.2. Characterization of the PMMA/SiO2 Composites
3.3. Mechanical Properties of the PMMA/SiO2 Composites
3.4. Morphology of the PMMA/SiO2 Composites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boz, Z. Packaging. In Encyclopedia of Food Safety, 2nd ed.; Smithers, G.W., Ed.; Academic Press: Oxford, UK, 2024; pp. 631–647. [Google Scholar] [CrossRef]
- Yadav, R.; Singh, M.; Shekhawat, D.; Lee, S.-Y.; Park, S.-J. The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review. Compos. Part A Appl. Sci. Manuf. 2023, 175, 107775. [Google Scholar] [CrossRef]
- Bommegowda, K.B.; Renukappa, N.M.; Rajan, J.S. Role of Fillers in Controlling the Properties of Polymer Composites: A Review; Springer International Publishing: Cham, Switzerland, 2021; pp. 637–648. [Google Scholar]
- Van de Werken, N.; Tekinalp, H.; Khanbolouki, P.; Ozcan, S.; Williams, A.; Tehrani, M. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Addit. Manuf. 2020, 31, 100962. [Google Scholar] [CrossRef]
- Zheng, X.; Ryeon Kim, B.; Joo Hong, S.; Lee, J.-G.; Woo Park, C. Heat transfer analysis of carbon fiber-reinforced corrugated polymer plate heat exchangers. Appl. Therm. Eng. 2024, 244, 122684. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Ren, Y.; Wong, L.M.; Liu, H.; Wang, S. Galvanic corrosion protection of Al-alloy in contact with carbon fibre reinforced polymer through plasma electrolytic oxidation treatment. Sci. Rep. 2022, 12, 4532. [Google Scholar] [CrossRef]
- Luo, G.-M.; Liang, C.-H. Strength Verification of a Carbon-fibre-reinforced Plastic Patch Used to Repair a Cracked Aluminium Alloy Plate. Appl. Compos. Mater. 2024, 31, 265–289. [Google Scholar] [CrossRef]
- Pandiaraj, V.; Ramkumar, P.; Tharik, J.M.; Vikram, R.; Logasubramani, S.; Vivek, C.M. Chemical resistance and mechanical characteristic evaluation of glass fiber reinforced plastic (GFRP) and hybrid natural composites. Interactions 2024, 245, 173. [Google Scholar] [CrossRef]
- Beck, R.; Prewitz, M. Experimental investigation of tensile properties of glass capillary hybridized carbon fiber reinforced plastic (GCRP) for structurally integrated hydrogen storage. Int. J. Hydrogen Energy 2024, 62, 321–330. [Google Scholar] [CrossRef]
- Panpho, P.; Charoonsuk, T.; Vittayakorn, N.; Bongkarn, T.; Sumang, R. Flexible hybrid piezo/triboelectric energy harvester based on a lead-free BNT-BT-KNN ceramic-polymer composite film. Ceram. Int. 2024. [Google Scholar] [CrossRef]
- Monia, T.; Ridha, B.C. Polymer-ceramic composites for bone challenging applications: Materials and manufacturing processes. J. Thermoplast. Compos. Mater. 2024, 37, 1540–1557. [Google Scholar] [CrossRef]
- Pavlyuchkova, E.A.; Malkin, A.Y.; Kornev, Y.V.; Simonov-Emel’yanov, I.D. Distribution of Filler in Polymer Composites. Role of Particle Size and Concentration. Polym. Sci. Ser. A 2024, 66, 113–120. [Google Scholar] [CrossRef]
- Akhyar; Gani, A.; Ibrahim, M.; Ulmi, F.; Farhan, A. The influence of different fiber sizes on the flexural strength of natural fiber-reinforced polymer composites. Results Mater. 2024, 21, 100534. [Google Scholar] [CrossRef]
- Albdiry, M. Effect of melt blending processing on mechanical properties of polymer nanocomposites: A review. Polym. Bull. 2024, 81, 5793–5821. [Google Scholar] [CrossRef]
- Ali, Z.; Yaqoob, S.; Yu, J.; D’Amore, A. Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications. Compos. Part C Open Access 2024, 13, 100434. [Google Scholar] [CrossRef]
