The Crucial Role of Additives in the Properties of Perlite- and Gypsum-Based Superabsorbent Composites I: The Development of Composite Carrier Materials for Biological Mosquito Larva-Killing Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Perlite-Containing Composites
2.2. Preparation of Starch-Based Perlite (Pumice) and Gypsum (Cement) Composites [24]
2.3. BTI-Containing Granules
2.4. Instrumental Measurements
2.5. Mosquito Larva Killing and Toxicity Test
3. Results and Discussion
3.1. Carrier Materials from Perlite–Gypsum Additives and Perlite–Gypsum–CMC–Cricket Composites (Sample B) for Carrying Selective Mosquito Larva-Killing Biological Agent (BTI)
3.2. The Biological Tests of the Prepared BTI-Containing Composite (Sample B)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reka, A.A.; Pavlovski, B.; Lisichkov, K.; Jashari, A.; Boev, B.; Boev, I.; Lazarova, M.; Eskizeybek, V.; Oral, A.; Jovanovski, G.; et al. Chemical, Mineralogical and Structural Features of Native and Expanded Perlite from Macedonia. Geol. Croat. 2019, 72, 215–221. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Kim, H.S. Prediction and Evaluation of Density and Volume Fractions for the Novel Perlite Composite Affected by Internal Structure For-Mation. Constr. Build. Mater. 2017, 141, 201–204. [Google Scholar] [CrossRef]
- Erdem, E. Effect of Various Additives on the Hydration of Perlite-Gypsum Plaster and Perlite-Portland Cement Pastes. Turk. J. Chem. 1997, 21, 209–214. [Google Scholar]
- Cerolini, S.; D’Orazio, M.; Di Perna, C.; Stazi, A. Moisture Buffering Capacity of Highly Absorbing Materials. Energy Build. 2009, 41, 164–168. [Google Scholar] [CrossRef]
- Celik, A.G.; Kilic, A.M.; Cakail, G.O. Expanded Perlite Aggregate Characterization for Use as a Lightweight Construction Raw Material. Physicochem. Probl. Miner. Process. 2013, 49, 685–700. [Google Scholar] [CrossRef]
- Rashad, A.M.; Essa, G.M.F.; Morsi, W.M. Traditional Cementitious Materials for Thermal Insulation. Arab. J. Sci. Eng. 2022, 47, 12931–12943. [Google Scholar] [CrossRef]
- Lanzón, M.; Castellón, F.J.; Ayala, M. Effect of the Expanded Perlite Dose on the Fire Performance of Gypsum Plasters. Constr. Build. Mater. 2022, 346, 128494. [Google Scholar] [CrossRef]
- Al-Jadiri, R.S.F.; Al-Wahab Ali, M.A.; Frayyeh, Q.J. Study Some Mechanical and Thermal Properties of Reinforced Perlite Concrete. Key Eng. Mater. 2022, 924, 233–242. [Google Scholar] [CrossRef]
- Doleželová, M.; Krejsová, J.; Scheinherrová, L.; Vimmrová, A. Influence of Fillers on Structure and Behaviour of Gypsum Mortars. IOP Conf. Ser. Mater. Sci. Eng. 2020, 800, 012013. [Google Scholar] [CrossRef]
- Murakami, Y.; Nakamura, A.M.; Yokoyama, K.; Seto, Y.; Hasegawa, S. Collisional Disruption of Highly Porous Targets in the Strength Regime: Effects of Mixture. Planet. Space Sci. 2020, 182, 104819. [Google Scholar] [CrossRef]
- Vimmrová, A.; Keppert, M.; Svoboda, L.; Černý, R. Lightweight Gypsum Composites: Design Strategies for Multi-Functionality. Cem. Concr. Compos. 2011, 33, 84–89. [Google Scholar] [CrossRef]
- Maxim, L.D.; Niebo, R.; McConnell, E.E. Perlite Toxicology and Epidemiology—A Review. Inhal. Toxicol. 2014, 26, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Kótai, L.; Lakatos, G. A Method to Concentrate and Recovery of Low-Boiling Organic Solvent Content from Aqueous Solutions. Patent Application HU P1100584, 2011. [Google Scholar]
- Kótai, L.; Szépvölgyi , J.; Tamics, E. Composition for Evaporation, Concentration, and Crystallization of Solutions. Patent Application HU P1100286, 2013. [Google Scholar]
- Karua, P.; Ahammad, R.; Islam, M.S.; Arifuzzaman, M. Effect of Fiber Content on Flexural Properties of Jute Fiber Reinforced Perlite/Gypsum Composite Core-Based Sandwich Structures. Constr. Build. Mater. 2024, 446, 137899. [Google Scholar] [CrossRef]
