Shear Behavior and Modeling of Short Glass Fiber- and Talc-Filled Recycled Polypropylene Composites at Different Operating Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. ICP Model
Method to Determine the Parameters in the New Constitutive Equation
3. Results and Discussion
3.1. Shear Tests and Validation of the ICP Model
3.1.1. Recycled 30 wt.% Talc-Filled PP (PP65.40)
3.1.2. Recycled 30 wt.% Short Glass Fiber-Reinforced PP (PP140.80)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maxwell, J. Plastics in the Automotive Industry, 1st ed.; Woodhead Publishing: Cambridge, UK, 1994. [Google Scholar]
- Ciardiello, R. The mechanical performance of re-bonded and healed adhesive joints activable through induction heating systems. Materials 2021, 14, 6351. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Ahmad, Z.; Mazlan, S.A.; Johari, M.A.F.; Siebert, G.; Petrů, M.; Koloor, S.S.R. Lightweight Glass Fiber-Reinforced Polymer Composite for Automotive Bumper Applications: A Review. Ploymers 2023, 15, 193. [Google Scholar] [CrossRef] [PubMed]
- Niessner, N. Recycling of Plastics; Carl Hanser Verlag GmbH & Co., KG: München, Germany, 2023. [Google Scholar] [CrossRef]
- Kooduvalli, K.; Unser, J.; Ozcan, S.; Vaidya, U.K. Embodied Energy in Pyrolysis and Solvolysis Approaches to Recycling for Carbon Fiber-Epoxy Reinforced Composite Waste Streams. Recycling 2022, 7, 6. [Google Scholar] [CrossRef]
- Cheng, S.; Wong, K.H.; Shen, C.P.; Liu, X.L.; Rudd, C. Shredding energy consumption of GFRP composite waste. J. Phys. Conf. Ser. 2021, 1765, 012015. [Google Scholar] [CrossRef]
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Recycling of Reinforced Glass Fibers Waste: Current Status. Materials 2022, 15, 1596. [Google Scholar] [CrossRef]
- Vaidya, U.; Wasti, S.; Tekinalp, H.; Hassen, A.A.; Ozcan, S. Recycled Glass Polypropylene Composites from Transportation Manufacturing Waste. J. Compos. Sci. 2023, 7, 99. [Google Scholar] [CrossRef]
- Ramsteiner, F.; Theysohn, R. The Influence of Fibre Diameter on the Tensile Behaviour of Short-glass-fibre Reinforced Polymers. Compos. Sci. Technol. 1985, 24, 231–240. [Google Scholar] [CrossRef]
- Mortazavian, S.; Fatemi, A. Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Compos. B Eng. 2015, 72, 116–129. [Google Scholar] [CrossRef]
- Farooque, R.; Asjad, M.; Rizvi, S. A current state of art applied to injection moulding manufacturing process—A review. Mater. Today Proc. 2020, 43, 441–446. [Google Scholar] [CrossRef]
- Mortazavian, S.; Fatemi, A. Tensile behavior and modeling of short fiber-reinforced polymer composites including temperature and strain rate effects. J. Thermoplast. Compos. Mater. 2017, 30, 1414–1437. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Mallick, P.K. Effects of Temperature and Strain Rate on the Tensile Behavior of Short Fiber Reinforced Polyamide-6. Polym. Compos. 2002, 23, 858–871. [Google Scholar] [CrossRef]
- G’Sell, C.; Boni, S.; Shrivastava, S. Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains. J. Mater. Sci. 1983, 18, 903–918. [Google Scholar] [CrossRef]
- D5379/D5379M; Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Weinberg, M. Shear testing of neat thermoplastic resins and their unidirectional graphite composites. Composites 1987, 18, 386–392. [Google Scholar] [CrossRef]
- Codolini, A.; Li, Q.; Wilkinson, A. Mechanical characterization of thin injection-moulded polypropylene specimens under large in-plane shear deformations. Polym. Test. 2018, 69, 485–489. [Google Scholar] [CrossRef]
- Xiang, C.; Sue, H.-J. Iosipescu shear deformation and fracture in model thermoplastic polyolefins. J. Appl. Polym. Sci. 2001, 82, 3201–3214. [Google Scholar] [CrossRef]
- Xiao, X. Evaluation of a composite damage constitutive model for PP composites. Compos. Struct. 2007, 79, 163–173. [Google Scholar] [CrossRef]
- Temimi-Maaref, N.; Burr, A.; Billon, N. Damaging processes in polypropylene compound: Experiment and modeling. Polym. Sci. Ser. A 2008, 50, 558–567. [Google Scholar] [CrossRef]
- Daiyan, H.; Andreassen, E.; Grytten, F.; Osnes, H.; Gaarder, R.H. Shear Testing of Polypropylene Materials Analysed by Digital Image Correlation and Numerical Simulations. Exp. Mech. 2012, 52, 1355–1369. [Google Scholar] [CrossRef]
- Williams, K.V.; Vaziri, R. Application of a damage mechanics model for predicting the impact response of composite materials. Comput. Struct. 2001, 79, 997–1011. Available online: www.elsevier.com/locate/compstruc (accessed on 5 June 2024). [CrossRef]
- Williams, K.V.; Vaziri, R.; Poursartip, A. A physically based continuum damage mechanics model for thin laminated composite structures. Int. J. Solids Struct. 2003, 40, 2267–2300. [Google Scholar] [CrossRef]
