Composites for Aqueous-Mediated Heterogeneously Catalyzed Degradation and Mineralization of Water Pollutants on TiO2—A Review
Abstract
:1. Introduction
1.1. TiO2 as a Heterogeneous Photocatalyst
1.2. Heterogeneous Photocatalysis—Advanced Oxidation Processes
- The energy bandgap among electrons and holes is greater than the energy needed for the absolute reaction.
- The redox possibilities of the electrons and holes (the CB and VB positions, respectively) are reasonable for redox reaction activation.
- The redox processes are possibly quick enough to rival the electron–hole recombination.
1.3. Influence of the Semiconductor Edge Positions of the Valence Band (VB) and Conduction Band (CB) on Photocatalysis
2. Advancements in the Field of Heterogeneous Photocatalytic Treatment
2.1. Influence of the Distinct Phase and Bandgap Energies of TiO2 Semiconductors and Reactive Species over Photocatalysis
2.2. Textiles and Colored Dyes
2.3. Organic Molecules and Pharmaceutical Pollutants
2.4. Petroleum-Based Hydrocarbons
3. Interactions of Various Parameters Involved in Photocatalytic Applications
3.1. Influence of the pH of the Reaction Medium
3.2. The Impact of the Initial Pollutant Substrate Concentration on Photocatalysis
3.3. Influence of Photocatalyst Loading into the Reaction Suspension
3.4. Performance of Hydrogen Peroxide (H2O2) Oxidizing Species
3.5. Irradiation time, Light-Source Wavelength, and Intensity
4. Reaction Kinetics Incorporated in Photocatalytic Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karl, T.R.; Trenberth, K.E. Modern Global Climate Change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akimoto, H. Global Air Quality and Pollution. Science 2003, 302, 1716–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.A.; De Vito, S.C. Predicting Azo Dye Toxicity. Crit. Rev. Environ. Sci. Technol. 1993, 23, 249–324. [Google Scholar] [CrossRef]
- Sinha, A.K.; Pradhan, M.; Sarkar, S.; Pal, T. Large-Scale Solid-State Synthesis of Sn—SnO2 Nanoparticles from Layered SnO by Sunlight: A Material for Dye Degradation in Water by Photocatalytic Reaction. Environ. Sci. Technol. 2013, 47, 2339–2345. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.; Kamat, P.V.; Wolf, E.E. Mass-Transfer and Kinetic Studies during the Photocatalytic Degradation of an Azo Dye on Optically Transparent Electrode Thin Film. Ind. Eng. Chem. Res. 2003, 42, 2131–2138. [Google Scholar] [CrossRef]
- Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-Photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 2012, 24, 229–251. [Google Scholar] [CrossRef]
- Vinu, R.; Madras, G. Environmental Remediation by Photocatalysis. J. Indian Inst. Sci. 2010, 90, 189–230. [Google Scholar]
- Khan, A.F.; Down, M.P.; Smith, G.C.; Foster, C.W.; Banks, C.E. Surfactant-Exfoliated 2D Hexagonal Boron Nitride (2D-HBN): Role of Surfactant upon the Electrochemical Reduction of Oxygen and Capacitance Applications. J. Mater. Chem. A 2017, 5, 4103–4113. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ma, W.; Zhao, J. Semiconductor-Mediated Photodegradation of Pollutants under Visible-Light Irradiation. Chem. Soc. Rev. 2010, 39, 4206–4219. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Dong, S.; Feng, J.; Fan, M.; Pi, Y.; Hu, L.; Han, X.; Liu, M.; Sun, J.; Sun, J. Recent Developments in Heterogeneous Photocatalytic Water Treatment Using Visible Light-Responsive Photocatalysts: A Review. Rsc Adv. 2015, 5, 14610–14630. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Titanium Dioxide Photocatalysis for Pharmaceutical Wastewater Treatment. Environ. Chem. Lett. 2014, 12, 27–47. [Google Scholar] [CrossRef]
- Lang, X.; Chen, X.; Zhao, J. Heterogeneous Visible Light Photocatalysis for Selective Organic Transformations. Chem. Soc. Rev. 2014, 43, 473–486. [Google Scholar] [CrossRef]
- Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular Artificial Photosynthesis. Chem. Soc. Rev. 2014, 43, 7501–7519. [Google Scholar] [CrossRef]
- Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W.A.; Kühn, F.E. Transformation of Carbon Dioxide with Homogeneous Transition-Metal Catalysts: A Molecular Solution to a Global Challenge? Angew. Chem. Int. Ed. 2011, 50, 8510–8537. [Google Scholar] [CrossRef]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Izumi, I.; Fan, F.-R.F.; Bard, A.J. Heterogeneous Photocatalytic Decomposition of Benzoic Acid and Adipic Acid on Platinized Titanium Dioxide Powder. The PhotoKolbe Decarboxylative Route to the Breakdown of the Benzene Ring and to the Production of Butane. J. Phys. Chem. 1981, 85, 218–223. [Google Scholar] [CrossRef]
- Augugliaro, V.; Litter, M.; Palmisano, L.; Soria, J. The Combination of Heterogeneous Photocatalysis with Chemical and Physical Operations: A Tool for Improving the Photoprocess Performance. J. Photochem. Photobiol. C Photochem. Rev. 2006, 7, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yang, X. Photocatalytic Oxidation for Indoor Air Purification: A Literature Review. Build. Environ. 2003, 38, 645–654. [Google Scholar] [CrossRef]
- Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature 1979, 277, 637–638. [Google Scholar] [CrossRef]
- Cole-Hamilton, D.J.; Tooze, R.P. Catalyst Separation, Recovery and Recycling: Chemistry and Process Design; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 30. [Google Scholar]
- Kung, H.H. Transition Metal Oxides: Surface Chemistry and Catalysis; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Henrich, V.E.; Cox, P.A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Noguera, C. Physics and Chemistry at Oxide Surfaces; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Sonavane, S.U.; Gawande, M.B.; Deshpande, S.S.; Venkataraman, A.; Jayaram, R. V Chemoselective Transfer Hydrogenation Reactions over Nanosized γ-Fe2O3 Catalyst Prepared by Novel Combustion Route. Catal. Commun. 2007, 8, 1803–1806. [Google Scholar] [CrossRef]
- Bond, G.C.; Webb, G.; Wells, P.B.; Winterbottom, J.M. Patterns of Behavior in Catalysis by Metals. J. Catal. 1962, 1, 74–84. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 Photocatalysis: Design and Applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Weber, A.S.; Grady, A.M.; Koodali, R.T. Lanthanide Modified Semiconductor Photocatalysts. Catal. Sci. Technol. 2012, 2, 683–693. [Google Scholar] [CrossRef]
