Thermal Effects and Glass Crystallization in Composite Matrices for Immobilization of the Rare-Earth Element–Minor Actinide Fraction of High-Level Radioactive Waste
Abstract
:1. Introduction
2. REE and MA Contents in SNF and Reprocessing HLW
3. Effect of Radiogenic Heat on the Vitreous Matrix of the REE–MA Fraction
4. Estimation of Temperature of the REE–MA Fraction Matrix When REEs Are Stable
5. Temperature of the REE–MA Fraction Matrix with Decaying REE
6. General Patterns of Crystallization of Vitreous Matrices Containing HLW
7. Experimental Studies of Crystallization of Glasses with REEs and Actinides
7.1. Zirconolite Glass–Ceramics with REE
7.2. Britholite Glass–Ceramics
7.3. Monazite Glass–Ceramics
8. Synthesis of Glass–Ceramics by Heating a Mixture of Glass and Components of the Crystalline Phases
9. Assessment of the Possibility for Deep-Borehole Disposal of REE–Actinide Matrices
10. Requirements for the Selection of HLW Matrices and Their Fractions
11. Use of Self-Heating of HLW for Deep Disposal
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IAEA. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050; International Atomic Energy Agency (IAEA): Vienna, Austria, 2023; 137p. [Google Scholar]
- NEA. Meeting Climate Change Targets. The Role of Nuclear Energy; NEA No. 7628; OECD/NEA Publishing: Paris, France, 2022; 49p.
- IEA. Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach 2023 Update; International Energy Agency: Paris, France, 2023; 224p. [Google Scholar]
- NEA. Transition towards a Sustainable Nuclear Fuel Cycle; OECD/NEA Publishing: Paris, France, 2013; 67p.
- Petrov, V.A.; Yudintsev, S.V. Mineral resources of the Russian nuclear industry and isolation of radioactive waste. Geol. Ore Depos. 2023, 65, 469–480. [Google Scholar] [CrossRef]
- Adamov, E.O.; Asmolov, V.G.; Bolshov, L.A.; Ivanov, V.K. Two-component nuclear power. Bull. Russ. Acad. Sci. 2021, 91, 450–458. (In Russian) [Google Scholar]
- IAEA. Implications of Partitioning and Transmutation in Radioactive Waste Management; Rep. 435; IAEA: Vienna, Austria, 2004; 126p. [Google Scholar]
- Zilberman, B.Y.; Puzikov, E.A.; Ryabkov, D.V.; Makarychev-Mikhailov, M.N.; Shadrin, A.Y.; Fedorov, Y.S.; Simonenko, V.A. Development of a technological structure for processing irradinated nuclear fuel at npp using water extraction methods, its analysis and approaches to modeling. At. Energy 2009, 107, 273–284. (In Russian) [Google Scholar] [CrossRef]
- Nash, K.L.; Lumetta, G.J. (Eds.) Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment; Woodhead: Cambridge, UK, 2011; 492p. [Google Scholar]
- NEA. Spent Nuclear Fuel Reprocessing Flowsheet; NEA OECD: Paris, France, 2012; 120p.
- Modolo, G.; Geist, A.; Miguirditchian, M. Minor actinide separations in the reprocessing of spent nuclear fuels: Recent advances in Europe. In Reprocessing and Recycling of Spent Nuclear Fuel; Taylor, R., Ed.; Woodhead Publishing Series in Energy: Sawston, UK, 2015; Chapter 10; pp. 245–287. [Google Scholar]
- Choppin, G.; Liljenzin, J.-O.; Rydberg, J.; Ekberg, C. The Nuclear Fuel Cycle. In Radiochemistry and Nuclear Chemistry, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013; Chapter 21; pp. 685–751. [Google Scholar]
- Veliscek-Carolan, J. Separation of actinides from spent nuclear fuel: A review. J. Hazard. Mater. 2016, 318, 266–281. [Google Scholar] [CrossRef]
- NEA. State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry; OECD/NEA Publishing: Paris, France, 2018; 299p.
- Baron, P.; Cornet, S.M.; Collins, E.D.; De Angelis, G.; Del Cul, G.; Fedorov, Y.; Glatz, J.P.; Ignatiev, V.; Inoue, T.; Khaperskaya, A.; et al. A review of separation processes proposed for advanced fuel cycles based on technology readiness level assessments. Progr. Nucl. Energy 2019, 117, 103091. [Google Scholar] [CrossRef]
- Caurant, D.; Loiseau, P.; Majérus, O.; Aubin-Chevaldonnet, V.; Bardez, I.; Quintas, A. Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes; Nova Science Publishers: New York, NY, USA, 2009; p. 445. [Google Scholar]
- Ewing, R.C.; Weber, W.J. Actinide wasteforms and radiation effects. In The Chemistry of the Actinide and Transactinide Elements; Chapter 35; Morss, L.R., Edelstein, N.M., Fuger, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 6, pp. 3813–3889. [Google Scholar]
- Hardin, E.; Hadgu, T.; Clayton, D.; Howard, R.; Greenberg, H.; Blink, J.; Sharma, M.; Sutton, M.; Carter, J.; Dupont, M.; et al. Repository Reference Disposal Concepts and Thermal Load Management Analysis. FCRD-UFD-2012-00219. November 2012. Available online: https://www.energy.gov/ne/articles/repository-reference-disposal-concepts-and-thermal-load-management-analysis (accessed on 8 December 2023).
- Carter, J.T.; Luptak, A.J.; Gastelum, J.; Stockman, C.; Miller, A. Fuel Cycle Potential Waste Inventory for Disposition; Savannah River National Laboratory: Aiken, SC, USA, 2012; 328p.
- Collins, E.D.; Jubin, R.T.; DelCul, G.D.; Spencer, B.B.; Renier, J.P. Advanced Fuel Cycle Treatment, Recycling, and Disposal of Nuclear Waste. In Proceedings of the International Conference “Global 2009”, Paris, France, 6–11 September 2009; pp. 2595–2602. [Google Scholar]
- NEA. Minor Actinide Burning in Thermal Reactors; OECD/NEA Publishing: Paris, France, 2013; Report 6997; 78p.