- Liu, T.; Zhong, J. Effect of Dispersion of Nano-inorganic Particles on the Properties of Polymer Nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 563, 022026. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Bahramnia, H.; Semnani, H.M.; Habibolahzadeh, A.; Abdoos, H. Epoxy/polyurethane hybrid nanocomposite coatings reinforced with MWCNTs and SiO2 nanoparticles: Processing, mechanical properties and wear behavior. Surf. Coat. Technol. 2021, 415, 127121. [Google Scholar] [CrossRef]
- Tao, J.; Dong, L.; Wu, Y.; Liu, X.; Xie, J.; Wu, H.; Ran, Q. Fabrication of room temperature self-healing, robust superhydrophobic coatings via spraying dual cross-linking supramolecular silicone polymer/SiO2 composite. Compos. Part B Eng. 2024, 273, 111245. [Google Scholar] [CrossRef]
- Made Joni, I.; Vanitha, M.; Panatarani, C.; Faizal, F. Dispersion of amorphous silica nanoparticles via beads milling process and their particle size analysis, hydrophobicity and anti-bacterial activity. Adv. Powder Technol. 2020, 31, 370–380. [Google Scholar] [CrossRef]
- Zhao, Z.; Liang, N.; Shimizu, T.; Shingubara, S.; Ito, T. Antifouling performance against SiO2 particulate matter adhesion of Cyclo Olefin Polymer nanopillar surfaces. Environ. Sci. Nano 2024. [Google Scholar] [CrossRef]
- El Far, B.; Rizvi, S.M.M.; Nayfeh, Y.; Shin, D. Investigation of heat capacity and viscosity enhancements of binary carbonate salt mixture with SiO2 nanoparticles. Int. J. Heat Mass Transf. 2020, 156, 119789. [Google Scholar] [CrossRef]
- Jeon, J.G.; So, B.J.; Choi, Y.; Han, Y.; Kim, T.; Shin, G.; Lee, J.H.; Kim, H.J.; Kim, J.H.; Farhangdoust, S.; et al. Thermo-mechanical properties of shape-recoverable structural composites via vacuum-assisted resin transfer molding process and in-situ polymerization of poly (tert-butyl acrylate-co-acrylic acid) copolymer. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108360. [Google Scholar] [CrossRef]
- Formon, G.J.M.; Jayaratnam, J.; Guibert, C.; Van Zee, N.J.; Nicolaÿ, R. Cross-Linking Vitrimers after Melt Processing Using Supramolecularly Masked Dynamic Cross-Linkers. Macromolecules 2024, 57, 8277–8286. [Google Scholar] [CrossRef]
- Feng, T.; Xu, P.; Wang, Y.; Gao, Y.; Wang, H.; Dong, J.; Peng, H.-X.; Qin, F. Magnetic fiber enabled curing electrogram: Real-time process monitoring for thermosetting polymer materials. Compos. Sci. Technol. 2022, 227, 109598. [Google Scholar] [CrossRef]
- Alghamdi, M.N. Thermoplastic composite system using polymer blend and fillers. J. King Saud Univ. Eng. Sci. 2022, 34, 361–365. [Google Scholar] [CrossRef]
- Tavakoli, M.; Bakhtiari, S.S.E.; Karbasi, S. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation. Int. J. Biol. Macromol. 2020, 149, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Merajikhah, A.; Soleimani, M. Bone Cement and Occupational Hazards for Healthcare Providers and Patients: A Narrative Review. Curr. Surg. Rep. 2024, 12, 252–259. [Google Scholar] [CrossRef]
- Wan, Z.; Gao, Y.; Wang, Y.; Zhang, X.; Gao, X.; Zhou, T.; Zhang, Z.; Li, Z.; Lin, Y.; Wang, B.; et al. High-purity butoxydibutylborane catalysts enable the low-exothermic polymerization of PMMA bone cement with enhanced biocompatibility and osseointegration. J. Mater. Chem. B 2024, 2, 8911–8918. [Google Scholar] [CrossRef]