- Nakata, K.; Ochiai, T.; Murakami, T.; Fujishima, A. Photoenergy Conversion with TiO2 Photocatalysis: New Materials and Recent Applications. Electrochim. Acta 2012, 84, 103–111. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic Carbon Nitride Materials: Controllable Synthesis and Applications in Fuel Cells and Photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, W.; Chen, C.; Ji, H.; Zhao, J. Probing Paramagnetic Species in Titania-Based Heterogeneous Photocatalysis by Electron Spin Resonance (ESR) Spectroscopy—A Mini Review. Chem. Eng. J. 2011, 170, 353–362. [Google Scholar] [CrossRef]
- Wang, X.; Blechert, S.; Antonietti, M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. Acs Catal. 2012, 2, 1596–1606. [Google Scholar] [CrossRef]
- Georgieva, J.; Valova, E.; Armyanov, S.; Philippidis, N.; Poulios, I.; Sotiropoulos, S. Bi-Component Semiconductor Oxide Photoanodes for the Photoelectrocatalytic Oxidation of Organic Solutes and Vapours: A Short Review with Emphasis to TiO2—WO3 Photoanodes. J. Hazard. Mater. 2012, 211, 30–46. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices. Chem. Commun. 2012, 48, 3686–3699. [Google Scholar] [CrossRef]
- Robertson, P.K.J.; Robertson, J.M.C.; Bahnemann, D.W. Removal of Microorganisms and Their Chemical Metabolites from Water Using Semiconductor Photocatalysis. J. Hazard. Mater. 2012, 211, 161–171. [Google Scholar] [CrossRef]
- Henderson, M.A. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited. Surf. Sci. Rep. 2002, 46, 1–308. [Google Scholar] [CrossRef]
- Tran, P.D.; Wong, L.H.; Barber, J.; Loo, J.S.C. Recent Advances in Hybrid Photocatalysts for Solar Fuel Production. Energy Environ. Sci. 2012, 5, 5902–5918. [Google Scholar] [CrossRef]
- Chen, H.M.; Chen, C.K.; Liu, R.-S.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Nano-Architecture and Material Designs for Water Splitting Photoelectrodes. Chem. Soc. Rev. 2012, 41, 5654–5671. [Google Scholar] [CrossRef]
- Choudhary, S.; Upadhyay, S.; Kumar, P.; Singh, N.; Satsangi, V.R.; Shrivastav, R.; Dass, S. Nanostructured Bilayered Thin Films in Photoelectrochemical Water Splitting—A Review. Int. J. Hydrogen Energy 2012, 37, 18713–18730. [Google Scholar] [CrossRef]
- Katz, M.J.; Riha, S.C.; Jeong, N.C.; Martinson, A.B.F.; Farha, O.K.; Hupp, J.T. Toward Solar Fuels: Water Splitting with Sunlight and “Rust”? Coord. Chem. Rev. 2012, 256, 2521–2529. [Google Scholar] [CrossRef]
- Kalyanasundaram, K. Photochemical Applications of Solar Energy: Photocatalysis and Photodecomposition Of. Photochemistry 2013, 41, 182. [Google Scholar]
- Young, K.J.; Martini, L.A.; Milot, R.L.; Snoeberger, R.C., III; Batista, V.S.; Schmuttenmaer, C.A.; Crabtree, R.H.; Brudvig, G.W. Light-Driven Water Oxidation for Solar Fuels. Coord. Chem. Rev. 2012, 256, 2503–2520. [Google Scholar] [CrossRef] [Green Version]
- Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes. Environ. Int. 2009, 35, 402–417. [Google Scholar] [CrossRef]
- Ollis, D.F.; Pelizzetti, E.; Serpone, N. Photocatalysis: Fundamentals and Applications; John Wiley Sons: New York, NY, USA, 1989; p. 603. [Google Scholar]
- Bousiakou, L.; Kazi, M.; Lianos, P. Wastewater Treatment Technologies in the Degradation of Hormones and Pharmaceuticals with Focus on TiO2 Technologies. Pharmakeftiki 2013, 25, 37–48. [Google Scholar]
- Zhao, J.; Wu, T.; Wu, K.; Oikawa, K.; Hidaka, H.; Serpone, N. Photoassisted Degradation of Dye Pollutants. 3. Degradation of the Cationic Dye Rhodamine B in Aqueous Anionic Surfactant/TiO2 Dispersions under Visible Light Irradiation: Evidence for the Need of Substrate Adsorption on TiO2 Particles. Environ. Sci. Technol. 1998, 32, 2394–2400. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical Photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef] [PubMed]
- Prairie, M.R.; Evans, L.R.; Stange, B.M.; Martinez, S.L. An Investigation of Titanium Dioxide Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals. Environ. Sci. Technol. 1993, 27, 1776–1782. [Google Scholar] [CrossRef]
- De Moraes, S.G.; Freire, R.S.; Duran, N. Degradation and Toxicity Reduction of Textile Effluent by Combined Photocatalytic and Ozonation Processes. Chemosphere 2000, 40, 369–373. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Baker, R.T.K.; Horsley, J.A. Strong Interactions in Supported-Metal Catalysts. Science 1981, 211, 1121–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Kim, T.S.; Stiehl, J.D.; Reeves, C.T.; Meyer, R.J.; Mullins, C.B. Cryogenic CO Oxidation on TiO2-Supported Gold Nanoclusters Precovered with Atomic Oxygen. J. Am. Chem. Soc. 2003, 125, 2018–2019. [Google Scholar] [CrossRef]
- Lietti, L.; Forzatti, P.; Bregani, F. Steady-State and Transient Reactivity Study of TiO2-Supported V2O5-WO3 De-NOx Catalysts: Relevance of the Vanadium- Tungsten Interaction on the Catalytic Activity. Ind. Eng. Chem. Res. 1996, 35, 3884–3892. [Google Scholar] [CrossRef]
- Lin, S.D.; Bollinger, M.; Vannice, M.A. Low Temperature CO Oxidation over Au/TiO2 and Au/SiO2 Catalysts. Catal. Lett. 1993, 17, 245–262. [Google Scholar] [CrossRef]
- Amores, J.M.G.; Escribano, V.S.; Busca, G. Anatase Crystal Growth and Phase Transformation to Rutile in High-Area TiO2, MoO3–TiO2 and other TiO2-Supported Oxide Catalytic Systems. J. Mater. Chem. 1995, 5, 1245–1249. [Google Scholar] [CrossRef]
- Yan, W.; Mahurin, S.M.; Pan, Z.; Overbury, S.H.; Dai, S. Ultrastable Au Nanocatalyst Supported on Surface-Modified TiO2 Nanocrystals. J. Am. Chem. Soc. 2005, 127, 10480–10481. [Google Scholar] [CrossRef]
- Park, K.-W.; Seol, K.-S. Nb-TiO2 Supported Pt Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells. Electrochem. Commun. 2007, 9, 2256–2260. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New Understanding of the Difference of Photocatalytic Activity among Anatase, Rutile and Brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- Weber, H.; Kirchner, B. Ionic Liquid Induced Band Shift of Titanium Dioxide. ChemSusChem 2016, 9, 2505–2514. [Google Scholar] [CrossRef]
- Bickley, R.I.; Gonzalez-Carreno, T.; Lees, J.S.; Palmisano, L.; Tilley, R.J.D. A Structural Investigation of Titanium Dioxide Photocatalysts. J. Solid State Chem. 1991, 92, 178–190. [Google Scholar] [CrossRef]
- Kho, Y.K.; Iwase, A.; Teoh, W.Y.; Mädler, L.; Kudo, A.; Amal, R. Photocatalytic H2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile. J. Phys. Chem. C 2010, 114, 2821–2829. [Google Scholar] [CrossRef]
- Sanchez, L.; Peral, J.; Domenech, X. Aniline Degradation by Combined Photocatalysis and Ozonation. Appl. Catal. B Environ. 1998, 19, 59–65. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Kulkarni, S.V.; Blackwell, C.D.; Blackard, A.L.; Stackhouse, C.W.; Alexander, M.W. Textile Dyes and Dyeing Equipment: Classification, Properties and Environmental Aspects; US Government Printing Office: Washington, DC, USA, 1985.