- Yudintsev, S.V.; Nickolsky, M.S.; Stefanovsky, O.I.; Nikonov, B.S. Crystal chemistry of titanates and zirconates of rare earths–possible matrices for actinide isolation. Radiochemistry 2022, 64, 667–679. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Nickolsky, M.S.; Ojovan, M.I.; Stefanovsky, O.I.; Malkovsky, V.I.; Ulanova, A.S.; Blackburn, L.R. Zirconolite matrices for the immobilization of REE-Actinide wastes. Ceramics 2023, 6, 1573–1622. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Kidari, A.; Magnin, M.; Caraballo, R.; Tribet, M.; Doreau, F.; Peuget, S.; Dussossoy, J.-L.; Bardez-Giboire, I.; Jégou, C. Solubility and partitioning of minor-actinides and lanthanides in alumino-borosilicate nuclear glass. Procedia Chem. 2012, 7, 554–558. [Google Scholar] [CrossRef]
- Bardez-Giboire, I.; Kidari, A.; Magnin, M.; Dussossoy, J.-L.; Peuget, S.; Caraballo, R.; Tribet, M.; Doreau, F.; Jegou, C. Americium and trivalent Lanthanides incorporation in high-level waste glass-ceramics. J. Nucl. Mater. 2017, 492, 231–238. [Google Scholar] [CrossRef]
- Tribet, M.; J’egou, C.; Miro, S.; Delrieu, J.; Doreau, F.; Peuget, S. Trivalent actinides and lanthanides incorporation and partitioning in UMo glass-ceramics. J. Nucl. Mater. 2023, 585, 154634. [Google Scholar] [CrossRef]
- Ringwood, A.E.; Kesson, S.E.; Reeve, K.D.; Levins, D.M.; Ramm, E.J. Synroc. In Radioactive Wasteforms for the Future; Lutze, W., Ewing, R.C., Eds.; Elsevier: New York, NY, USA, 1988; Chapter 4; pp. 233–334. [Google Scholar]
- Sizgek, G.D. Thermal consideration in a very deep borehole nuclear waste repository for Synroc. Mat. Res. Soc. Symp. Proc. 2001, 663, 2001. [Google Scholar] [CrossRef]
- Choi, J.-H.; Eun, H.-C.; Lee, T.-K.; Lee, K.-R.; Han, S.-Y.; Jeon, M.-K.; Park, H.-S.; Ahn, D.-H. Estimation of centerline temperature of the wasteform for the rare earth waste generated from pyrochemical process. J. Nucl. Mater. 2017, 483, 82–89. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Malkovsky, V.I.; Kalenova, M.Y. The thermal field around a borehole repository of radioactive waste. Dokl. Earth Sci. 2021, 498, 525–532. [Google Scholar] [CrossRef]
- McCloy, J.S.; Schuller, S. Vitrification of wastes: From unwanted to controlled crystallization, a review. Comptes Rendus. Géoscience 2022, 354 (Suppl. S1), 121–160. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Yudintsev, S.V. Glass, ceramic, and glass-crystalline matrices for HLW immobilisation. Open Ceram. 2023, 14, 100355. [Google Scholar] [CrossRef]
- Hayward, P.J. Glass-ceramics. In Radioactive Wasteforms for the Future; Lutze, W., Ewing, R.C., Eds.; Elsevier: New York, NY, USA, 1988; Chapter 7; pp. 427–493. [Google Scholar]
- Donald, I.W.; Metcalfe, B.L.; Taylor, R.N.J. The immobilization of high-level radioactive wastes using ceramics and glasses. J. Mater. Sci. 1997, 32, 5851–5887. [Google Scholar] [CrossRef]
- Crum, J.; Maio, V.; McCloy, J.; Scott, C.; Riley, B.; Benefiel, B.; Vienna, J.; Archibald, K.; Rodriguez, C.; Rutledge, V.; et al. Cold crucible induction melter studies for making glass ceramic wasteforms: A feasibility assessment. J. Nucl. Mater. 2014, 444, 481–492. [Google Scholar] [CrossRef]
- Caurant, D.; Majérus, O. Glasses and glass-ceramics for nuclear waste immobilization. In Encyclopedia of Materials: Technical Ceramics and Glasses; Pomeroy, M., Ed.; Elsevier: Oxford, UK, 2021; Volume 2, pp. 762–7904. [Google Scholar]
- Ojovan, M.I.; Petrov, V.A.; Yudintsev, S.V. Glass crystalline materials as advanced nuclear wasteforms. Sustainability 2021, 13, 4117. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, L.; Ionescu, M.; Gregg, D.J. Current advances on titanate glass-ceramic composite materials as wasteforms for actinide immobilization: A technical review. J. Eur. Ceram. Soc. 2022, 42, 1852–1876. [Google Scholar] [CrossRef]
- Gombert, D.; Piet, S.; Trickel, T.; Carter, J.; Vienna, J.; Ebert, B. Combined Waste form Cost Trade Study; Contract DE-AC07-05ID14517; Idaho National Laboratory: Idaho Falls, ID, USA, 2008; 27p.
- Gombert, D.; Ebert, W.; Marra, J.; Jubin, R.; Vienna, J. Global Nuclear Energy Partnership Waste Treatment Baseline. In Proceedings of the International Conference Atalante 2008, Montpellier, France, 19–22 May 2008. [Google Scholar]
- Choi, J.-H.; Cho, I.-H.; Eun, H.-C.; Park, H.-S.; Cho, Y.-Z.; Lee, K.-R.; Park, G.-I.; Kim, S.-H.; Shin, C.-H.; Kim, J.-K. Fabrication and physical properties of lanthanide oxide glass wasteform for the immobilization of lanthanide oxide wastes generated from pyrochemical process. J. Radioanal. Nucl. Chem. 2014, 299, 1731–1738. [Google Scholar] [CrossRef]
- Fadzil, S.M.; Hrma, P.; Schweiger, M.J.; Riley, B.J. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste. J. Nucl. Mater. 2015, 465, 657–663. [Google Scholar] [CrossRef]
- Kashcheev, V.A.; Logunov, M.V.; Shadrin, A.Y.; Rykunova, A.A.; Schmidt, O.V. Strategy for the fractionation of HLW from SNF reprocessing. Radioact. Waste 2022, 2, 6–16. (In Russian) [Google Scholar] [CrossRef]
- Donald, I.W. Waste Immobilisation in Glass and Ceramic Based Hosts; Wiley: Hoboken, NJ, USA, 2010; 507p. [Google Scholar]
- Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. An Introduction to Nuclear Waste Immobilisation, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; 497p. [Google Scholar]
- Zheng, Q.; Zhang, Y.; Montazerian, M.; Gulbiten, O.; Mauro, J.C.; Zanotto, E.D.; Yue, Y. Understanding glass through differential scanning calorimetry. Chem. Rev. 2019, 119, 7848–7939. [Google Scholar] [CrossRef] [PubMed]
- Vernaz, E.; Gin, S.; Veyer, C. Waste glass. In Comprehensive Nuclear Materials; Konings, R., Allen, T., Stoller, R., Yamanaka, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 5, pp. 451–483. [Google Scholar]