- Tan, W.; Falzon, B.G. A crystal plasticity phenomenological model to capture the non-linear shear response of carbon fibre reinforced composites. Int. J. Lightweight Mater. Manuf. 2021, 4, 99–109. [Google Scholar] [CrossRef]
- Iadarola, A.; Ciardiello, R.; Paolino, D.S. A new effective phenomenological constitutive model for semi-crystalline and amorphous polymers. Polym. Eng. Sci. 2024, 64, 3730–3750. [Google Scholar] [CrossRef]
- Zhou, Y.; Mallick, P.K. Effects of temperature and strain rate on the tensile behavior of unfilled and talc-filled polypropylene. Part I: Experiments. Polym. Eng. Sci. 2002, 42, 2449–2460. [Google Scholar] [CrossRef]
- YZhou, Y.; Mallick, P.K. Effects of temperature and strain rate on the tensile behavior of unfilled and talc-filled polypropylene. Part II: Constitutive equation. Polym. Eng. Sci. 2002, 42, 2461–2470. [Google Scholar] [CrossRef]
- Stamopoulos, A.G.; Gazza, F.; Neirotti, G. Assessment of the compressive mechanical behavior of injection molded E-glass/polypropylene by mechanical testing and X-ray computed tomography. Int. J. Adv. Manuf. Technol. 2023, 126, 209–223. [Google Scholar] [CrossRef]
- Ciardiello, R.; Belingardi, G.; Martorana, B.; Brunella, V. Effect Of Accelerated Ageing Cycles on the Physical And Mechanical Properties of a Reversible Thermoplastic Adhesive. J. Adhes. 2020, 96, 1003–1026. [Google Scholar] [CrossRef]
- Lin, Y.; Li, X.; Meng, L.; Chen, X.; Lv, F.; Zhang, Q.; Zhang, R.; Li, L. Structural Evolution of Hard-Elastic Isotactic Polypropylene Film during Uniaxial Tensile Deformation: The Effect of Temperature. Macromolecules 2018, 51, 2690–2705. [Google Scholar] [CrossRef]
- Huang, P.-Y.; Guo, Z.-S.; Feng, J.-M. General Model of Temperature-dependent Modulus and Yield Strength of Thermoplastic Polymers. Chin. J. Polym. Sci. (Engl. Ed.) 2020, 38, 382–393. [Google Scholar] [CrossRef]
Material | Melt Flow Rate 1 [g/10 min] | Recycled Percentage | Flexural Modulus 2 [MPa] | Tensile Strength 2 [MPa] | Izod Impact Strength 2 (Notched) [kJ/m2] | Heat Deflection Temperature 3 (HDT) |
---|---|---|---|---|---|---|
PP 65.40 | 9 | 30% | 2350 | 20 | 5 | 63 |
PP 140.80 | 4 | 30% | 5500 | 82 | 10 | 142 |
Parameter | Value | Unit |
---|---|---|
Screw diameter | 50 | mm |
Dosage volume | 240 | cm3 |
Dosage counterpressure | 70 | bar |
Cylinder inner temperature | 220 | °C |
Die inner temperature | 35 | °C |
Speed | 145 | mm/s |
Injection flow | 80 | cm3/s |
Injection volume | 52 | cm3 |
Commutation pressure | 364 | bar |
Holding pressure | 350 | bar |
Holding time | 20 | s |
Cycle time | 62 | s |
Temperature | −40 °C | 23 °C | 85 °C |
---|---|---|---|
G [MPa] | 2160.0 | 1016.7 | 210.1 |
USS [MPa] | 36.1 | 17.5 | 6.0 |
Shear strain at USS [%] | 3.2 | 14.2 | 17.7 |
R2 [%] | 99.96 | 99.70 | 99.73 |
Temperature | −40 °C | 23 °C | 85 °C |
---|---|---|---|
G [MPa] | 2386.0 | 1393.1 | 908.0 |
USS [MPa] | 72.5 | 41.8 | 19.4 |
Shear strain at USS [%] | 6.10 | 8.8 | 14.3 |
R2 [%] | 99.97 | 99.75 | 99.31 |
Temperature | −40 °C | 23 °C | 85 °C |
---|---|---|---|
G [MPa] | +10% | +37% | +332% |
USS [MPa] | +101% | +139% | +223% |
Temperature | 23 °C | 85 °C |
---|---|---|
Polynomial degree () | 8 | 9 |
R2 [%] | 99.79 | 99.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iadarola, A.; Di Matteo, P.; Ciardiello, R.; Gazza, F.; Lambertini, V.G.; Brunella, V.; Paolino, D.S. Shear Behavior and Modeling of Short Glass Fiber- and Talc-Filled Recycled Polypropylene Composites at Different Operating Temperatures. J. Compos. Sci. 2024, 8, 345. https://doi.org/10.3390/jcs8090345
Iadarola A, Di Matteo P, Ciardiello R, Gazza F, Lambertini VG, Brunella V, Paolino DS. Shear Behavior and Modeling of Short Glass Fiber- and Talc-Filled Recycled Polypropylene Composites at Different Operating Temperatures. Journal of Composites Science. 2024; 8(9):345. https://doi.org/10.3390/jcs8090345
Chicago/Turabian StyleIadarola, Andrea, Pietro Di Matteo, Raffaele Ciardiello, Francesco Gazza, Vito Guido Lambertini, Valentina Brunella, and Davide Salvatore Paolino. 2024. "Shear Behavior and Modeling of Short Glass Fiber- and Talc-Filled Recycled Polypropylene Composites at Different Operating Temperatures" Journal of Composites Science 8, no. 9: 345. https://doi.org/10.3390/jcs8090345
APA StyleIadarola, A., Di Matteo, P., Ciardiello, R., Gazza, F., Lambertini, V. G., Brunella, V., & Paolino, D. S. (2024). Shear Behavior and Modeling of Short Glass Fiber- and Talc-Filled Recycled Polypropylene Composites at Different Operating Temperatures. Journal of Composites Science, 8(9), 345. https://doi.org/10.3390/jcs8090345