- Ganesh, R.; Boardman, G.D.; Michelsen, D. Fate of Azo Dyes in Sludges. Water Res. 1994, 28, 1367–1376. [Google Scholar] [CrossRef]
- Weber, E.J.; Adams, R.L. Chemical-and Sediment-Mediated Reduction of the Azo Dye Disperse Blue 79. Environ. Sci. Technol. 1995, 29, 1163–1170. [Google Scholar] [CrossRef]
- Liang, Y.; Ponte Goncalves, A.M.; Negus, D.K. Picosecond Fluorescence Lifetime Measurements on Dyes Adsorbed at Semiconductor and Insulator Surfaces. J. Phys. Chem. 1983, 87, 1–4. [Google Scholar] [CrossRef]
- Chatterjee, D.; Dasgupta, S. Visible Light Induced Photocatalytic Degradation of Organic Pollutants. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 186–205. [Google Scholar] [CrossRef]
- Wahab, H.S.; Hadi, H.M. Visible Light N-TiO2-Induced Photodegradation of Congo Red: Characterization, Kinetics and Mechanistic Study. Int. J. Environ. Sci. Technol. 2017, 14, 2135–2148. [Google Scholar] [CrossRef]
- Muruganandham, M.; Swaminathan, M. Solar Photocatalytic Degradation of a Reactive Azo Dye in TiO2-Suspension. Sol. Energy Mater. Sol. Cells 2004, 81, 439–457. [Google Scholar] [CrossRef]
- Zhou, F.; Yan, C.; Liang, T.; Sun, Q.; Wang, H. Photocatalytic Degradation of Orange G Using Sepiolite-TiO2 Nanocomposites: Optimization of Physicochemical Parameters and Kinetics Studies. Chem. Eng. Sci. 2018, 183, 231–239. [Google Scholar] [CrossRef]
- Kamat, P.V.; Fox, M.A. Photosensitization of TiO2 Colloids by Erythrosin B in Acetonitrile. Chem. Phys. Lett. 1983, 102, 379–384. [Google Scholar] [CrossRef]
- Fessenden, R.W.; Kamat, P.V. Photosensitized Charge Injection into TiO2 Particles as Studied by Microwave Absorption. Chem. Phys. Lett. 1986, 123, 233–238. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, C.; Ma, W. Photocatalytic Degradation of Organic Pollutants under Visible Light Irradiation. Top. Catal. 2005, 35, 269–278. [Google Scholar] [CrossRef]
- Galindo, C.; Jacques, P.; Kalt, A. Photodegradation of the Aminoazobenzene Acid Orange 52 by Three Advanced Oxidation Processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative Mechanistic and Kinetic Investigations. J. Photochem. Photobiol. A Chem. 2000, 130, 35–47. [Google Scholar] [CrossRef]
- Stylidi, M.; Kondarides, D.I.; Verykios, X.E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Catal. B Environ. 2003, 40, 271–286. [Google Scholar] [CrossRef]
- Lucarelli, L.; Nadtochenko, V.; Kiwi, J. Environmental Photochemistry: Quantitative Adsorption and FTIR Studies during the TiO2-Photocatalyzed Degradation of Orange II. Langmuir 2000, 16, 1102–1108. [Google Scholar] [CrossRef]
- Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N. Evidence for H2O2 Generation during the TiO2-Assisted Photodegradation of Dyes in Aqueous Dispersions under Visible Light Illumination. J. Phys. Chem. B 1999, 103, 4862–4867. [Google Scholar] [CrossRef]
- Suarez-Parra, R.; Hernández-Pérez, I.; Rincón, M.E.; López-Ayala, S.; Roldan-Ahumada, M.C. Visible Light-Induced Degradation of Blue Textile Azo Dye on TiO2/CdO—ZnO Coupled Nanoporous Films. Sol. Energy Mater. Sol. Cells 2003, 76, 189–199. [Google Scholar] [CrossRef]
- Gupta, V.K.; Jain, R.; Agarwal, S.; Nayak, A.; Shrivastava, M. Photodegradation of Hazardous Dye Quinoline Yellow Catalyzed by TiO2. J. Colloid Interface Sci. 2012, 366, 135–140. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Y.; Dai, W.; Luo, X. Highly Efficient Degradation of Tartrazine with a Benzoic Acid/TiO2 System. ACS Omega 2019, 4, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Kar, A.; Smith, Y.R.; Subramanian, V. Improved Photocatalytic Degradation of Textile Dye Using Titanium Dioxide Nanotubes Formed over Titanium Wires. Environ. Sci. Technol. 2009, 43, 3260–3265. [Google Scholar] [CrossRef] [PubMed]
- Vaez, M.; Zarringhalam Moghaddam, A.; Alijani, S. Optimization and Modeling of Photocatalytic Degradation of Azo Dye Using a Response Surface Methodology (RSM) Based on the Central Composite Design with Immobilized Titania Nanoparticles. Ind. Eng. Chem. Res. 2012, 51, 4199–4207. [Google Scholar] [CrossRef]
- Farzana, M.H.; Meenakshi, S. Synergistic Effect of Chitosan and Titanium Dioxide on the Removal of Toxic Dyes by the Photodegradation Technique. Ind. Eng. Chem. Res. 2014, 53, 55–63. [Google Scholar] [CrossRef]
- Rasalingam, S.; Wu, C.-M.; Koodali, R.T. Modulation of Pore Sizes of Titanium Dioxide Photocatalysts by a Facile Template Free Hydrothermal Synthesis Method: Implications for Photocatalytic Degradation of Rhodamine B. ACS Appl. Mater. Interfaces 2015, 7, 4368–4380. [Google Scholar] [CrossRef]
- Anjugam Vandarkuzhali, S.A.; Pugazhenthiran, N.; Mangalaraja, R.V.; Sathishkumar, P.; Viswanathan, B.; Anandan, S. Ultrasmall Plasmonic Nanoparticles Decorated Hierarchical Mesoporous TiO2 as an Efficient Photocatalyst for Photocatalytic Degradation of Textile Dyes. ACS Omega 2018, 3, 9834–9845. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; He, W.; Liu, Y.; Wu, H.; Wamer, W.G.; Lo, Y.M.; Yin, J.-J. FD&C Yellow No. 5 (Tartrazine) Degradation via Reactive Oxygen Species Triggered by TiO2 and Au/TiO2 Nanoparticles Exposed to Simulated Sunlight. J. Agric. Food Chem. 2014, 62, 12052–12060. [Google Scholar] [PubMed]
- Niu, P.; Hao, J. Fabrication of Titanium Dioxide and Tungstophosphate Nanocomposite Films and Their Photocatalytic Degradation for Methyl Orange. Langmuir 2011, 27, 13590–13597. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Cui, W. Adsorption and Photocatalytic Degradation of Reactive Brilliant Red K-2BP by TiO2/AC in Bubbling Fluidized Bed Photocatalytic Reactor. Ind. Eng. Chem. Res. 2010, 49, 11321–11330. [Google Scholar] [CrossRef]
- Fukugaichi, S. Fixation of Titanium Dioxide Nanoparticles on Glass Fiber Cloths for Photocatalytic Degradation of Organic Dyes. ACS Omega 2019, 4, 15175–15180. [Google Scholar] [CrossRef] [Green Version]
- Panahian, Y.; Arsalani, N. Synthesis of Hedgehoglike F-TiO2 (B)/CNT Nanocomposites for Sonophotocatalytic and Photocatalytic Degradation of Malachite Green (MG) under Visible Light: Kinetic Study. J. Phys. Chem. A 2017, 121, 5614–5624. [Google Scholar] [CrossRef]