- McCloy, J.S.; Goel, A. Glass-ceramics for nuclear-waste immobilization. MRS Bull. 2017, 42, 233–238. [Google Scholar] [CrossRef]
- Stefanovsky, S.V.; Stefanovsky, O.I.; Remizov, M.B.; Kozlov, P.V.; Belanova, E.A.; Makarovsky, R.A.; Myasoedov, B.F. Sodium-aluminum-iron phosphate glasses as legacy high level wasteforms. Progr. Nucl. Energy 2017, 94, 229–234. [Google Scholar] [CrossRef]
- Kozlov, P.V.; Remizov, M.B.; Belanova, E.A.; Vlasova, N.V.; Orlova, V.A.; Martynov, K.V. Modification of the composition of aluminophosphate glasses with HLW simulators to increase their stability. 1. The influence of modifiers on the viscosity and crystallization ability of melts. Issues Radiat. Saf. 2019, 1, 3–15. (In Russian) [Google Scholar]
- Vashman, A.A.; Demine, A.V.; Krylova, N.V.; Kushnikov, V.V.; Matyunin, Y.I.; Poluektov, P.P.; Polyakov, A.S.; Teterin, E.G. Phosphate Glasses with Radioactive Waste; CNIIatominform: Moscow, Russia, 1997; 172p. [Google Scholar]
- Musgraves, J.D.; Hu, J.; Calvez, L. (Eds.) Handbook Springer of Glass; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Loiseau, P.; Caurant, D.; Majerus, O.; Baffier, N.; Fillet, C. Competition between internal and surface crystallization in glass-ceramics developed for actinides immobilization. MRS Symp. Proc. 2003, 807, 333–338. [Google Scholar] [CrossRef]
- Litzkendorf, D.; Grimm, S.; Schuster, K.; Kobelke, J.; Schwuchow, A.; Ludwig, A.; Kirchhof, J.; Leich, M.; Jetschke, S.; Dellith, J.; et al. Study of lanthanum aluminum silicate glasses for passive and active optical fibers. Special Issue: Glass and Photonics—An Overview. Appl. Glass Sci. 2012, 3, 321–331. [Google Scholar] [CrossRef]
- Lago, D.C.; Garcés, D.; Prado, M.O. Crystallization of an yttrium aluminosilicate glass for nuclear waste immobilization. MRS Online Proc. Libr. 2012, 1475, 227–232. [Google Scholar]
- Moudir, D.; Souag, R.; Kamel, N.; Aouchiche, F.; Mouheb, Y.; Kamariz, S. Microwave chemical durability of an iron-rich glass-ceramic dedicated for high-level radioactive waste. Mater. Res. Express 2023, 10, 065503. [Google Scholar] [CrossRef]
- Zanotto, E.D.; Tsuchida, J.E.; Schneider, J.F.; Eckert, H. Thirty-year quest for structure–nucleation relationships in oxide glasses. Int. Mater. Rev. 2015, 60, 376–391. [Google Scholar] [CrossRef]
- Wu, L.; Li, H.; Wang, X.; Xiao, J.; Teng, Y.; Li, Y. Effects of Nd content on structure and chemical durability of zirconolite–barium borosilicate glass-ceramics. J. Am. Ceram. Soc. 2016, 99, 4093–4099. [Google Scholar] [CrossRef]
- Guy, C.; Audubert, F.; Lartigue, J.-E.; Latrille, C.; Advocat, T.; Fillet, C. New conditionings for separated long-lived radionuclides. C. R. Phys. 2002, 3, 827–837. [Google Scholar] [CrossRef]
- Lumpkin, G.R. Ceramic host phases for nuclear waste remediation. In Experimental and Theoretical Approaches to Actinide Chemistry, 1st ed.; Gibson, J.K., de Jong, W.A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 333–377. [Google Scholar]
- Omel’yanenko, B.I.; Livshits, T.S.; Yudintsev, S.V.; Nikonov, B.S. Natural and artificial minerals as matrices for immobilization of actinides. Geol. Ore Depos. 2007, 49, 173–193. [Google Scholar] [CrossRef]
- Loiseau, P.; Caurant, D.; Majerus, O. Crystallization study of (TiO2, ZrO2)-rich SiO2-Al2O3-CaO glasses. Part I. Preparation and characterization of zirconolite-based glass-ceramics. J. Mater. Sci. 2003, 38, 843–852. [Google Scholar] [CrossRef]
- Loiseau, P.; Caurant, D.; Majerus, O.; Baffier, N.; Fillet, C. Crystallization study of (TiO2,ZrO2)-rich SiO2-Al2O3-CaO glasses. Part II. Surface and internal crystallization processes investigated by differential thermal analysis (DTA). J. Mater. Sci. 2003, 38, 853–864. [Google Scholar] [CrossRef]
- Loiseau, P.; Caurant, D.; Baffier, N.; Mazerolles, L.; Fillet, C. Glass-ceramic nuclear wasteforms obtained from SiO2–Al2O3–CaO–ZrO2–TiO2 glasses comtaining lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of internal crystallization. J. Nucl. Mater. 2004, 335, 14–32. [Google Scholar] [CrossRef]
- Liao, C.-Z.; Liu, C.; Lee, P.-H.; Stennett, M.C.; Hyatt, N.C.; Shih, K. Combined quantitative X-ray diffraction, scanning electron microscopy, and transmission electron microscopy investigations of crystal evolution in CaO–Al2O3–SiO2–TiO2–ZrO2–Nd2O3–Na2O system. Cryst. Growth Des. 2017, 17, 1079–1087. [Google Scholar] [CrossRef]
- Liao, C.-Z.; Liu, C.; Su, M.; Shih, K. Quantification of the partitioning ratio of minor actinide surrogates between zirconolite and glass in glass-ceramic for nuclear waste disposal. Inorg. Chem. 2017, 56, 9913–9921. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-Z.; Shih, K.; Lee, W.E. Crystal structures of Al−Nd codoped zirconolite derived from glass matrix and powder sintering. Inorg. Chem. 2015, 54, 7353–7361. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, P.; Caurant, D. Glass–ceramic nuclear wasteforms obtained by crystallization of SiO2–Al2O3–CaO–ZrO2–TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface. J. Nucl. Mater. 2010, 402, 38–54. [Google Scholar] [CrossRef]
- Martin, C.; Ribet, I.; Frugier, P.; Gin, S. Alteration kinetics of the glass-ceramic zirconolite and role of the alteration film–comparison with the SON68 glass. J. Nucl. Mater. 2007, 366, 277–287. [Google Scholar] [CrossRef]
- Caurant, D.; Bardez, I.; Loiseau, P. Crystallization of CaHf1−xZrxTi2O7 (0 < x < 1) zirconolite in SiO2–Al2O3–CaO–Na2O–TiO2–HfO2–ZrO2–Nd2O3 glasses. J. Mater. Sci. 2007, 42, 10203–10218. [Google Scholar]
- Caurant, D.; Loiseau, P.; Bardez, I.; Gervais, C. Effect of Al2O3 concentration on zirconolite (Ca(Zr,Hf)Ti2O7) crystallization in (TiO2,ZrO2,HfO2)-rich SiO2–Al2O3–CaO–Na2O glasses. J. Mater. Sci. 2007, 42, 8558–8570. [Google Scholar] [CrossRef]