- Jin, Z.; Cui, C.; Wan, Z.; Su, Y.; He, X.; Ma, B.; Zhi, Z.; Chen, S.; Wang, B. Preparation of Eco-Friendly Functional Lightweight Gypsum: Effect of Three Different Lightweight Aggregates. Constr. Build. Mater. 2023, 400, 132875. [Google Scholar] [CrossRef]
- Chen, C.; Ma, F.; Wang, Y. Effect of Shape Stabilized Binary Paraffin on Properties of Desulfurization Gypsum-Based Composites. Jianzhu Cailiao Xuebao/J. Build. Mater. 2022, 25, 708–714. [Google Scholar] [CrossRef]
- Yang, H.; Li, G.; Zhao, H.; Wang, A.; Ma, Y.; Tang, H.; Wang, Y. Preparation and Properties of Expanded Perlite/Desulphurized Gypsum Composites. Multipurp. Util. Miner. Resour. 2022, 43, 37–51. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhou, J.; Huang, J.; Wu, X.; Ding, Z.; Wang, Q. Preparation and Characterization of Phase Change Energy Storage Gypsum. Therm. Sci. 2021, 25, 4737–4748. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, B.; Hou, H.; Zhang, W. Preparation and Property Modification on Novel Energy Storage Material: N-Octadecane PCMs/Expanded Perlite Composite Gypsum Board. Adv. Civ. Eng. Mater. 2019, 2019, 4501354. [Google Scholar] [CrossRef]
- Pop, P.A.; Luca-Motoc, D. Experimental Research about Characterization of Novel Porous Composites with Special Applications. J. Optoelectron. Adv. Mater. 2015, 17, 943–951. [Google Scholar]
- Jiang, C.C.; Li, G.Z.; Gao, Z.D. Study on Preparation and Application of a Novel Composite Phase Change Material. Adv. Mater. Res. 2011, 197–198, 1117–1120. [Google Scholar] [CrossRef]
- Huang, J.-S.; Nelson, P.V. Impact of Pre-Plant Root Substrate Amendments on Soilless Substrate EC, pH, and Nutrient Availability. Commun. Soil Sci. Plant Anal. 2001, 32, 2863–2875. [Google Scholar] [CrossRef]
- Kótai, L.; Becker, N.; Tamics, E. Carrier Materials for Mosquito-Larvae Killing Pesticides, Mosqutio-Larvae Killing Products and Process for Producing Thereof. Patent Application HU P0500862, 2005. [Google Scholar]
- Giunti, G.; Becker, N.; Benelli, G. Invasive Mosquito Vectors in Europe: From Bioecology to Surveillance and Management. Acta Tropica 2023, 239, 106832. [Google Scholar] [CrossRef]
- Beegle, C.C.; Rose, R.I.; Ziniu, Y. Mass Production of Bacillus Thuringiensis and B. Sphaericus for Microbial Control of Insect Pests. In Biotechnology for Biological Control of Pests and Vectors; Maramorosch, K.B., Ed.; CRC Press: Boca Raton, FL, USA, 1990; pp. 195–216. [Google Scholar]
- Margalith, Y.; Ben-Dov, E. Biological Control by Bacillus Thuringiensis Subsp. Israelensis. In Insect Pest Management; Rechcigl, J., Rechcigl, N., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 243–302. ISBN 978-1-56670-478-6. [Google Scholar]
- Lacey, L.A. Microbial Control of Insect and Mite Pests: From Theory to Practice; Elsevier/Academic press: London, UK, 2017; ISBN 978-0-12-803527-6. [Google Scholar]
- Rechcigl, J.E.; Rechcigl, N.A. (Eds.) Insect Pest Management: Techniques for Environmental Protection; Agriculture and Environment series; Lewis Publ.: Boca Raton, FL, USA, 2000; ISBN 978-1-56670-478-6. [Google Scholar]
- Skovmand, O.; Sanogo, E. Experimental Formulations of Bacillus Sphaericus and B. Thuringiensis Israelensis Against Culex Quinquefasciatus and Anopheles Gambiae (Diptera: Culicidae) in Burkina Faso. J. Med. Entomol. 1999, 36, 62–67. [Google Scholar] [CrossRef]
- Piazzoni, M.; Negri, A.; Brambilla, E.; Giussani, L.; Pitton, S.; Caccia, S.; Epis, S.; Bandi, C.; Locarno, S.; Lenardi, C. Biodegradable Floating Hydrogel Baits as Larvicide Delivery Systems against Mosquitoes. Soft Matter 2022, 18, 6443–6452. [Google Scholar] [CrossRef]
- Becker, N. Microbial Control of Mosquitoes: Management of the Upper Rhine Mosquito Population as a Model Programme. Parasitol. Today 1997, 13, 485–487. [Google Scholar] [CrossRef]
- Becker, N. Ice Granules Containing Endotoxins of Microbial Agents for the Control of Mosquito Larvae—A New Application Technique. J. Am. Mosq. Control Assoc. 2003, 19, 63–66. [Google Scholar]
