Gas Sensitive Materials Based on Polyacrylonitrile Fibers and Nickel Oxide Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Nickel Oxide Nanoparticles by the Solution Combustion Method
2.2. Electrospinning Process of PAN/NiO Fibers
2.3. Stabilization and Carbonization of PAN/NiO Fibers
2.4. Gas Sensing by NiO/C Composite Fibers
2.5. Methods of Characterization
3. Results
3.1. Physicochemical Properties of Nickel Oxide Nanoparticles
3.2. Morphology of NiO/C Composite Fibers
3.3. Gas Sensitive Characteristics of NiO/C Composite Fibers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishna, K.G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sens. Actuators A Phys. 2022, 341, 113578. [Google Scholar] [CrossRef]
- Singh, T.; Bonne, U. Gas Sensors. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–54. [Google Scholar] [CrossRef]
- Yadav, A.; Sinha, N. Nanomaterial-based gas sensors: A review on experimental and theoretical studies. Mater. Express 2022, 12, 1–33. [Google Scholar] [CrossRef]
- Yunusa, Z.; Hamidon, M.N.; Kaiser, A.; Awang, Z. Gas Sensors: A Review. Sens. Transducers 2014, 168, 61–75. [Google Scholar]
- Das, S.; Mojumder, S.; Saha, D.; Pal, M. Influence of major parameters on the sensing mechanism of semiconductor metal oxide based chemiresistive gas sensors: A review focused on personalized healthcare. Sens. Actuators B Chem. 2021, 352, 131066. [Google Scholar] [CrossRef]
- Huang, X.; Gong, Z.; Lv, Y. Advances in metal-organic frameworks-based gas sensors for hazardous substances. TrAC Trends Anal. Chem. 2022, 153, 116644. [Google Scholar] [CrossRef]
- Dhall, S.; Mehta, B.; Tyagi, A.; Sood, K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, T. Insights into the gas sensor materials: Synthesis, performances and devices. Sens. Actuators B Chem. 2022, 371, 132565. [Google Scholar] [CrossRef]
- Wang, A.C.; Wang, S.K.; Zhou, B.J.; Di Cheng, J.; Liu, Q.Y.; Pan, J.L.; Qiao, Y.; Wang, Y.C.; Sun, G.Z.; Zhang, Z.X.; et al. Side-by-side design of bi-component heterojunction nanofibers for high-performance gas sensors: Improvement in synergistic effect. Appl. Surf. Sci. 2022, 603, 154436. [Google Scholar] [CrossRef]
- Bagherzadeh, R.; Saveh Shemshaki, N. Metal Oxide Nanofibers for Flexible Organic Electronics and Sensors. In Metal Oxide-Based Nanofibers and Their Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 159–171. [Google Scholar] [CrossRef]
- Mirzaei, A.; Majhi, S.M.; Kim, H.W.; Kim, S.S. Metal Oxide-Based Nanofibers and Their Gas-Sensing Applications. In Metal Oxide-Based Nanofibers and Their Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 139–158. [Google Scholar] [CrossRef]
- Singh, A.K.; Chowdhury, N.K.; Roy, S.C.; Bhowmik, B. Review of Thin Film Transistor Gas Sensors: Comparison with Resistive and Capacitive Sensors. J. Electron. Mater. 2022, 51, 1974–2003. [Google Scholar] [CrossRef]
- Barik, P.; Pradhan, M. Selectivity in trace gas sensing: Recent developments, challenges, and future perspectives. Analyst 2022, 147, 1024–1054. [Google Scholar] [CrossRef]
- Wusiman, M.; Taghipour, F. Methods and mechanisms of gas sensor selectivity. Crit. Rev. Solid State Mater. Sci. 2021, 47, 416–435. [Google Scholar] [CrossRef]
- Ting, C.-C.; Chao, C.-H.; Tsai, C.Y.; Cheng, I.-K.; Pan, F.-M. Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect. Appl. Surf. Sci. 2017, 416, 365–370. [Google Scholar] [CrossRef]