- Caurant, D.; Majerus, O.; Loiseau, P.; Bardez, I.; Baffier, N.; Dussossoy, J.L. Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization. J. Nucl. Mater. 2006, 354, 143–162. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y. Crystallization sequence and microstructure evolution of Synroc samples crystallized from CaZrTi2O7 melts. J. Nucl. Mater. 2000, 279, 100–106. [Google Scholar] [CrossRef]
- Chouard, N.; Caurant, D.; Majerus, O.; Guezi-Hasni, N.; Dussossoy, J.-L.; Baddour-Hadjean, R.; Pereira-Ramos, J.-P. Thermal stability of SiO2–B2O3–Al2O3–Na2O–CaO glasses with high Nd2O3 and MoO3 concentrations. J. Alloys Compd. 2016, 671, 84–99. [Google Scholar] [CrossRef]
- Loiseau, P.; Caurant, D.; Baffier, N.; Fillet, C. Neodymium incorporation in zirconolite-based glass-ceramics. Mater. Res. Soc. Symp. Proc. 2001, 663, 169–178. [Google Scholar] [CrossRef]
- Loiseau, P.; Caurant, D.; Baffier, N.; Mazerolles, L.; Fillet, C. Development of zirconolite-based glass-ceramics for the conditioning of actinides. Mater. Res. Soc. Symp. Proc. 2001, 663, 179–188. [Google Scholar] [CrossRef]
- McGlinn, P.J.; Advocat, T.; Loi, E.; Leturcq, G.; Mestre, J.P. Nd- and Ce-doped ceramic-glass composites: Chemical durability under aqueous conditions and surface alteration in a moist clay medium at 90 °C. Mater. Res. Soc. Symp. Proc. 2001, 663, 249–258. [Google Scholar] [CrossRef]
- Advocat, T.; McGlinn, P.J.; Fillet, C.; Leturcq, G.; Schuller, S.; Bonnetier, A.; Hart, K. Melted synthetic zirconolite-based matrices: Effect of cooling rate and heat treatment on ceramic microstructure and chemical durability. Mater. Res. Soc. Symp. Proc. 2001, 663, 277–284. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Stefanovsky, S.V.; Kalenova, M.Y.; Nikonov, B.S.; Nikolsky, M.S.; Ananyev, A.V.; Shchepin, A.S. Matrices for the immobilization of rare earth-actinide fraction waste, obtained by induction melting in a cold crucible. Radiochemistry 2015, 57, 321–333. [Google Scholar] [CrossRef]
- Smelova, T.V.; Krylova, N.V.; Yudintsev, S.V.; Nikonov, B.S. Silicate Matrix of Actinide-Bearing Wastes. Dokl. Earth Sci. 2000, 374, 149–1152. [Google Scholar]
- Kim, M.; Heo, J. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing. J. Nucl. Mater. 2015, 467, 224–228. [Google Scholar] [CrossRef]
- Day, D.E.; Wu, Z.; Ray, C.S.; Hrma, P. Chemically durable iron phosphate glass wasteforms. J. Non-Cryst. Solids 1998, 241, 1–12. [Google Scholar] [CrossRef]
- He, Y.; Lü, Y.; Zhang, Q. Characterization of monazite glass–ceramics as wasteform for simulated α-HLLW. J. Nucl. Mater. 2008, 376, 201–206. [Google Scholar] [CrossRef]
- Li, H.; Liang, X.; Wang, C.; Yu, H.; Li, Z.; Yang, S. Influence of rare earth addition on the thermal and structural stability of CaO-Fe2O3-P2O5 glasses. J. Mol. Struct. 2014, 1076, 592–599. [Google Scholar] [CrossRef]
- Wang, F.; Liao, Q.; Dai, Y.; Zhu, H. Properties and vibrational spectra of iron borophosphate glasses / glass-ceramics containing lanthanum. Mater. Chem. Phys. 2015, 166, 215–222. [Google Scholar] [CrossRef]
- Wang, F.; Liao, Q.; Dai, Y.; Zhu, H. Immobilization of gadolinium in iron borophosphate glasses and iron borophosphate based glass-ceramics: Implications for the immobilization of plutonium. J. Nucl. Mater. 2016, 477, 50–58. [Google Scholar] [CrossRef]
- Danilov, S.S.; Stefanovsky, S.V.; Stefanovskaya, O.I.; Vinokurov, S.E.; Myasoedov, B.F.; Teterin Yu, A. Aluminum (iron) phosphate glasses containing rare earth and transuranium elements: Phase composition, oxidation state of Np and Pu, and hydrolytic durability. Radiochemistry 2018, 60, 434–439. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Wang, Q.; Zhu, H.; Xiang, G.; Liao, Q.; Zhu, Y. Effect of neodymium on the glass formation, dissolution rate and crystallization kinetic of borophosphate glasses containing iron. J. Non-Cryst. Solids 2019, 526, 119726. [Google Scholar] [CrossRef]
- Li, L.; Wang, F.; Liao, Q.; Wang, Y.; Zhu, H.; Zhu, Y. Synthesis of phosphate-based glass-ceramic wasteforms by a melt-quenching process: The formation process. J. Nucl. Mater. 2020, 528, 151854. [Google Scholar] [CrossRef]
- Liang, X.F.; Lai, Y.; Yin, G.F.; Yang, S.Y. Effect of CeO2 doped on the structure of phosphate calcium glass. Chin. J. Inorg. Chem. 2011, 27, 35–39. [Google Scholar]
- Wang, F.; Li, L.; Zhu, H.; Liao, Q.; Zeng, J.; Wang, Y.; Wu, K.; Zhu, Y. Effects of heat treatment temperature and CeO2 content on the phase composition, structure, and properties of monazite phosphate-based glass-ceramics. J. Non-Cryst. Solids 2022, 588, 121631. [Google Scholar] [CrossRef]
- Stefanovsky, S.V.; Stefanovsky, O.I.; Myasoedov, B.F.; Vinikurov, S.E.; Danilov, S.S.; Nikonov, B.S.; Maslakov, K.I.; Teterind, Y.A. The phase composition, structure, and hydrolytic durability of sodium-aluminum-(iron)-phosphate glassy materials doped with lanthanum, cerium, europium, and gadolinium oxides. J. Non Cryst. Solids 2017, 471, 421–428. [Google Scholar] [CrossRef]
- Stefanovskii, S.V.; Stefanovskaya, O.I.; Semenova, D.V.; Kadyko, M.I.; Danilov, S.S. Phase composition, structure, and hydrolytic stability of sodium-aluminum(iron) phosphate glass containing rare-earth oxides. Glass Ceram. 2018, 75, 89–94. [Google Scholar] [CrossRef]
- Stefanovsky, S.V.; Stefanovsky, O.I.; Danilov, S.S.; Kadyko, M.I. Phosphate-based glasses and glass ceramics for immobilization of lanthanides and actinides. Ceram. Int. 2019, 45, 9331–9338. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Chen, J.; Liao, Q.; Zhu, H.; Zhou, J.; Qu, X.; Gong, Z.; Fu, X.; Zhu, Y. Effect of cerium oxide on phase composition, structure, thermal stability and aqueous durability of sodium-iron-boron-phosphate based glasses. J. Nucl. Mater. 2021, 556, 153199. [Google Scholar] [CrossRef]