- Stengl, V.; Bakardjieva, S. Molybdenum-Doped Anatase and Its Extraordinary Photocatalytic Activity in the Degradation of Orange II in the UV and Vis Regions. J. Phys. Chem. C 2010, 114, 19308–19317. [Google Scholar] [CrossRef]
- Kuvarega, A.T.; Krause, R.W.M.; Mamba, B.B. Nitrogen/Palladium-Codoped TiO2 for Efficient Visible Light Photocatalytic Dye Degradation. J. Phys. Chem. C 2011, 115, 22110–22120. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, C.; Li, X.; Zhao, J.; Hidaka, H.; Serpone, N. Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-Catalyst. J. Phys. Chem. B 2002, 106, 5022–5028. [Google Scholar] [CrossRef]
- Kim, M.G.; Kang, J.M.; Lee, J.E.; Kim, K.S.; Kim, K.H.; Cho, M.; Lee, S.G. Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO2 Nanoparticles. ACS Omega 2021, 6, 10668–10678. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, M.; Chen, G.; Zou, W.; Zhao, Y.; Zhang, H.; Zhao, Q. Visible—Ultraviolet Upconversion Carbon Quantum Dots for Enhancement of the Photocatalytic Activity of Titanium Dioxide. ACS Omega 2021, 6, 4247–4254. [Google Scholar] [CrossRef]
- Savari, R.; Rouhi, J.; Fakhar, O.; Kakooei, S.; Pourzadeh, D.; Jahanbakhsh, O.; Shojaei, S. Development of PhotoAnodes Based on Strontium Doped Zinc Oxide-Reduced Graphene Oxide Nanocomposites for Improving Performance of Dye-Sensitized Solar Cells. Ceram. Int. 2021, 47, 31927–31939. [Google Scholar] [CrossRef]
- Djokić, V.R.; Marinković, A.D.; Petrović, R.D.; Ersen, O.; Zafeiratos, S.; Mitrić, M.; Ophus, C.; Radmilović, V.R.; Janaćković, D.T. Highly Active Rutile TiO2 Nanocrystalline Photocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 33058–33068. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, J.P.; Mahto, A.; Vadodariya, N.; Kholiya, F.; Maiti, S.; Nataraj, S.K.; Meena, R. Fabrication of Carbon and Sulphur-Doped Nanocomposites with Seaweed Polymer Carrageenan as an Efficient Catalyst for Rapid Degradation of Dye Pollutants Using a Solar Concentrator. RSC Adv. 2016, 6, 61716–61724. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Sun, Q.; Wang, W.; Yan, Z.; Gong, W.; Min, L. UV and Solar Light Degradation of Dyes over Mesoporous Crystalline Titanium Dioxides Prepared by Using Commercial Synthetic Dyes as Templates. J. Mater. Chem. 2009, 19, 6597–6604. [Google Scholar] [CrossRef]
- Joseph, C.G.; Sharain-Liew, Y.L.; Bono, A.; Teng, L.Y. Photodegradation of Indigo Dye Using TiO2 and TiO2/Zeolite System. Asian J. Chem. 2013, 25, 8402. [Google Scholar] [CrossRef]
- Gupta, V.K.; Jain, R.; Nayak, A.; Agarwal, S.; Shrivastava, M. Removal of the Hazardous Dye—Tartrazine by Photodegradation on Titanium Dioxide Surface. Mater. Sci. Eng. C 2011, 31, 1062–1067. [Google Scholar] [CrossRef]
- Velmurugan, R.; Krishnakumar, B.; Swaminathan, M. Sonochemical Synthesis and Characterization of Barium Fluoride—Titanium Dioxide Nanocomposites and Activity for Photodegradation of Trypan Blue Dye. Mater. Sci. Semicond. Process. 2014, 27, 654–664. [Google Scholar] [CrossRef]
- Yi, W.; Yan, C.; Yan, P.; Li, F. A New Perspective for Effect of S and Cu on the Photocatalytic Activity of S, Cu-Codoped Nano-TiO2 under Visible Light Irradiation. J. Sol-Gel Sci. Technol. 2014, 69, 386–396. [Google Scholar] [CrossRef]
- El-Mekkawi, D.; Galal, H.R. Removal of a Synthetic Dye “Direct Fast Blue B2RL” via Adsorption and Photocatalytic Degradation Using Low Cost Rutile and Degussa P25 Titanium Dioxide. J. Hydro-Environ. Res. 2013, 7, 219–226. [Google Scholar] [CrossRef]
- Asiri, A.M.; Al-Amoudi, M.S.; Al-Talhi, T.A.; Al-Talhi, A.D. Photodegradation of Rhodamine 6G and Phenol Red by Nanosized TiO2 under Solar Irradiation. J. Saudi Chem. Soc. 2011, 15, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Aboul-Gheit, A.K.; El-Desouki, D.S.; El-Salamony, R.A. Different Outlet for Preparing Nano-TiO2 Catalysts for the Photodegradation of Black B Dye in Water. Egypt. J. Pet. 2014, 23, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Azami, M.S.; Ismail, K.; Ishak, M.A.M.; Zuliahani, A.; Hamzah, S.R.; Nawawi, W.I. Formation of an Amorphous Carbon Nitride/Titania Composite for Photocatalytic Degradation of RR4 Dye. J. Water Process Eng. 2020, 35, 101209. [Google Scholar] [CrossRef]
- Muthirulan, P.; Devi, C.N.; Sundaram, M.M. A Green Approach to the Fabrication of Titania—Graphene Nanocomposites: Insights Relevant to Efficient Photodegradation of Acid Orange 7 Dye under Solar Irradiation. Mater. Sci. Semicond. Process. 2014, 25, 219–230. [Google Scholar] [CrossRef]
- Pugazhenthiran, N.; Mangalaraja, R.V.; Sathishkumar, P.; Murugesan, S.; Muneeswaran, T.; Pandiyarajan, T.; Naveenraj, S.; Contreras, D.; Anandan, S. Green Synthesis of Porous Au—Nx-TiO2 Nanospheres for Solar Light Induced Photocatalytic Degradation of Diazo and Triazo Dyes and Their Eco-Toxic Effects. New J. Chem. 2018, 42, 18717–18728. [Google Scholar] [CrossRef]
- Debnath, S.; Ballav, N.; Nyoni, H.; Maity, A.; Pillay, K. Optimization and Mechanism Elucidation of the Catalytic PhotoDegradation of the Dyes Eosin Yellow (EY) and Naphthol Blue Black (NBB) by a Polyaniline-Coated Titanium Dioxide Nanocomposite. Appl. Catal. B Environ. 2015, 163, 330–342. [Google Scholar] [CrossRef]
- Hickman, R.; Walker, E.; Chowdhury, S. TiO2-PDMS Composite Sponge for Adsorption and Solar Mediated Photodegradation of Dye Pollutants. J. Water Process Eng. 2018, 24, 74–82. [Google Scholar] [CrossRef]
- Bhagwat, U.O.; Wu, J.J.; Asiri, A.M.; Anandan, S. Sonochemical Synthesis of Mg-TiO2 Nanoparticles for Persistent Congo Red Dye Degradation. J. Photochem. Photobiol. A Chem. 2017, 346, 559–569. [Google Scholar] [CrossRef]
- Sadia, M.; Naz, R.; Khan, J.; Zahoor, M.; Ullah, R.; Khan, R.; Naz, S.; Almoallim, H.S.; Alharbi, S.A. Metal Doped Titania Nanoparticles as Efficient Photocatalyst for Dyes Degradation. J. King Saud Univ. 2021, 33, 101312. [Google Scholar] [CrossRef]