- Becker, N.; Lüthy, P. Mosquito Control With Entomopathogenic Bacteria in Europe. In Microbial Control of Insect and Mite Pests; Elsevier: Amsterdam, The Netherlands, 2017; pp. 379–392. ISBN 978-0-12-803527-6. [Google Scholar]
- Kótai, L.; Windisch, M.; Béres, K.A. Transformation of Biomass Power Plant Ash into Composite Fertilizers: A Perspective to Prepare a Rain-Controlled Ammonium Ion–Releasing Composite Fertilizer. J. Compos. Sci. 2024, 8, 336. [Google Scholar] [CrossRef]
- Martiz, A.; Károly, Z.; Bereczki, L.; Trif, L.; Farkas, A.; Menyhárd, A.; Kótai, L. Carbonization of Zr-Loaded Thiourea-Functionalized Styrene-Divinylbenzene Copolymers: An Easy Way to Synthesize Nano-ZrO2@C and Nano-(ZrC, ZrO2)@C Composites. J. Compos. Sci. 2023, 7, 306. [Google Scholar] [CrossRef]
- Martiz, A.; Károly, Z.; Domján, A.; Mohai, M.; Bereczki, L.; Trif, L.; Farkas, A.; László, K.; Menyhárd, A.; Kótai, L. Nano-ZrO2@C, Nano-(ZrC, ZrO2)@C and Nano-ZrC@C Composites Prepared by Plasma-Assisted Carbonization of Zr-Loaded Iminodiacetate-Functionalized Styrene-Divinylbenzene Copolymers. Inorganics 2022, 10, 77. [Google Scholar] [CrossRef]
- OECD. OECD Principles on Good Laboratory Practice; OECD Series on Principles of Good Laboratory Practice and Compliance Monitoring; OECD: Paris, France, 1998; ISBN 978-92-64-07853-6. [Google Scholar]
- Blaise, C.; Férard, J.-F. (Eds.) Small-Scale Freshwater Toxicity Investigations; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-1-4020-3119-9. [Google Scholar]
- OECD. Test No. 203: Fish, Acute Toxicity Test. In OECD Guidelines for the Testing of Chemicals, Section 2; OECD: Paris, France, 2019; ISBN 978-92-64-06996-1. [Google Scholar]
Additives | No Additive | 1% Carboxy-Methylcellulose, Na-Salt, 30 mL | 1% Tylose in Water, 30 mL, 12 mL of Glycerol |
---|---|---|---|
Drying loss at 25 °C in 48 h, % | 57.0 | 55.7 | 56.1 |
Water absorbing capacity, % | 145.4 | 133.4 | 90.7 |
Floating time, h | 48 | 72 | 72 |
Density, g·cm−3 | 0.88 | 0.85 | 0.98 |
Dose, kg/ha | 5 | 10 | 15 |
---|---|---|---|
Time, days | Efficiency, % | ||
1 | 80 | 92 | 96 |
2 | 72 | 92 | 100 |
After 2 days of dry storage | |||
1 | 96 | 96 | 98 |
2 | 96 | 100 | 96 |
After 2 more days of dry storage | |||
1 | 90 | 88 | 94 |
2 | 88 | 99 | 96 |
After 2 more days of dry storage | |||
1 | 88 | 82 | 92 |
2 | 88 | 80 | 84 |
Sample | Number of Larvae at the Beginning | Larva Mortality in % | |
---|---|---|---|
24 h | 48 h | ||
50/m2 coverage (5 kg/ha) | 100 | 72 | 99 |
100/m2 coverage (10 kg/ha) | 100 | 95 | 100 |
150/m2 coverage (15 kg/ha dose) | 100 | 100 | 100 |
Control | 100 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kótai, L.; Tamics, E.; Homonnay, Z.; Windisch, M.; Béres, K.A. The Crucial Role of Additives in the Properties of Perlite- and Gypsum-Based Superabsorbent Composites I: The Development of Composite Carrier Materials for Biological Mosquito Larva-Killing Agents. J. Compos. Sci. 2024, 8, 534. https://doi.org/10.3390/jcs8120534
Kótai L, Tamics E, Homonnay Z, Windisch M, Béres KA. The Crucial Role of Additives in the Properties of Perlite- and Gypsum-Based Superabsorbent Composites I: The Development of Composite Carrier Materials for Biological Mosquito Larva-Killing Agents. Journal of Composites Science. 2024; 8(12):534. https://doi.org/10.3390/jcs8120534
Chicago/Turabian StyleKótai, László, Ernő Tamics, Zoltán Homonnay, Márk Windisch, and Kende Attila Béres. 2024. "The Crucial Role of Additives in the Properties of Perlite- and Gypsum-Based Superabsorbent Composites I: The Development of Composite Carrier Materials for Biological Mosquito Larva-Killing Agents" Journal of Composites Science 8, no. 12: 534. https://doi.org/10.3390/jcs8120534
APA StyleKótai, L., Tamics, E., Homonnay, Z., Windisch, M., & Béres, K. A. (2024). The Crucial Role of Additives in the Properties of Perlite- and Gypsum-Based Superabsorbent Composites I: The Development of Composite Carrier Materials for Biological Mosquito Larva-Killing Agents. Journal of Composites Science, 8(12), 534. https://doi.org/10.3390/jcs8120534