- Xiong, H.; Zhou, H.; Qi, C.; Liu, Z.; Zhang, L.; Zhang, L.; Qiao, Z.-A. Polymer-oriented evaporation induced self-assembly strategy to synthesize highly crystalline mesoporous metal oxides. Chem. Eng. J. 2020, 398, 125527. [Google Scholar] [CrossRef]
- Sasaki, T.; Shimizu, Y.; Koshizaki, N. Preparation of metal oxide-based nanomaterials using nanosecond pulsed laser ablation in liquids. J. Photochem. Photobiol. A Chem. 2006, 182, 335–341. [Google Scholar] [CrossRef]
- Ryu, K.; Lee, K.-J. Grinding behavior of WO3, NiO, Fe2O3 by ultrasonic milling parameters control and preparation of nanocomposite powder. Adv. Powder Technol. 2020, 31, 3867–3873. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Yan, Y. Metal-organic chemical vapor deposition of Cu(acac)2 for the synthesis of Cu/ZSM-5 catalysts for the oxidation of toluene. Microporous Mesoporous Mater. 2018, 261, 244–251. [Google Scholar] [CrossRef]
- Papynov, E.K.; Mayorov, V.Y.; Palamarchuk, M.S.; Bratskaya, S.; Avramenko, V.A. Sol–gel synthesis of porous inorganic materials using “core–shell” latex particles as templates. J. Sol-Gel Sci. Technol. 2013, 68, 374–386. [Google Scholar] [CrossRef]
- Papynov, E.; Shichalin, O.; Apanasevich, V.; Portnyagin, A.; Yu, M.V.; Yu, B.I.; Merkulov, E.; Kaidalova, T.; Modin, E.; Afonin, I.; et al. Sol-gel (template) synthesis of osteoplastic CaSiO3/HAp powder biocomposite: “In vitro” and “in vivo” biocompatibility assessment. Powder Technol. 2020, 367, 762–773. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, S.; Wang, B.; Pei, S. Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor. J. Alloys Compd. 2021, 886, 161299. [Google Scholar] [CrossRef]
- Christy, A.J.; Umadevi, M.; Sagadevan, S. Solution Combustion Synthesis of Metal Oxide Nanoparticles for Membrane Technology. In Metal Oxide Powder Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 333–349. [Google Scholar] [CrossRef]
- Sagadevan, S.; Lett, J.A.; Weldegebrieal, G.K.; Biswas, R.U.D.; Oh, W.C.; Alshahateet, S.F.; Fatimah, I.; Mohammad, F.; Al-Lohedan, H.A.; Paiman, S.; et al. Enhanced gas sensing and photocatalytic activity of reduced graphene oxide loaded TiO2 nanoparticles. Chem. Phys. Lett. 2021, 780, 138897. [Google Scholar] [CrossRef]
- Boyadjiev, S.I.; Kéri, O.; Bárdos, P.; Firkala, T.; Gáber, F.; Nagy, Z.K.; Baji, Z.; Takács, M.; Szilágyi, I.M. TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing. Appl. Surf. Sci. 2017, 424, 190–197. [Google Scholar] [CrossRef]
- Garzella, C.; Comini, E.; Tempesti, E.; Frigeri, C.; Sberveglieri, G. TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sens. Actuators B Chem. 2000, 68, 189–196. [Google Scholar] [CrossRef]
- Xu, D.; Chen, Y.; Qiu, T.; Qi, S.; Zhang, L.; Yin, M.; Ge, K.; Wei, X.; Tian, X.; Wang, P.; et al. Hierarchical mesoporous SnO2 nanotube templated by staphylococcus aureus through electrospinning for highly sensitive detection of triethylamine. Mater. Sci. Semicond. Process 2021, 136, 106129. [Google Scholar] [CrossRef]
- Van Dung, N.; Le Dang, T.T.; Trung, N.D.; Dung, H.N.; Hung, N.M.; Van Duy, N.; Hoa, N.D.; Van Hieu, N. CuO Nanofibers Prepared by Electrospinning for Gas Sensing Application: Effect of Copper Salt Concentration. J. Nanosci. Nanotechnol. 2016, 16, 7910–7918. [Google Scholar] [CrossRef]
- Lim, S.K.; Hwang, S.-H.; Chang, D.; Kim, S. Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens. Actuators B Chem. 2010, 149, 28–33. [Google Scholar] [CrossRef]