- Rajagopal, S.; Paramasivam, B.; Muniyasamy, K. Photocatalytic Removal of Cationic and Anionic Dyes in the Textile Wastewater by H2O2 Assisted TiO2 and Micro-Cellulose Composites. Sep. Purif. Technol. 2020, 252, 117444. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, H.; Shang, Y.; Zeng, S.; Qin, Z.; Yin, S.; Li, J.; Liang, S.; Lu, G.; Liu, Z. Spiky Nanohybrids of Titanium Dioxide/Gold Nanoparticles for Enhanced Photocatalytic Degradation and Anti-Bacterial Property. J. Colloid Interface Sci. 2019, 535, 516–523. [Google Scholar] [CrossRef]
- Pandey, A.; Kalal, S.; Ameta, C.; Ameta, R.; Kumar, S.; Punjabi, P.B. Synthesis, Characterization and Application of Naïve and Nano-Sized Titanium Dioxide as a Photocatalyst for Degradation of Methylene Blue. J. Saudi Chem. Soc. 2015, 19, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.F.M.; Batista, P.S.; Muller, P.S., Jr.; Velani, V.; França, M.D.; De Souza, D.R.; Machado, A.E.H. Evaluating the Effectiveness of Photocatalysts Based on Titanium Dioxide in the Degradation of the Dye Ponceau 4R. Dye. Pigment. 2012, 92, 563–572. [Google Scholar] [CrossRef]
- Li, Z.; Wang, B.; Cui, G.-Y.; Zhang, B.-B.; Wang, Y.-F.; Yang, L.; Ma, H.-X.; Jiao, L.-Y.; Pang, L.-Y.; Ma, X.-X. Construction of Novel Trimeric π-Interaction Subphthalocyanine-Sensitized Titanium Dioxide for Highly Efficient Photocatalytic Degradation of Organic Pollutants. J. Alloys Compd. 2021, 855, 157458. [Google Scholar] [CrossRef]
- Malagutti, A.R.; Mourao, H.A.J.L.; Garbin, J.R.; Ribeiro, C. Deposition of TiO2 and Ag: TiO2 Thin Films by the Polymeric Precursor Method and Their Application in the Photodegradation of Textile Dyes. Appl. Catal. B Environ. 2009, 90, 205–212. [Google Scholar] [CrossRef]
- Barakat, M.A. Adsorption and Photodegradation of Procion Yellow H-EXL Dye in Textile Wastewater over TiO2 Suspension. J. Hydro-Environ. Res. 2011, 5, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Stathatos, E.; Papoulis, D.; Aggelopoulos, C.A.; Panagiotaras, D.; Nikolopoulou, A. TiO2/Palygorskite Composite Nanocrystalline Films Prepared by Surfactant Templating Route: Synergistic Effect to the Photocatalytic Degradation of an Azo-Dye in Water. J. Hazard. Mater. 2012, 211, 68–76. [Google Scholar] [CrossRef]
- Vargas, X.; Tauchert, E.; Marin, J.-M.; Restrepo, G.; Dillert, R.; Bahnemann, D. Fe-Doped Titanium Dioxide Synthesized: Photocatalytic Activity and Mineralization Study for Azo Dye. J. Photochem. Photobiol. A Chem. 2012, 243, 17–22. [Google Scholar] [CrossRef]
- Berkani, M.; Kadmi, Y.; Bouchareb, M.K.; Bouhelassa, M.; Bouzaza, A. Combinatıon of a Box-Behnken Design Technique with Response Surface Methodology for Optimization of the Photocatalytic Mineralization of CI Basic Red 46 Dye from Aqueous Solution. Arab. J. Chem. 2020, 13, 8338–8346. [Google Scholar] [CrossRef]
- Thejaswini, T.V.L.; Prabhakaran, D.; Maheswari, M.A. Synthesis of Mesoporous-like ZrO2—TiO2 Monoliths and Their Photocatalytic Applications towards Organic Dye Degradation. J. Photochem. Photobiol. A 2017, 344, 212–222. [Google Scholar] [CrossRef]
- Saroj, S.; Singh, L.; Singh, S.V. Solution-Combustion Synthesis of Anion (Iodine) Doped TiO2 Nanoparticles for Photocatalytic Degradation of Direct Blue 199 Dye and Regeneration of Used Photocatalyst. J. Photochem. Photobiol. A Chem. 2020, 396, 112532. [Google Scholar] [CrossRef]
- Im, J.H.; Yang, S.J.; Yun, C.H.; Park, C.R. Simple Fabrication of Carbon/TiO2 Composite Nanotubes Showing Dual Functions with Adsorption and Photocatalytic Decomposition of Rhodamine B. Nanotechnology 2011, 23, 35604. [Google Scholar] [CrossRef]
- Thuong, H.T.T.; Kim, C.T.T.; Quang, L.N.; Kosslick, H. Highly Active Brookite TiO2-Assisted Photocatalytic Degradation of Dyes under the Simulated Solar- UVA Radiation. Prog. Nat. Sci. Mater. Int. 2019, 29, 641–647. [Google Scholar] [CrossRef]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A Review on Environmental Monitoring of Water Organic Pollutants Identified by EU Guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef]
- Nawaz, T.; Sengupta, S. Contaminants of Emerging Concern: Occurrence, Fate, and Remediation. In Advances in Water Purification Techniques2019; pp. 67–114.
- Halling-Sørensen, B.; Nielsen, S.N.; Lanzky, P.F.; Ingerslev, F.; Lützhøft, H.C.H.; Jørgensen, S.E. Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment-A Review. Chemosphere 1998, 36, 357–393. [Google Scholar] [CrossRef]
- Ternes, T.A. Occurrence of Drugs in German Sewage Treatment Plants and Rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Kümmerer, K. Resistance in the Environment. J. Antimicrob. Chemother. 2004, 54, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change? Environ. Health Perspect. 1999, 107, 907–938. [Google Scholar] [CrossRef]
- Zuccato, E.; Calamari, D.; Natangelo, M.; Fanelli, R. Presence of Therapeutic Drugs in the Environment. Lancet 2000, 355, 1789–1790. [Google Scholar] [CrossRef]
- Heberer, T. Occurrence, Fate, and Removal of Pharmaceutical Residues in the Aquatic Environment: A Review of Recent Research Data. Toxicol. Lett. 2002, 131, 5–17. [Google Scholar] [CrossRef]
- Daughton, C.G. Cradle-to-Cradle Stewardship of Drugs for Minimizing the Deposition Whilst Promoting Human Health. I. Rationale for and Avenues toward a Green Pharmacy. Environ. Health Perspect. 2003, 111, 757–774. [Google Scholar] [CrossRef] [Green Version]
- Carbonaro, S.; Sugihara, M.N.; Strathmann, T.J. Continuous-Flow Photocatalytic Treatment of Pharmaceutical Micropollutants: Activity, Inhibition, and Deactivation of TiO2 Photocatalysts in Wastewater Effluent. Appl. Catal. B Environ. 2013, 129, 1–12. [Google Scholar] [CrossRef]
- Achilleos, A.; Hapeshi, E.; Xekoukoulotakis, N.P.; Mantzavinos, D.; Fatta-Kassinos, D. Factors Affecting Diclofenac Decomposition in Water by UV-A/TiO2 Photocatalysis. Chem. Eng. J. 2010, 161, 53–59. [Google Scholar] [CrossRef]
- Van Doorslaer, X.; Heynderickx, P.M.; Demeestere, K.; Debevere, K.; Van Langenhove, H.; Dewulf, J. TiO2 Mediated Heterogeneous Photocatalytic Degradation of Moxifloxacin: Operational Variables and Scavenger Study. Appl. Catal. B Environ. 2012, 111, 150–156. [Google Scholar] [CrossRef]