- Wang, X.-D.; Shen, Z.-X.; Sang, T.; Cheng, X.-B.; Li, M.-F.; Chen, L.-Y.; Wang, Z.-S. Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J. Colloid Interface Sci. 2010, 341, 23–29. [Google Scholar] [CrossRef]
- Young, J.B.; Hughes, R.W.; Tamura, A.M.; Bailey, L.S.; Stewart, K.A.; Sumerlin, B.S. Bulk depolymerization of poly(methyl methacrylate) via chain-end initiation for catalyst-free reversion to monomer. Chem 2023, 9, 2669–2682. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Inaba, A.; Brown, J.E.; Hatada, K.; Kitayama, T.; Masuda, E. Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules 1986, 19, 2160–2168. [Google Scholar] [CrossRef]
- Zhan, Y.; Nan, B.; Liu, Y.; Jiao, E.; Shi, J.; Lu, M.; Wu, K. Multifunctional cellulose-based fireproof thermal conductive nanocomposite films assembled by in-situ grown SiO2 nanoparticle onto MXene. Chem. Eng. J. 2021, 421, 129733. [Google Scholar] [CrossRef]
- Bee, S.-L.; Abdullah, M.A.A.; Mamat, M.; Bee, S.-T.; Sin, L.T.; Hui, D.; Rahmat, A.R. Characterization of silylated modified clay nanoparticles and its functionality in PMMA. Compos. Part B Eng. 2017, 110, 83–95. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Li, D.; Zuo, X.; Yang, H. Multifunctional composite phase change materials: Preparation, enhanced properties and applications. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108331. [Google Scholar] [CrossRef]
- Yuan, M.; Huang, D.; Zhao, Y. Development of Synthesis and Application of High Molecular Weight Poly(Methyl Methacrylate). Polymers 2022, 14, 2632. [Google Scholar] [CrossRef]
Sample | Young’s Modulus (GPa) | Yield Strength (MPa) | Fracture Strength (MPa) | Maximum Elongation (%) |
---|---|---|---|---|
PMMA | 0.26 ± 0.18 | 7.02 ± 4.34 | 1.92 ± 1.05 | 3.64 ± 0.01 |
Blend PMMA/SiO2 | 0.36 ± 0.02 | 11.08 ± 2.14 | 6.11 ± 4.72 | 4.56 ± 2.05 |
In situ PMMA/SiO2 | 0.43 ± 0.06 | 10.64 ± 3.81 | 6.81 ± 2.53 | 3.86 ± 1.71 |
PMMA-co-SiO2 | 0.25 ± 0.05 | 4.08 ± 1.98 | 2.55 ± 0.30 | 2.89 ± 0.16 |
PMMA-b-SiO2 | 0.19 ± 0.06 | 5.33 ± 0.94 | 1.91 ± 0.61 | 4.78 ± 0.16 |
Hardness | 2H | 3H | 4H | 5H | 6H | |
---|---|---|---|---|---|---|
Sample | ||||||
PMMA | O | X | X | X | X | |
Blend PMMA/SiO2 | O | O | O | O | X | |
In situ PMMA/SiO2 | O | O | X | X | X | |
PMMA-co-SiO2 | O | O | X | X | X | |
PMMA-b-SiO2 | O | O | O | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-K.; Xie, J.-W.; Tsai, P.-J.; Wang, H.-Y.; Lu, Z.-W.; Lin, T.-Y.; Kuo, C.-Y. The Effects of Different Blending Methods on the Thermal, Mechanical, and Optical Properties of PMMA/SiO2 Composites. J. Compos. Sci. 2024, 8, 369. https://doi.org/10.3390/jcs8090369
Lin C-K, Xie J-W, Tsai P-J, Wang H-Y, Lu Z-W, Lin T-Y, Kuo C-Y. The Effects of Different Blending Methods on the Thermal, Mechanical, and Optical Properties of PMMA/SiO2 Composites. Journal of Composites Science. 2024; 8(9):369. https://doi.org/10.3390/jcs8090369
Chicago/Turabian StyleLin, Chi-Kai, Jia-Wei Xie, Ping-Jui Tsai, Hao-Yu Wang, Zhi-Wei Lu, Tung-Yi Lin, and Chih-Yu Kuo. 2024. "The Effects of Different Blending Methods on the Thermal, Mechanical, and Optical Properties of PMMA/SiO2 Composites" Journal of Composites Science 8, no. 9: 369. https://doi.org/10.3390/jcs8090369
APA StyleLin, C.-K., Xie, J.-W., Tsai, P.-J., Wang, H.-Y., Lu, Z.-W., Lin, T.-Y., & Kuo, C.-Y. (2024). The Effects of Different Blending Methods on the Thermal, Mechanical, and Optical Properties of PMMA/SiO2 Composites. Journal of Composites Science, 8(9), 369. https://doi.org/10.3390/jcs8090369