- Frolova, A.V.; Danilov, S.S.; Vinokurov, S.E. Corrosion behavior of some glasses immobilized with REE in simulated mineralized solutions. Ceram. Int. 2022, 48, 19644–19654. [Google Scholar] [CrossRef]
- Matyunin, Y.I. Localization of components of liquid high-level wastes (REE, U, and Pu) in the phosphate and borosilicate glass-like materials. In Extended Abstract of Candidate’s (Chemistry) Dissertation; VNIINM: Moscow, Russia, 2000. (In Russian) [Google Scholar]
- Kong, L.; Wei, T.; Zhang, Y.; Karatchevtseva, I. Phase evolution and microstructure analysis of CaZrTi2O7 zirconolite in glass. Ceram. Int. 2018, 44, 6285–6292. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Wei, T.; Kong, L.; Kim, Y.J.; Gregg, D.J. Pyrochlore glass-ceramics fabricated via both sintering and hot isostatic pressing for minor actinide immobilization. J. Am. Ceram. Soc. 2020, 103, 5470–5479. [Google Scholar] [CrossRef]
- Maddrell, E.R.; Paterson, H.C.; May, S.E.; Burns, K.M. Phase evolution in zirconolite glass-ceramic wasteforms. J. Nucl. Mater. 2017, 493, 380–387. [Google Scholar] [CrossRef]
- Maddrell, E.; Thornber, S.; Hyatt, N.C. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms. J. Nucl. Mater. 2015, 456, 461–466. [Google Scholar] [CrossRef]
- NEA. Management and Disposal of High-Level Radioactive Waste: Global Progress and Solutions; NEA Rep. No. 7532; OECD/NEA Publishing: Paris, France, 2020; 45p.
- Kochkin, B.; Malkovsky, V.; Yudintsev, S.; Petrov, V.; Ojovan, M. Problems and perspectives of borehole disposal of radioactive waste. Prog. Nucl. Energy 2021, 139, 103867. [Google Scholar] [CrossRef]
- Deep Isolation Aiming for Disposal Site within Decade. World Nuclear News. 5 September 2022. Available online: https://world-nuclear-news.org/Articles/Deep-Isolation-aims-for-disposal-site-within-decad (accessed on 13 October 2023).
- Ringwood, A. Disposal of high-level nuclear wastes: A geological perspective. Mineral. Mag. 1985, 49, 159–176. [Google Scholar] [CrossRef]
- Brady, P.V.; Freeze, G.A.; Kuhlman, K.L.; Hardin, E.L.; Sassani, D.C.; MacKinnon, R.J. Deep borehole disposal of nuclear waste: US perspective. In Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2nd ed.; Apted, M., Ahn, J., Eds.; Woodhead Publishing Series in Energy: Sawston, UK, 2017; Chapter 4; pp. 89–112. [Google Scholar]
- Tsebakovskaya, N.S.; Barinov, A.S. Foreign news on spent nuclear fuel and radioactive waste. Radioact. Waste 2023, 3, 126–131. (In Russian) [Google Scholar]
- Technical Evaluation of the, U.S. Department of Energy Deep Borehole Disposal Research and Development Program: A Report to the U.S. Congress and the Secretary of Energy; United States Nuclear Waste Technical Review Board: Arlington, VA, USA, 2016; 72р.
- Kochkin, B.T.; Bogatov, S.A. Borehole rw disposal concept and prospects of its implementation in Russia. Radioact. Waste 2022, 2, 85–99. (In Russian) [Google Scholar] [CrossRef]
- Freeze, G.; Phalen, J.; Mallants, D.; Sassani, D. Progress toward a deep borehole field demonstration. In Proceedings of the International High Level Radioactive Waste Management Conference (IHLRWM 2022), Phoenix, AZ, USA, 13–17 November 2022; 2023; pp. 1002–1006. [Google Scholar] [CrossRef]
- Yudintsev, S.V. Isolation of separated waste of nuclear industry. Radiochemistry 2021, 63, 527–555. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Nikolskii, M.S.; Nikonov, B.S.; Malkovskii, V.I. Matrices for isolation of actinide wastes in a deep well repository. Dokl. Earth Sci. 2018, 480, 631–636. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Malkovsky, V.I.; Nikolsky, M.S.; Nikonov, B.S. Interaction of actinide matrices with brine. Dokl. Earth Sci. 2019, 485, 303–307. [Google Scholar] [CrossRef]
- Malkovsky, V.; Yudintsev, S.; Ojovan, M. Forecast of 241Am migration from a system of deep horizontal boreholes. Sustainability 2023, 15, 15134. [Google Scholar] [CrossRef]
- Jantzen, C.M. Development of glass matrices for high level radioactive waste. In Handbook of Advanced Radioactive Waste Conditioning Technologies; Ojovan, M.I., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 230–292. [Google Scholar]
- Kim, C.-W.; Lee, B.G. Feasibility study on vitrification for rare earth wastes of pyrogreen process. J. Korean Radioact. Waste Soc. 2013, 11, 1–9. [Google Scholar] [CrossRef]
- Kim, M.; Hong, K.-S.; Lee, J.; Byeon, M.; Jeong, Y.; Kim, J.H.; Um, W.; Kim, H.G. Evaluating thermal stability of rare-earth containing wasteforms at extraordinary nuclear disposal conditions. Nucl. Eng. Technol. 2021, 53, 2576–2581. [Google Scholar] [CrossRef]
- Tong, Q.; Huo, J.; Zhang, X.; Cui, Z.; Zhu, Y. Study on structure and properties of La2O3-doped basaltic glasses for immobilizing simulated lanthanides. Materials. 2021, 14, 4709. [Google Scholar] [CrossRef] [PubMed]
- Gibb, F.G.F.; Beswick, A.J. A deep borehole disposal solution for the UK’s high-level radioactive waste. Energy 2021, 175, 11–29. [Google Scholar] [CrossRef]
- Chapman, N.A. Who might be interested in a deep borehole disposal facility for their radioactive waste. Energies 2019, 12, 1542. [Google Scholar] [CrossRef]
- Ewing, R.C.; Weber, W.J.; Lian, J. Nuclear waste disposal—Pyrochlore (A2B2O7): Nuclear wasteform for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 2004, 95, 5949–5971. [Google Scholar] [CrossRef]
- McMaster, S.A.; Ram, R.; Faris, N.; Pownceby, M.I. Radionuclide disposal using the pyrochlore supergroup of minerals as a host matrix-A review. J. Hazard. Mater. 2018, 360, 257–269. [Google Scholar] [CrossRef]