- Dimitrakopoulou, D.; Rethemiotaki, I.; Frontistis, Z.; Xekoukoulotakis, N.P.; Venieri, D.; Mantzavinos, D. Degradation, Mineralization and Antibiotic Inactivation of Amoxicillin by UV-A/TiO2 Photocatalysis. J. Environ. Manag. 2012, 98, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Zhou, X.; Zhang, Y.; Duan, Y.; Qiang, Z.; Zhang, T.C. Comparative Study of the Degradation of Carbamazepine in Water by Advanced Oxidation Processes. Environ. Technol. 2012, 33, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yuan, C.; Bao, Y.; Yang, J.; Wu, Y. Photocatalytic Degradation of Pesticide Pyridaben on TiO2 Particles. J. Mol. Catal. A Chem. 2005, 229, 95–105. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Zarkadis, A.K.; Albanis, T.A. Photodegradation of Selected Herbicides in Various Natural Waters and Soils under Environmental Conditions. J. Environ. Qual. 2001, 30, 121–130. [Google Scholar] [CrossRef]
- Aungpradit, T.; Sutthivaiyakit, P.; Martens, D.; Sutthivaiyakit, S.; Kettrup, A.A.F. Photocatalytic Degradation of Triazophos in Aqueous Titanium Dioxide Suspension: Identification of Intermediates and Degradation Pathways. J. Hazard. Mater. 2007, 146, 204–213. [Google Scholar] [CrossRef]
- Moctezuma, E.; Leyva, E.; Palestino, G.; de Lasa, H. Photocatalytic Degradation of Methyl Parathion: Reaction Pathways and Intermediate Reaction Products. J. Photochem. Photobiol. A Chem. 2007, 186, 71–84. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, J.; Gong, L.; Zhang, M.; Zhang, L.; Chen, X. Investigation of the Photocatalytic Degradation of Organochlorine Pesticides on a Nano-TiO2 Coated Film. Talanta 2007, 72, 1667–1674. [Google Scholar] [CrossRef]
- Wei, L.; Shifu, C.; Wei, Z.; Sujuan, Z. Titanium Dioxide Mediated Photocatalytic Degradation of Methamidophos in Aqueous Phase. J. Hazard. Mater. 2009, 164, 154–160. [Google Scholar] [CrossRef]
- Ani, I.J.; Akpan, U.G.; Olutoye, M.A.; Hameed, B.H. Photocatalytic Degradation of Pollutants in Petroleum Refinery Wastewater by TiO2-and ZnO-Based Photocatalysts: Recent Development. J. Clean. Prod. 2018, 205, 930–954. [Google Scholar] [CrossRef]
- Koltsakidou, A.; Antonopoulou, M.; Evgenidou, E.; Konstantinou, I.; Lambropoulou, D. A Comparative Study on the PhotoCatalytic Degradation of Cytarabine Anticancer Drug under Fe3+/H2O2, Fe3+/S2O82−, and [Fe(C2O4)3]3−/H2O2 Processes. Kinetics, Identification, and in Silico Toxicity Assessment of Generated Transformation Products. Environ. Sci. Pollut. Res. 2019, 26, 7772–7784. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Kockler, J.; Motti, C. Glass BD Oelgemoller M. Environ. Chem. Lett. 2014, 12, 27–47. [Google Scholar] [CrossRef]
- Perini, J.A.L.; Tonetti, A.L.; Vidal, C.; Montagner, C.C.; Nogueira, R.F.P. Simultaneous Degradation of Ciprofloxacin, Amoxicillin, Sulfathiazole and Sulfamethazine, and Disinfection of Hospital Effluent after Biological Treatment via PhotoFenton Process under Ultraviolet Germicidal Irradiation. Appl. Catal. B Environ. 2018, 224, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Basha, S.; Keane, D.; Nolan, K.; Oelgemöller, M.; Lawler, J.; Tobin, J.M.; Morrissey, A. UV-Induced Photocatalytic Degradation of Aqueous Acetaminophen: The Role of Adsorption and Reaction Kinetics. Environ. Sci. Pollut. Res. 2015, 22, 2219–2230. [Google Scholar] [CrossRef]
- Das, R.; Sarkar, S.; Chakraborty, S.; Choi, H.; Bhattacharjee, C. Remediation of Antiseptic Components in Wastewater by Photocatalysis Using TiO2 Nanoparticles. Ind. Eng. Chem. Res. 2014, 53, 3012–3020. [Google Scholar] [CrossRef]
- Van Geenen, F.A.M.G.; Franssen, M.C.R.; Miikkulainen, V.; Ritala, M.; Zuilhof, H.; Kostiainen, R.; Nielen, M.W.F. TiO2 Photocatalyzed Oxidation of Drugs Studied by Laser Ablation Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2019, 30, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Romeiro, A.; Freitas, D.; Emilia Azenha, M.; Canle, M.; Burrows, H.D. Effect of the Calcination Temperature on the Photocatalytic Efficiency of Acidic Sol—Gel Synthesized TiO2 Nanoparticles in the Degradation of Alprazolam. Photochem. Photobiol. Sci. 2017, 16, 935–945. [Google Scholar] [CrossRef]
- Diaz-Angulo, J.; Gomez-Bonilla, I.; Jimenez-Tohapanta, C.; Mueses, M.; Pinzon, M.; Machuca-Martinez, F. Visible-Light Activation of TiO2 by Dye-Sensitization for Degradation of Pharmaceutical Compounds. Photochem. Photobiol. Sci. 2019, 18, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Curry, D.E.; Andrea, K.A.; Carrier, A.J.; Nganou, C.; Scheller, H.; Yang, D.; Youden, B.; Zhang, Y.; Nicholson, A.; Cui, S.; et al. Surface Interaction of Doxorubicin with Anatase Determines Its Photodegradation Mechanism: Insights into Removal of Waterborne Pharmaceuticals by TiO2 Nanoparticles. Environ. Sci. Nano 2018, 5, 1027–1035. [Google Scholar] [CrossRef]
- Rimoldi, L.; Meroni, D.; Falletta, E.; Pifferi, V.; Falciola, L.; Cappelletti, G.; Ardizzone, S. Emerging Pollutant Mixture Mineralization by TiO2 Photocatalysts. The Role of the Water Medium. Photochem. Photobiol. Sci. 2017, 16, 60–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaccariello, G.; Moretti, E.; Storaro, L.; Riello, P.; Canton, P.; Gombac, V.; Montini, T.; Rodriguez-Castellon, E.; Benedetti, A. TiO2—Mesoporous Silica Nanocomposites: Cooperative Effect in the Photocatalytic Degradation of Dyes and Drugs. RSC Adv. 2014, 4, 37826–37837. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, W.; Nasr, M.; Bechelany, M.; Miele, P.; Wang, H.; Xu, P. Enhanced Visible Light Photocatalysis by TiO2—BN Enabled Electrospinning of Nanofibers for Pharmaceutical Degradation and Wastewater Treatment. Photochem. Photobiol. Sci. 2019, 18, 2921–2930. [Google Scholar] [CrossRef] [PubMed]
- Dixit, D.; Verma, A.; Gupta, S.; Bansal, P. Assessment of Solar Photocatalytic Degradation and Mineralization of Amoxicillin Trihydrate (AMT) Using Slurry and Fixed-Bed Batch Reactor: Efficacy of Parabolic Trough Collector. RSC Adv. 2016, 6, 36109–36117. [Google Scholar] [CrossRef]