- Che, Y.; Feng, G.; Sun, T.; Xiao, J.; Guo, W.; Song, C. Excellent gas-sensitive properties towards acetone of In2O3 nanowires prepared by electrospinning. Colloids Interface Sci. Commun. 2021, 45, 100508. [Google Scholar] [CrossRef]
- Mahajan, S.; Jagtap, S. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review. Appl. Mater. Today 2019, 18, 100483. [Google Scholar] [CrossRef]
- Mohammadi, M.; Fray, D. Nanostructured TiO2–CeO2 mixed oxides by an aqueous sol–gel process: Effect of Ce:Ti molar ratio on physical and sensing properties. Sens. Actuators B Chem. 2010, 150, 631–640. [Google Scholar] [CrossRef]
- Mansurov, Z.; Smagulova, G.; Imash, A.; Taurbekov, A.; Elouadi, B.; Kaidar, B. Carbon/NiO Compositional Fibers. Eurasian Chem. J. 2022, 24, 59–67. [Google Scholar] [CrossRef]
- Kang, S.; Zhao, K.; Yu, D.-G.; Zheng, X.; Huang, C. Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Adv. Fiber Mater. 2022, 4, 404–435. [Google Scholar] [CrossRef]
- Zheng, G.; Jiang, J.; Wang, X.; Li, W.; Liu, J.; Fu, G.; Lin, L. Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applications. Mater. Des. 2020, 189, 108504. [Google Scholar] [CrossRef]
- Al-Dhahebi, A.M.; Ling, J.; Krishnan, S.G.; Yousefzadeh, M.; Elumalai, N.K.; Saheed, M.S.M.; Ramakrishna, S.; Jose, R. Electrospinning research and products: The road and the way forward. Appl. Phys. Rev. 2022, 9, 011319. [Google Scholar] [CrossRef]
- Jin, Q.; Fu, Y.; Zhang, G.; Xu, L.; Jin, G.; Tang, L.; Ju, J.; Zhao, W.; Hou, R. Nanofiber electrospinning combined with rotary bioprinting for fabricating small-diameter vessels with endothelium and smooth muscle. Compos. Part B Eng. 2022, 234, 109691. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, M.; Tyagi, R.; Singh, R. Electrospinning Based Nanofibers for 3D Printing Applications. In Encyclopedia of Materials: Plastics and Polymers; Elsevier: Amsterdam, The Netherlands, 2022; pp. 253–263. [Google Scholar] [CrossRef]
- Gradinaru, L.M.; Bercea, M.; Vlad, S.; Mandru, M.B.; Drobota, M.; Aflori, M.; Ciobanu, R.C. Preparation and characterization of electrospun magnetic poly(ether urethane) nanocomposite mats: Relationships between the viscosity of the polymer solutions and the electrospinning ability. Polymer 2022, 256, 125186. [Google Scholar] [CrossRef]
- Sahoo, B.; Panda, P.; Ramakrishna, S. Electrospinning of functional ceramic nanofibers. Open Ceram. 2022, 11, 100291. [Google Scholar] [CrossRef]
- Kolavennu, S.; Gonia, P. Wireless Gas Sensors for Industrial Life Safety. In Industrial Wireless Sensor Networks; Elsevier: Amsterdam, The Netherlands, 2016; pp. 155–166. [Google Scholar] [CrossRef]
- Longo, V.; Forleo, A.; Radogna, A.V.; Siciliano, P.; Notari, T.; Pappalardo, S.; Piscopo, M.; Montano, L.; Capone, S. A novel human biomonitoring study by semiconductor gas sensors in Exposomics: Investigation of health risk in contaminated sites. Environ. Pollut. 2022, 304, 119119. [Google Scholar] [CrossRef]
- Tancev, G.; Toro, F.G. Variational Bayesian calibration of low-cost gas sensor systems in air quality monitoring. Meas. Sens. 2021, 19, 100365. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, S.; Wang, X.; Huang, J.; Pan, W.; Zhang, J.; Meteku, B.E.; Zeng, J. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 2021, 423, 127160. [Google Scholar] [CrossRef]