- Blackburn, L.R.; Bailey, D.J.; Sun, S.-K.; Gardner, L.J.; Stennett, M.C.; Corkhill, C.L.; Hyatt, N.C. Review of zirconolite crystal chemistry and aqueous durability. Adv. Appl. Ceram. 2021, 120, 69–83. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, C.; Ding, Z.-Y.; Zhang, Y.-Z.; Wei, T.; Ouyang, J.-H.; Liu, Z.-G.; Wang, Y.-J.; Wang, Y.-M. The structure, property, and ion irradiation effects of pyrochlores: A comprehensive review. Crystals 2023, 13, 143. [Google Scholar] [CrossRef]
- Jantzen, C.M.; Ojovan, M.I. On selection of matrix (wasteform) material for higher activity nuclear waste immobilisation (Review). Russ. J. Inorg. Chem. 2019, 64, 1611–1624. [Google Scholar] [CrossRef]
- Logan, S.E. Deep self-burial of radioactive wastes by rock-melting capsules. Nucl. Technol. 1974, 21, 111–124. [Google Scholar] [CrossRef]
- Efankin, V.G.; Kashcheev, V.A.; Poluektov, P.P. Laboratory modelling of self-disposal of radioactive wastes. At. Energy 1994, 76, 161–164. [Google Scholar] [CrossRef]
- Gibb, F.G.F. High-temperature, very deep, geological disposal: A safer alternative for high-level radioactive waste? Waste Manag. 1999, 19, 207–211. [Google Scholar] [CrossRef]
- Kosachevskiy, L.Y.; Sui, L.S. On the ‘self-burial’ of radioactive wastes. J. Tech. Phys. 1999, 69, 123–127. [Google Scholar] [CrossRef]
- Stevenson, D.J. Mission to Earth’s core—A modest proposal. Nature 2003, 423, 239–240. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Gibb, F.G.F.; Poluektov, P.P. Probing of the interior layers of the Earth with self-sinking capsules. At. Energy 2005, 99, 556–562. [Google Scholar]
- Ojovan, M.I.; Gibb, F.G.F. Exploring the Earth’s crust and mantle using self-descending, radiation-heated, probes and acoustic emission monitoring. In Nuclear Waste Research: Siting, Technology and Treatment; Lattefer, P.A., Ed.; Nova Science Publishers: New York, NY, USA, 2008; Chapter 7; pp. 207–220. [Google Scholar]
- Spasova, L.M.; Ojovan, M.I.; Gibb, F.G.F. Acoustic emission on melting/solidification of natural granite simulating very deep waste disposal. Nucl. Eng. Des. 2012, 248, 329–339. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Poluektov, P.P.; Kashcheev, V.A. Self-disposal option for highly-radioactive waste reconsidered. Mater. Res. Soc. Symp. Proc. 2012, 1475, 429–434. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Poluektov, P.P.; Kascheev, V.A. The self-disposal option. Nucl. Eng. Int. 2012, 57, 28–29. [Google Scholar]
- Gibb, F.G.F.; Taylor, K.J.; Burakov, B.E. The ‘granite encapsulation’ route to the safe disposal of Pu and other actinides. J. Nucl. Mater. 2008, 374, 364–369. [Google Scholar] [CrossRef]
- Gibb, F.G.F. A new scheme for the very deep geological disposal of high-level radioactive waste. J. Geol. Soc. 2000, 157, 27–36. [Google Scholar] [CrossRef]
- Chen, W.; Hao, J.; Chen, Z. A study of self-burial of a radioactive waste container by deep rock melting. Sci. Technol. Nucl. Install. 2013, 2013, 184757. [Google Scholar] [CrossRef]
- Arutunyan, R.; Bolshov, L.; Shvedov, A. A new approach to radioactive waste self-burial using high penetrating radiation. J. Nucl. Sci. Technol. 2018, 55, 971–978. [Google Scholar] [CrossRef]
- Byalko, A.V. Nuclear Waste Disposal: Geophysical Safety; CRC Press: Boca Raton, FL, USA, 1994; 281p. [Google Scholar]
- Vityazev, A.V.; Zetser, Y.I.; Monastyrsky, I.B. Method of Disposal of Radioactive Waste. Patent No. RU 95110471, 20 June 1997. (In Russian). [Google Scholar]
- Vityazev, A.V.; Zetser, Y.I.; Monastyrsky, I.B.; Khavroshkin, O.B. Method of Disposal of Radioactive Waste. Patent No. RU 2121723, 10 November 1998. (In Russian). [Google Scholar]
- Arens, V.Z.; Vertman, A.A.; Kedrovsky, O.L.; Poluektov, P.P.; Polyakov, A.S.; Khavroshkin, O.B. Method of Disposal of Spent Nuclear Fuel. Patent No. RU 2127003, 27 February 1999. (In Russian). [Google Scholar]
- Yang, P.; Wang, Y.; Rodriguez, M.A.; Brady, P.V. Rock-welding materials development for deep borehole nuclear waste disposal. Mater. Chem. Phys. 2019, 221, 178–187. [Google Scholar] [CrossRef]
- Asuvathraman, R.; Joseph, K.; Madhavan, R.R.; Sudha, R.; Prabhu, R.K.; Govindan Kutty, K.V. A versatile monazite–IPG glass–ceramic wasteform with simulated HLW: Synthesis and characterization. J. Eur. Ceram. Soc. 2015, 35, 4233–4239. [Google Scholar] [CrossRef]
- Ojovan, M.I. Challenges in the long-term behaviour of highly radioactive materials. Sustainability 2022, 14, 2445. [Google Scholar] [CrossRef]
- Ojovan, M.I. The flow of glasses and glass–liquid transition under electron irradiation. Int. J. Mol. Sci. 2023, 24, 12120. [Google Scholar] [CrossRef]
- Deng, Y.; Liao, Q.; Wang, F.; Zhu, H. Synthesis and characterization of cerium containing iron phosphate-based glass-ceramics. J. Nucl. Mater. 2018, 499, 410–418. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Liao, Q.; Zhang, J.; Zhao, W.; Yuan, Y.; Zhu, H.; Li, L.; Zhu, Y. Immobilization of a simulated HLW in phosphate-based glasses/glass-ceramics by melt-quenching process. J. Non-Cryst. Solids 2020, 545, 120246. [Google Scholar] [CrossRef]
- Bailey, D.J.; Gardner, L.J.; Harrison, M.T.; McKendrick, D.; Hyatt, N.C. Development of monazite glass-ceramic wasteforms for the immobilisation of pyroprocessing wastes. MRS Adv. 2022, 7, 81–85. [Google Scholar] [CrossRef]
- GOST R50926-96; Solidified High-Level Waste. General Technical Requirements. IPC Standards Publishing House: Bannockburn, IL, USA, 1996. (In Russian)
- Criteria for the acceptability of radioactive waste for disposal. Federal Service for Environmental Protection, technological and nuclear supervision. Nucl. Radiat. Saf. 2015, 3, 59–82. (In Russian). Available online: https://docs.secnrs.ru/documents/nps/%D0%9D%D0%9F-093-14/%D0%9D%D0%9F-093-14.pdf (accessed on 3 December 2023).