- Negoescu, D.; Atkinson, I.; Culita, D.C.; Bratan, V.; Baran, A.; Parvulescu, V. TiO2-Ag Photocatalysts for Degradation of Dyes and Antibiotics from Aqueous Solution. Multidiscip. Digit. Publ. Inst. Proc. 2020, 57, 60. [Google Scholar]
- Heng, Z.W.; Tan, Y.Y.; Chong, W.C.; Mahmoudi, E.; Mohammad, A.W.; Teoh, H.C.; Sim, L.C.; Koo, C.H. Preparation of a Novel Polysulfone Membrane by Incorporated with Carbon Dots Grafted Silica from Rice Husk for Dye Removal. J. Water Process Eng. 2021, 40, 101805. [Google Scholar] [CrossRef]
- Mehmood, C.T.; Zhong, Z.; Zhou, H.; Xiao, Y. Constructing Porous Beads with Modified Polysulfone-Alginate and TiO2 as a Robust and Recyclable Photocatalyst for Wastewater Treatment. J. Water Process Eng. 2020, 38, 101601. [Google Scholar] [CrossRef]
- Čizmić, M.; Ljubas, D.; Ćurković, L.; Škorić, I.; Babić, S. Kinetics and Degradation Pathways of Photolytic and Photocatalytic Oxidation of the Anthelmintic Drug Praziquantel. J. Hazard. Mater. 2017, 323, 500–512. [Google Scholar] [CrossRef]
- Ortiz-Bustos, J.; Gómez-Ruiz, S.; Mazarío, J.; Domine, M.E.; del Hierro, I.; Pérez, Y. Copper and Sulphur Co-Doped Titanium Oxide Nanoparticles with Enhanced Catalytic and Photocatalytic Properties. Catal. Sci. Technol. 2020, 10, 6511–6524. [Google Scholar] [CrossRef]
- Khraisheh, M.; Kim, J.; Campos, L.; Ala’a, H.; Al-Hawari, A.; Al Ghouti, M.; Walker, G.M. Removal of Pharmaceutical and Personal Care Products (PPCPs) Pollutants from Water by Novel TiO2—Coconut Shell Powder (TCNSP) Composite. J. Ind. Eng. Chem. 2014, 20, 979–987. [Google Scholar] [CrossRef]
- Miranda, M.O.; Cavalcanti, W.E.C.; da Silva, F.I.; Rigoti, E.; Rodríguez-Castellón, E.; Pergher, S.B.C.; Braga, T.P. Photocatalytic Degradation of Ibuprofen Using Modified Titanium Oxide Supported on CMK-3: Effect of Ti Content on the TiO2 and Carbon Interaction. Catal. Sci. Technol. 2020, 10, 7681–7696. [Google Scholar] [CrossRef]
- Nawaz, M.; Khan, A.A.; Hussain, A.; Jang, J.; Jung, H.-Y.; Lee, D.S. Reduced Graphene Oxide- TiO2/Sodium Alginate 3-Dimensional Structure Aerogel for Enhanced Photocatalytic Degradation of Ibuprofen and Sulfamethoxazole. Chemosphere 2020, 261, 127702. [Google Scholar] [CrossRef]
- Eslami, A.; Amini, M.M.; Asadi, A.; Safari, A.A.; Daglioglu, N. Photocatalytic Degradation of Ibuprofen and Naproxen in Water over NS-TiO2 Coating on Polycarbonate: Process Modeling and Intermediates Identification. Inorg. Chem. Commun. 2020, 115, 107888. [Google Scholar] [CrossRef]
- Li, W.; Guo, C.; Su, B.; Xu, J. Photodegradation of Four Fluoroquinolone Compounds by Titanium Dioxide under Simulated Solar Light Irradiation. J. Chem. Technol. Biotechnol. 2012, 87, 643–650. [Google Scholar] [CrossRef]
- Chaker, H.; Fourmentin, S.; Chérif-Aouali, L. Efficient Photocatalytic Degradation of Ibuprofen under Visible Light Irradiation Using Silver and Cerium Co-Doped Mesoporous TiO2. ChemistrySelect 2020, 5, 11787–11796. [Google Scholar] [CrossRef]
- Fotiou, T.; Triantis, T.M.; Kaloudis, T.; Pastrana-Martínez, L.M.; Likodimos, V.; Falaras, P.; Silva, A.M.T.; Hiskia, A. Photocatalytic Degradation of Microcystin-LR and Off-Odor Compounds in Water under UV-A and Solar Light with a Nanostructured Photocatalyst Based on Reduced Graphene Oxide—TiO2 Composite. Identification of Intermediate Products. Ind. Eng. Chem. Res. 2013, 52, 13991–14000. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Doong, R. Heterostructured ZnFe2O4/TiO2 Nanocomposites with a Highly Recyclable Visible-Light-Response for Bisphenol A Degradation. RSC Adv. 2017, 7, 50006–50016. [Google Scholar] [CrossRef] [Green Version]
- Rathod, M.; Moradeeya, P.G.; Haldar, S.; Basha, S. Nanocellulose/TiO2 Composites: Preparation, Characterization and Application in the Photocatalytic Degradation of a Potential Endocrine Disruptor, Mefenamic Acid, in Aqueous Media. Photochem. Photobiol. Sci. 2018, 17, 1301–1309. [Google Scholar] [CrossRef]
- Su, C.; Tong, Y.; Zhang, M.; Zhang, Y.; Shao, C. TiO2 Nanoparticles Immobilized on Polyacrylonitrile Nanofibers Mats: A Flexible and Recyclable Photocatalyst for Phenol Degradation. RSC Adv. 2013, 3, 7503–7512. [Google Scholar] [CrossRef]
- Gómez, C.M.; Del Angel, G.; Ramos-Ramírez, E.; Rangel-Vázquez, I.; González, F.; Arrieta, A.; Vázquez-Zavala, A.; Bonilla-Sánchez, A.; Sánchez Cantú, M. Alumina Coating with TiO2 and Its Effect on Catalytic Photodegradation of Phenol and P-Cresol. J. Chem. Technol. Biotechnol. 2016, 91, 2211–2220. [Google Scholar] [CrossRef]
- Ehsani, M.; Aroujalian, A. Fabrication of Electrospun Polyethersulfone/Titanium Dioxide (PES/TiO2) Composite Nanofibers Membrane and Its Application for Photocatalytic Degradation of Phenol in Aqueous Solution. Polym. Adv. Technol. 2020, 31, 772–785. [Google Scholar] [CrossRef]
- Kryczyk, A.; Żmudzki Pawełand Hubicka, U. Determination of Bifonazole and Identification of Its Photocatalytic Degradation Products Using UPLC-MS/MS. Biomed. Chromatogr. 2017, 31, e3955. [Google Scholar]
- Ramli, R.M.; Chong, F.K.; Omar, A.A.; Murugesan, T. Performance of Surfactant Assisted Synthesis of Fe/TiO2 on the Photodegradation of Diisopropanolamine. CLEAN—Soil Air Water 2015, 43, 690–697. [Google Scholar] [CrossRef]
- Ali, M.H.H.; Al-Qahtani, K.M.; El-Sayed, S.M. Enhancing Photodegradation of 2, 4, 6 Trichlorophenol and Organic Pollutants in Industrial Effluents Using Nanocomposite of TiO2 Doped with Reduced Graphene Oxide. Egypt. J. Aquat. Res. 2019, 45, 321–328. [Google Scholar] [CrossRef]
- Chun-Te Lin, J.; Sopajaree, K.; Jitjanesuwan, T.; Lu, M.-C. Application of Visible Light on Copper-Doped Titanium Dioxide Catalyzing Degradation of Chlorophenols. Sep. Purif. Technol. 2018, 191, 233–243. [Google Scholar]
- Baeissa, E.S. Synthesis and Characterization of Sulfur-Titanium Dioxide Nanocomposites for Photocatalytic Oxidation of Cyanide Using Visible Light Irradiation. Chin. J. Catal. 2015, 36, 698–704. [Google Scholar] [CrossRef]
- Bai, H.; Zhou, J.; Zhang, H.; Tang, G. Enhanced Adsorbability and Photocatalytic Activity of TiO2-Graphene Composite for Polycyclic Aromatic Hydrocarbons Removal in Aqueous Phase. Colloids Surf. B Biointerfaces 2017, 150, 68–77. [Google Scholar] [CrossRef]