- Kacem, M.; Zaghdoudi, K.; Morales-Rubio, A.; de la Guardia, M. Preliminary results on the influence of car characteristics on their gases emissions using gas sensors. Microchem. J. 2018, 139, 69–73. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Swart, H.C.; Motaung, D.E. A review on recent progress of p-type nickel oxide based gas sensors: Future perspectives. J. Alloys Compd. 2019, 805, 267–294. [Google Scholar] [CrossRef]
- Papynov, E.K.; Portnyagin, A.S.; Modin, E.B.; Mayorov, V.Y.; Shichalin, O.O.; Golikov, A.P.; Pechnikov, V.S.; Gridasova, E.A.; Tananaev, I.G.; Avramenko, V.A. A Complex Approach to Assessing Porous Structure of Structured Ceramics Obtained by SPS Technique. Mater. Charact. 2018, 145, 294–302. [Google Scholar] [CrossRef]
- Rahdar, A.; Aliahm, M.; Azizi, Y. NiO Nanoparticles: Synthesis and Characterization. J. Nanostruct. 2015, 5, 145–151. [Google Scholar]
- Ali, B.; Tasirin, S.M.; Aminayi, P.; Yaakob, Z.; Ali, N.T.; Noori, W. Non-Supported Nickel-Based Coral Sponge-Like Porous Magnetic Alloys for Catalytic Production of Syngas and Carbon Bio-Nanofilaments via a Biogas Decomposition Approach. Nanomaterials 2018, 8, 1053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, W.-G.; Li, Y.-Q.; Jin, L.-F.; Cui, F.; Song, Z.-H. 3D Flower-Like NiO Hierarchical Structures Assembled with Size-Controllable 1D Blocking Units: Gas Sensing Performances Towards Acetylene. Front. Chem. 2018, 6, 472. [Google Scholar] [CrossRef] [PubMed]
Metal Oxide Nanoparticles | Properties of Nanoparticles | Method of Synthesis | Fabrication Technology of Gas Sensors Electrodes | Sensing Gas | Ref. |
---|---|---|---|---|---|
TiO2 | Size: 3 nm–30 nm | Sol–gel | Coaxial electrospinning | Ethanol 100 ppm Methanol 100 ppm CO 100–300 ppm NO2 0.5–4 ppm | [24,25,26] |
SnO2 | 17.8 nm | Aerosol flame reactor (Premixed Flame) | Electrospinning | VOC (ethanol, acetone, 20–200 ppm) Triethylamine 50 ppm | [27] |
CuO | 20–100 nm | Thermal deposition method | Electrospinning | Ethanol 250 ppm, hydrogen 250 ppm and liquefied petroleum gas 2500 ppm | [28] |
ZnO | - | Wet chemical route | Electrospinning | 1-propanol 15 ppm acetone 15 ppm methanol 15 ppm | [25] |
In2O3 | 10–20 nm | Film is grown by molecular beam epitaxy (MBE) | Electrospinning | Carbon monoxide 100 ppm | [29,30,31] |
TiO2-CeO2 | Ave grain size: 17–28 nm | Sol–gel | Electrospinning | Carbon monoxide 25–400 ppm | [32] |
NiO | 95.5–417.2 nm | Solution Combustion [33] | Electrospinning | Acetylene—50 ppm Acetone—50 ppm | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaidar, B.; Smagulova, G.; Imash, A.; Mansurov, Z. Gas Sensitive Materials Based on Polyacrylonitrile Fibers and Nickel Oxide Nanoparticles. J. Compos. Sci. 2022, 6, 326. https://doi.org/10.3390/jcs6110326
Kaidar B, Smagulova G, Imash A, Mansurov Z. Gas Sensitive Materials Based on Polyacrylonitrile Fibers and Nickel Oxide Nanoparticles. Journal of Composites Science. 2022; 6(11):326. https://doi.org/10.3390/jcs6110326
Chicago/Turabian StyleKaidar, Bayan, Gaukhar Smagulova, Aigerim Imash, and Zulkhair Mansurov. 2022. "Gas Sensitive Materials Based on Polyacrylonitrile Fibers and Nickel Oxide Nanoparticles" Journal of Composites Science 6, no. 11: 326. https://doi.org/10.3390/jcs6110326
APA StyleKaidar, B., Smagulova, G., Imash, A., & Mansurov, Z. (2022). Gas Sensitive Materials Based on Polyacrylonitrile Fibers and Nickel Oxide Nanoparticles. Journal of Composites Science, 6(11), 326. https://doi.org/10.3390/jcs6110326