- Collection, Processing, Storage and Conditioning of Liquid Radioactive Waste. Safety Requirements. Federal Norms and Rules in the Field of Atomic Energy Use; FFederal Service for Environmental Protection, Technological and Nuclear Supervision: Moscow, Russia, 2021; 21p. (In Russian)
- Gin, S.; Abdelouas, A.; Criscenti, L.J.; Ebert, W.L.; Ferrand, K.; Geisler, T.; Harrison, M.T.; Inagaki, Y.; Mitsui, S.; Mueller, K.T.; et al. An international initiative on long-term behavior of high-level nuclear waste glass. Mater. Today 2013, 16, 243–248. [Google Scholar] [CrossRef]
- Remizov, M.B.; Kozlov, P.V.; Logunov, M.V.; Koltyshev, V.K.; Korchenkin, K.K. Conceptual and technical solutions for the creation of vitrification units for current and accumulated liquid HLW at PA Mayak. Issues Radiat. Saf. 2014, 3, 17–25. (In Russian) [Google Scholar]
- Vernaz, E.; Bruezière, J. History of nuclear waste glass in France. Procedia Mater. Sci. 2014, 7, 3–9. [Google Scholar] [CrossRef]
- Harrison, M.T. Vitrification of high level waste in the UK. Procedia Mater. Sci. 2014, 7, 10–15. [Google Scholar] [CrossRef]
Element | Total Content, g/t SNF | Radionuclide | Content, g/t | Half-Life, T1/2 |
---|---|---|---|---|
La | 1205 | - | - | Stable |
Ce | 2352 | 144Ce | 23 | 284 days |
Pr | 1109 | - | - | Stable |
Nd 1 | 4000 | - | - | Considered Stable |
Pm | 86 | 147Pm | 86 | 2.6 years |
Sm 1 | 777 | 151Sm | 16 | 93 years |
Eu | 133 g/t, including: | 154Eu | 20 | 8.6 years |
155Eu | 12 | 4.8 years | ||
Gd | 76 | - | - | Stable |
Am | 369 g/t, including: | 241Am | 290 | 433 years |
243Am | 79 | 7370 years | ||
Cm | 20 g/t, including: | 243Cm | 0.2 | 29 years |
244Cm | 18.3 | 18 years | ||
245Cm | 1.0 | 8500 years | ||
246Cm | 0.1 | 4760 years |
SNF Element Groups | Heat Release, W/t SNF, after 1–500 Years of SNF Storage | |||||||
---|---|---|---|---|---|---|---|---|
1 | 10 | 30 | 50 | 70 | 100 | 300 | 500 | |
Cs/Sr/Ba/Rb | 2765 (a)/ 4608 (b) | 1054/ 1576 | 566/824 | 354/ 516 | 222/ 323 | 110/ 160 | 1/1 | 0 |
Ag/Pd/Ru/Rh | 2752/3447 | 11/14 | 0 | 0 | 0 | 0 | 0 | 0 |
La/Ce/Pr/Nd/Pm/Sm/Eu | 3593/3843 | 64/109 | 10/17 | 2/3 | 0 | 0 | 0 | 0 |
Np/Pu/Am/Cm/Bk | 819/ 1515 | 348/ 785 | 332/ 613 | 309/ 516 | 287/ 449 | 258/ 381 | 159/ 199 | 116/ 139 |
Others | 515/522 | 15/21 | 2/3 | 1/1 | <0.1 | <0.1 | <0.1 | <0.1 |
Total | 10,444/ 13,936 | 1492/ 2505 | 910/ 1458 | 666/ 1036 | 509/ 773 | 368/ 541 | 160/ 201 | 116/ 139 |
Element | After 5 Years of SNF Storage | After 30 Years of SNF Storage | ||||||
---|---|---|---|---|---|---|---|---|
45 GW × d/t | 60 GW × d/t | 45 GW × d/t | 60 GW × d/t | |||||
(a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | |
Gd | 150 | 0 (Stable) | 310 | 0 (Stable) | 180 | 0 (Stable) | 346 | 0 (Stable) |
Eu | 190 | 60 | 260 | 90 | 170 | 8 | 230 | 12 |
Sm 1 | 1060 | 0 (Stable) | 1370 | 0 (Stable) | 1120 | 0 (Stable) | 1430 | 0 (Stable) |
Pm | 63 | 21 | 62 | 21 | - 3 | - | - | - |
Ce | 3210 | 10 | 4230 | 10 | 3210 | Stable | 4220 | Stable |
Pr | 1540 | 114 | 2010 | 113 | 1540 | Stable | 2010 | Stable |
Nd 2 | 5570 | Stable | 7310 | Stable | 5570 | Stable | 7310 | Stable |
La | 1670 | Stable | 2190 | Stable | 1670 | Stable | 2190 | Stable |
Σ REE | 13,453 | 205 | 17,742 | 234 | 13,460 | 8 | 17,736 | 12 |
U | 941,000 | 0.06 | 923,000 | 0.06 | 941,000 | 0.06 | 923,000 | 0.06 |
Pu | 11,200 | 164 | 12,600 | 283 | 10,200 | 138 | 11,500 | 236 |
Np | 570 | 0.01 | 780 | 0.02 | 570 | 0.01 | 780 | 0.02 |
Am | 510 | 47 | 740 | 58 | 1380 | 146 | 1780 | 178 |
Cm | 33 | 88 | 113 | 292 | 14 | 34 | 50 | 112 |
Am + Cm, MA | 543 | 135 | 853 | 350 | 1394 | 180 | 1830 | 290 |
MA share 4 | 4% | 40% | 5% | 60% | 9% | 96% | 9% | 96% |
Nuclide, g/t SNF | After 1 Year | After 5 Years | After 30 Years |
---|---|---|---|
241Am 1 | 135 | 407 | 1272 |
243Am | 105 | 105 | 105 |