- Kouloumbos, V.N.; Tsipi, D.F.; Hiskia, A.E.; Nikolic, D.; van Breemen, R.B. Identification of Photocatalytic Degradation Products of Diazinon in TiO2 Aqueous Suspensions Using GC/MS/MS and LC/MS with Quadrupole Time-of-Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Jiao, C.; Pan, L.; Zhao, T.; Liang, J.; Xiong, J.; Wang, S.; Zhu, H.; Chen, G.; Lu, L.; et al. Degradation of Chlorine Dioxide Bleaching Wastewater and Response of Bacterial Community in the Intimately Coupled System of Visible-Light Photocatalysis and Biodegradation. Environ. Res. 2021, 195, 110840. [Google Scholar] [CrossRef]
- Kuehr, I.; Núñez, O. Titanium Dioxide Photoinduced Degradation of Some Pesticide/Fungicide Precursors. Pest Manag. Sci. Former. Pestic. Sci. 2007, 63, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Fiorenza, R.; Di Mauro, A.; Cantarella, M.; Privitera, V.; Impellizzeri, G. Selective Photodegradation of 2, 4-D Pesticide from Water by Molecularly Imprinted TiO2. J. Photochem. Photobiol. A Chem. 2019, 380, 111872. [Google Scholar] [CrossRef]
- Salabat, A.; Mirhoseini, F. Applications of a New Type of Poly (Methyl Methacrylate)/TiO2 Nanocomposite as an Antibacterial Agent and a Reducing Photocatalyst. Photochem. Photobiol. Sci. 2015, 14, 1637–1643. [Google Scholar] [CrossRef]
- Borah, D.; Yadav, R.N.S. Bioremediation of Petroleum Based Contaminants with Biosurfactant Produced by a Newly Isolated Petroleum Oil Degrading Bacterial Strain. Egypt. J. Pet. 2017, 26, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.S.; Romão, L.P.C.; Araújo, B.R.; Lucas, S.C.O.; Maciel, S.T.A.; Wisniewski, A., Jr.; Alexandre, M.d.R. Environmental Strategies to Remove Volatile Aromatic Fractions (BTEX) from Petroleum Industry Wastewater Using Biomass. Bioresour. Technol. 2012, 105, 31–39. [Google Scholar] [CrossRef]
- Varjani, S.J.; Upasani, V.N. Carbon Spectrum Utilization by an Indigenous Strain of Pseudomonas Aeruginosa NCIM 5514: Production, Characterization and Surface Active Properties of Biosurfactant. Bioresour. Technol. 2016, 221, 510–516. [Google Scholar] [CrossRef]
- Sajna, K.V.; Sukumaran, R.K.; Gottumukkala, L.D.; Pandey, A. Crude Oil Biodegradation Aided by Biosurfactants from Pseudozyma Sp. NII 08165 or Its Culture Broth. Bioresour. Technol. 2015, 191, 133–139. [Google Scholar] [CrossRef]
- Khan, W.Z.; Najeeb, I.; Tuiyebayeva, M.; Makhtayeva, Z. Refinery Wastewater Degradation with Titanium Dioxide, Zinc Oxide, and Hydrogen Peroxide in a Photocatalytic Reactor. Process Saf. Environ. Prot. 2015, 94, 479–486. [Google Scholar] [CrossRef]
- Shahrezaei, F.; Akhbari, A.; Rostami, A. Photodegradation and Removal of Phenol and Phenolic Derivatives from Petroleum Refinery Wastewater Using Nanoparticles of TiO2. Int. J. Energy Environ. 2012, 3, 267–274. [Google Scholar]
- Pakravan, P.; Akhbari, A.; Moradi, H.; Azandaryani, A.H.; Mansouri, A.M.; Safari, M. Process Modeling and Evaluation of Petroleum Refinery Wastewater Treatment through Response Surface Methodology and Artificial Neural Network in a Photocatalytic Reactor Using Poly Ethyleneimine (PEI)/Titania (TiO2) Multilayer Film on Quartz Tube. Appl. Petrochem. Res. 2015, 5, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Saien, J.; Shahrezaei, F. Organic Pollutants Removal from Petroleum Refinery Wastewater with Nanotitania Photocatalyst and UV Light Emission. Int. J. Photoenergy 2012, 2012, 703074. [Google Scholar] [CrossRef]
- Aljuboury, D.a.d.A.; Palaniandy, P.; Abdul Aziz, H.B.; Feroz, S.; Abu Amr, S.S. Evaluating Photo-Degradation of COD and TOC in Petroleum Refinery Wastewater by Using TiO2/ZnO Photo-Catalyst. Water Sci. Technol. 2016, 74, 1312–1325. [Google Scholar] [CrossRef]
- Aljuboury, D.; Palaniandy, P.; Abdul Aziz, H.; Feroz, S.; Abu Amr, S.S. Performance of Different Photocatalytic Oxidation Processes in Petroleum Wastewater Treatment: A Comparative Study. Glob. NEST J. 2017, 19, 167–175. [Google Scholar]
- Riaz, N.; Chong, F.K.; Man, Z.B.; Sarwar, R.; Farooq, U.; Khan, A.; Khan, M.S. Preparation, Characterization and Application of Cu—Ni/TiO2 in Orange II Photodegradation under Visible Light: Effect of Different Reaction Parameters and Optimization. RSC Adv. 2016, 6, 55650–55665. [Google Scholar] [CrossRef]
- Adly, M.S.; El-Dafrawy, S.M.; El-Hakam, S.A. Application of Nanostructured Graphene Oxide/Titanium Dioxide Composites for Photocatalytic Degradation of Rhodamine B and Acid Green 25 Dyes. J. Mater. Res. Technol. 2019, 8, 5610–5622. [Google Scholar] [CrossRef]
- Pujara, K.; Kamble, S.P.; Pangarkar, V.G. Photocatalytic Degradation of Phenol-4-Sulfonic Acid Using an Artificial UV/TiO2 System in a Slurry Bubble Column Reactor. Ind. Eng. Chem. Res. 2007, 46, 4257–4264. [Google Scholar] [CrossRef]
- Saharan, V.K.; Pandit, A.B.; Satish Kumar, P.S.; Anandan, S. Hydrodynamic Cavitation as an Advanced Oxidation Technique for the Degradation of Acid Red 88 Dye. Ind. Eng. Chem. Res. 2012, 51, 1981–1989. [Google Scholar] [CrossRef]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic Degradation Pathway of Methylene Blue in Water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maridevaru, M.C.; Sorrentino, A.; Aljafari, B.; Anandan, S. Composites for Aqueous-Mediated Heterogeneously Catalyzed Degradation and Mineralization of Water Pollutants on TiO2—A Review. J. Compos. Sci. 2022, 6, 350. https://doi.org/10.3390/jcs6110350
Maridevaru MC, Sorrentino A, Aljafari B, Anandan S. Composites for Aqueous-Mediated Heterogeneously Catalyzed Degradation and Mineralization of Water Pollutants on TiO2—A Review. Journal of Composites Science. 2022; 6(11):350. https://doi.org/10.3390/jcs6110350
Chicago/Turabian StyleMaridevaru, Madappa C., Andrea Sorrentino, Belqasem Aljafari, and Sambandam Anandan. 2022. "Composites for Aqueous-Mediated Heterogeneously Catalyzed Degradation and Mineralization of Water Pollutants on TiO2—A Review" Journal of Composites Science 6, no. 11: 350. https://doi.org/10.3390/jcs6110350