Total Am | 240 | 512 | 1377 |
242Cm | 3.8 | 0.1 | <0.01 |
244Cm | 35.3 | 30.3 | 11.6 |
245Cm | 2.2 | 2.2 | 2.2 |
Total Cm, including 243Cm | 41.9 | 33.0 | 14.4 |
Cm/(Am + Cm), % | 15 | 6 | 1 |
MA/(REE + MA), % | 2 | 4 | 9 |
Radionuclide (T1/2, Years) | Content, wt.% | Daughter Nuclide, (T1/2, Years) | Type and Probability of Nuclides Decay | Heat Release, W/kg |
---|---|---|---|---|
241Am (433) | 63.8 | 237Np (2.14 × 106) | α (≈1.0), SF 1 (3.77 × 10−12) | 114.7 |
243Am (7300) | 25.4 | 239Pu (2.41 × 104) | α (≈1.0), SF (3.7 × 10−11) | 6.4 |
243Cm (29) | 0.1 | 239Pu (2.41 × 104) | α (0.9976), β+ (0.0024) | 1860.7 |
244Cm (18) | 9.8 | 240Pu (6537) | α (≈1.0), SF (1.35 × 10−6) | 2841.8 |
245Cm (8500) | 0.8 | 241Pu (14.4) | α (1.0) | 5.8 |
246Cm (4760) | 0.1 | 242Pu (3.76 × 105) | α (≈1.0), SF (2.61 × 10−4) | 10.2 |
Radionuclide | Radionuclide Simulants: From the More Similar to the Less Similar Elements | ||||
---|---|---|---|---|---|
Short-Lived | Long-Lived | Stable Isotope of Element | Other Simulants | ||
Np | - 1 | U, 232Th | Does not exist | Ce | Pr |
238Pu | - | U, 232Th | Does not exist | Ce | Nd |
239Pu | 238Pu | U, 232Th | Does not exist | Ce | Nd |
Am, Cm | 244Cm | - | Does not exist | Nd | Sm |
137Cs | 134Cs | - | Natural isotopes (133Cs, 127I, 59Co) or their mixtures (86–88Sr, 90–96Zr) | Ba 2 | - |
129I | - | - | - | - | |
60Co | - | - | - | - | |
90Sr | - | - | Zr 2 | - | |
93Zr | - | - | - | - | |
99Tc | - | - | Does not exist | Re | Mo |
Engineering Barrier Material, Waste-Hosting Rock | Density, kg/m3 | Specific Heat Capacity, J/(kg·K) | Thermal Conductivity, W/(m·K) |
---|---|---|---|
Glass with 30% REE-MA fraction | 3000 | 900 | 1.1 |
Bentonite buffer layers | 1700 | 1000 | 0.8 |
Granite, granite gneiss | 2850 | 965 | 1.5 |
Storage Time, Years | 1 | 5 | 10 | 30 | 50 | 70 |
---|---|---|---|---|---|---|
Heat release, kW/m3 | 216 | 12.3 | 3.8 | 0.6 | 0.1 | 0 |
Phase | Na2O | Al2O3 | P2O5 | Me*O2-x | SrO | ZrO2 | MoO3 | Cs2O | BaO | (Ln)**2O3 |
---|---|---|---|---|---|---|---|---|---|---|
(1) | 24.0 | 17.2 | 47.8 | 0.8 | 0.8 | 2.9 | 1.4 | 0.9 | 0.8 | 2.4 |
(2) | <d.l. 1 | <d.l. | 27.9 | <d.l. | 0.5 | <d.l. | <d.l. | 0.6 | 0.3 | 72.1 |
(3) | 25.5 | 19.1 | 51.3 | 1.4 | <d.l | <d.l. | 0.4 | 0.5 | 0.6 | 0.6 |
Samples | 0 HLW | 5 mol.% HLW | 10 mol.% HLW | 15 mol.% HLW |
---|---|---|---|---|
Tg ± 1 (K) | 778 | 790 | 773 | 770 |
Tr ± 1 (K) | 861 | 864 | 855 | 834 |
TL ± 1 (K) | 1245 | 1246 | 1255 | 1264 |
ΔTrg (K) | 83 | 74 | 82 | 64 |
KH | 0.216 | 0.194 | 0.205 | 0.149 |
α | 0.692 | 0.693 | 0.681 | 0.660 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yudintsev, S.V.; Ojovan, M.I.; Malkovsky, V.I. Thermal Effects and Glass Crystallization in Composite Matrices for Immobilization of the Rare-Earth Element–Minor Actinide Fraction of High-Level Radioactive Waste. J. Compos. Sci. 2024, 8, 70. https://doi.org/10.3390/jcs8020070
Yudintsev SV, Ojovan MI, Malkovsky VI. Thermal Effects and Glass Crystallization in Composite Matrices for Immobilization of the Rare-Earth Element–Minor Actinide Fraction of High-Level Radioactive Waste. Journal of Composites Science. 2024; 8(2):70. https://doi.org/10.3390/jcs8020070
Chicago/Turabian StyleYudintsev, Sergey V., Michael I. Ojovan, and Victor I. Malkovsky. 2024. "Thermal Effects and Glass Crystallization in Composite Matrices for Immobilization of the Rare-Earth Element–Minor Actinide Fraction of High-Level Radioactive Waste" Journal of Composites Science 8, no. 2: 70. https://doi.org/10.3390/jcs8020070
APA StyleYudintsev, S. V., Ojovan, M. I., & Malkovsky, V. I. (2024). Thermal Effects and Glass Crystallization in Composite Matrices for Immobilization of the Rare-Earth Element–Minor Actinide Fraction of High-Level Radioactive Waste. Journal of Composites Science, 8(2), 70. https://doi.org/10.3390/jcs8020070